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Abstract: A detailed methodology that allows the developing of stochastic discrete-
time models of MEMS gyroscope and accelerometer noises is presented. The 
methodology is based on the frequency-domain and time-domain characteristics of 
the sensors noises and is illustrated for the case of Analog Devices tri-axis Inertial 
measurement Sensor ADIS16350. It is shown that the gyro and accelerometer 
noises have similar second-order models which are appropriate for usage in the 
development of Kalman filters for navigation and control systems.  
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1. Introduction  

The Micro Electro Mechanical Systems (MEMS) inertial sensors have several 
applications in low-cost navigation and control systems [4, 5, 9]. A common 
disadvantage of these sensors are the significant errors which accompany the 
corresponding measurements. This necessitates the development of adequate error 
models which may be used to achieve sufficient measurements accuracy with the 
aid of appropriate filtering.  

The inertial sensor errors consist of deterministic and stochastic parts. The 
deterministic part includes constant biases, scale factors, axis nonorthogonality, axis 
misalignment and so on, which are removed from row measurements by the 
corresponding calibration techniques. The stochastic part contains random errors 
(noises) which cannot be removed from the measurements and should be modeled 
as stochastic processes.  
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The MEMS gyroscope noise typically consists of the following terms: 
• Bias instability. This is a stationary stochastic process which may be 

considered as a low-order zero-mean Gauss-Markov process. 
• Angular random walk. This is an angular error process which is due to 

white noise in angular rate. 
• Rate random walk. This is a rate error due to white noise in angular 

acceleration. 
• Discretization error. This is an error representing the quantization noise.  
Similarly, the MEMS accelerometer noise may be represented as a sum of the 

following terms. 
• Bias instability.  
• Velocity random walk. This is a velocity error due to white noise in 

acceleration.  
• Acceleration random walk. This is an acceleration error due to white noise 

in jerk.  
• Discretization error.  

Several other noise terms are described in detail in [6].  
Different techniques for building models of MEMS sensor noises are 

presented in [4, 7, 8], to name a few. Usually, they exploit the autocorrelation 
function of the noise in order to obtain 1-st order Gauss-Markov or higher order 
Auto-Regressive models. Note that it is desirable to keep the model order as low as 
possible since the model is frequently used in the design of Kalman filter to 
determine optimal estimates based on the sensor measurements.  

The aim of this paper is to present a detailed methodology that allows the 
development of stochastic discrete-time models of MEMS gyro and accelerometer 
noises. The methodology is based on the frequency-domain and time-domain 
characteristics of the sensors noises and is illustrated for the case of Analog Devices 
tri-axis Inertial measurement Sensor ADIS16350. It is shown that the gyroscope 
and accelerometer noises have similar second-order models which are appropriate 
for usage in the development of Kalman filters for navigation and control systems.  

The units used in the paper conform to the units used in [2] for comparison 
purposes. 

2. Allan variance  

The Allan variance provides a means of identifying various noise terms in the 
original data set [1, 6]. 

Assume that a quantity  θ(t)  is measured at discrete time moments  t=kT0,   
k=1, 2, …, L. The average value of θ between times tk and tk + τ where τ = mT0, is 
given by 

τ
θθτ kmk
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The Allan variance is defined as 
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where  is the ensemble average. 
The Allan variance is estimated as follows: 
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The Allan variance is related to the PSD of the measured quantity and is 
connected with the parameters of the noise terms described in Section 1. This 
connection is exploited in the next sections to determine the gyroscope and 
accelerometer noises models.  

3. Stochastic models of gyroscopic sensors 

The stochastic discrete-time model of the gyro sensors is derived on the base of the 
gyro noise measured at rest. For this aim we use L = 1 000 000 samples of one of 
the gyro outputs of ADIS16350 

Inertial Measurement Sensor [2] measured with frequency fs = 100 Hz during 
the period of 10 000 s. After removing a small constant bias of –0.1027 deg/s. we 
found that the noise mean square value is (to six digits) 

σgyro_noise = 0.581614 deg/s. 
The centered output gyro noise is shown in Fig. 1. 
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Fig. 1. Output gyro noise 
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Fig. 2. Power spectral density of gyro noise 
 

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

N/τ1/2

↓

(2ln2/π)1/2B
↑

K/(τ/3)1/2
←

 (s)

Allan variance of gyro noise

 
τ, s 

Fig. 3. Allan variance of gyro noise 

To determine the different terms of the gyro noise we study its frequency 
domain and time domain characteristics. In the frequency domain we make use of 
the one sided power spectral density (PSD) of the gyro noise, determined by the 
function pwelch from MATLAB and shown in Fig. 2. Taking into account the 
connection between the slopes of the PSD and the slopes of the spectral densities of 
different kinds of gyro noises [6], we conclude that there are three noise 
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components, namely bias instability, angular random walk and rate random walk 
with mean square values B, N and K, respectively. Since the gyro has 14-bit 
resolution its discretization error is negligible. 

To determine the parameters B, N and K precisely, we use the Allan variance 
of the gyro noise, computed with overlapping estimates and shown in Fig. 3. The 
connection between parameters B, N and K  and the Allan variance, taken from [6], 
is shown in the same figure. As a result one obtains the values B = 1.55×10–2 deg/s, 
N = 5.75×10–2 deg/s1/2, and K = 9×10–4 deg/s1/2. 

The bias instability is usually described by the first order lag  
(3) )()()( tvtxtxT =+& , 

where ( )x t  is a Gauss-Markov process and ( )v t  is an input white noise. According 
to Fig. 3 we take T = 120 s. 

Since we are interested to determine a discrete-time model of the noise, we 
discretize equation (3) to obtain  
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and )(kη  is a discrete-time white noise with unknown variance 2
ησ . 

It is well known that for the time-invariant discrete-time system  
)()()1( kBkxAkx dd η+=+  

the state covariance matrix P  is related to the input covariance matrix Q  by the 
matrix equation [3]  
(5) T

dd
T
dd QBBPAAP += . 

That is why the variances of the discrete-time stochastic processes ( )x k  and 
( )kη  in respect to the 1-st order system (4) are related by  

2222 )1( ησσ dxd ba =− . 
Since Bx =σ , we have that  

(6) 
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As a result one finds ση=2.40125.  
Consider now how to determine the model of rate random walk, which will be 

denoted by rrw. The effect of this noise on the gyro output may be represented by 
the response of an integrator to a white noise. The corresponding discrete-time 
relationship is given by 
(7)  rrw(z) = Kdfilt(z)ω(z),  
where  

(8) 
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is the integrator discrete-time transfer function and ω is a white noise with unknown 
variance 2

ωσ . 
The value of ωσ  is found by approximating the low-frequency part of the gyro 

noise PSD by the PSD of rate random walk (7), as shown in Fig. 4. As a result we 
find 5=ωσ . Finally, the angular random walk is modeled as a white noise arw 
whose variance σ2

arw is determined according to the expression 

(9) .2
yyw

22
gyro_noisearw σσσσ −−= x  

This gives σarw = 0.581188.  

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

q
y

(
g

)

pp

 

 
Gyro error PSD
Rate Random Walk PSD

 
Frequency, Hz 

Fig. 4. Rate random walk approximation 
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Fig. 5. Power spectral density of the gyro model noise 

In this way the gyro noise is represented as  
(10) gyro_noise = x + arw + rrw, 
where x, rrw and arw are described by (4), (7), and (9), respectively. 
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As it is seen from Fig. 5, the PSD of the model noise, generated according to 
(10), coincides well with the PSD of the measured noise, shown in Fig. 2. 

In Fig. 6 we show the measured gyro noise xmeans along with the noise xmodel 
generated by the gyro noise model. The closeness of both signals is estimated by the 
quantity  
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In the given case one obtains fit = 96% which shows that the signals are quite 
close. 
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Fig. 6. Measured gyro noise and the gyro model noise 

4. Stochastic models of accelerometers 

In developing a model of the accelerometer noise we implement the same 
methodology as in the case of gyroscopes. This is due to the fact that the PSD and 
Allan variance of the accelerometer noise have properties similar to the 
corresponding gyro characteristics. 

In the given case we use again 1 000 000 samples of the accelerometer noise 
measured at rest. The mean square value of the noise is found to be  
σaccellerometer_noise = 5.62452×10–3, g. (Note that the acceleration values are measured 
in the earth gravitation unit (g)). 
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The PSD of the accelerometer noise is shown in Fig. 7 and the Allan variance 
is shown in Fig. 8. From Allan variance we find that the accelerometer noise has the 
following parameters: 

• Bias instability B = 0.325 mg;  
• Velocity random walk. N = 0.294 (m/s/ h ); 
• Acceleration random walk K = 0.206 (m/s2/ h );  
• Time-constant T = 80 s.  
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Fig. 7. Power spectral density of accelerometer noise 
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Fig. 8. Allan variance of accelerometer noise 

As in the case of gyro noise, the bias instability is described by equation of the 
type (4), with coefficients ad and bd computed for the new value of the time constant 
T. The acceleration random walk is described by the equation (7) with the same 
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integrator transfer function and white noise mean square value σω = 5. The velocity 
random walk is taken as a white noise with variance σ2

vrw determined by an 
equation of the type (9). This gives σvrw = 5.57178×10–3 g. The final model of the 
acceleration noise is obtained by relationship of the type (10). 
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Fig. 9. Power spectral density of the accelerometer model noise 
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Fig. 10. Measured accelerometer noise and the accelerometer model noise 
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The power spectral density of the acceleration noise generated according to the 
model described is shown in Fig. 9. This PSD is close to the PSD computed from 
the measurements. 

In Fig. 10 we show the measured accelerometer noise along with the noise 
generated by the accelerometer noise model. Using the expression (11) one obtains 
fit = 85% which shows that the signals are sufficiently close. 

Finally, it should be noted that when the gyro and accelerometer noise models 
are used in the design of a Kalman filter instead of deg/s one should express the 
model parameters in rad/s and instead of g, the corresponding parameters should be 
expressed in m/s2. 

5. Conclusions 

It is shown that the gyroscope and accelerometer noises pertaining to Analog 
Devices MEMS Inertial Measurement Sensor ADIS16350 have similar second-
order models which may be determined with sufficient accuracy by using the 
frequency-domain and time-domain characteristics of the noises. The error models 
are implemented as programs in MATLAB® and Simulink® and are appropriate for 
usage in the development of Kalman filters for navigation and control systems. 
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