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Abstract: The paper deals with the existing methods for estimating the sensitivity of 
the solution to the nonlinear matrix equation QAXAX ts =± * , with s and t – 
real  numbers. The perturbation bounds for the complex matrix equation proposed 
by Yin, Liu, Fang in  [9] and Yin, Liu in [8], when s is a positive and t is a negative 
integers and by Li, Zhang in [6], when s=1, 0)1,[−∈t , as well as the estimates 
proposed by Jia, Wei in [4] for the real equation with s and t – non negative 
integers and the perturbation bounds proposed by Konstantinov et al. in [5] for the 
real and complex equation with s and t real numbers are considered. The 
effectiveness and the reliability of the perturbation bounds are analysed by several 
numerical examples with reference models based on Example 1 from [3] and 
Example 2 from [2]. 

Keywords:  Non-linear matrix equation, perturbation bounds. 

1. Introduction and notation 

Consider the matrix equation  
(1) QAXAX ts =± * ,  
where s and t are real numbers, A, Q and X (Q>0, X > 0) are n×n complex or real 
matrices, A* stands for the complex conjugate transpose of A in the complex case 
and for the transpose of A in the real case. Equations of this type are of current 
practical interest [1, 4, 8, 9, 10]. Several perturbation bounds of the unique positive 
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definite solution to (1), when s = 1 and 1−=t  or )0,1[−∈t  are proposed [6] and 
the references therein. The sensitivity of the more general cases, when s and t are 
real numbers is discussed as follows: 

• the complex equations QAXAX ts =± *  with s and t positive integers – in 
[9] and [8], 

• the real equation QAXAX ts =+ T  with s and t non negative integers – in 
[4], 

• the complex and the real cases of (1) when s and t are real numbers – in [5]. 

It would be interesting to estimate the field of application of the different 
bounds.  

In this paper by means of numerical experiments the effectiveness of the 
bounds proposed in [4, 5, 6, 8, 9] with respect to their sharpness is analyzed. For the 
experiments we use Example 1 form [3] and Example 2 from [2] which are the most 
exploited in the literature examples, when refer to equations of type (1). As both 
examples consider real matrix equations, to compare the behaviour of the bounds 
related to the complex equations we modify Example 1 [3], so that the coefficient 
matrices to be complex.  

The paper is organized as follow. In Section 2 we mention the purpose of the 
sensitivity analysis. In Section 3 we give in brief the error bounds, which will be 
analysed in Section 4.  For sake of convenience we keep the original notations of 
the authors. In Section 5 we carry out several numerical experiments to analyse the 
effectiveness of the bounds considered. 

Throughout the paper the following notations are used: N, R and C – the sets 
of natural, real and complex numbers, respectively; F is R or C ; I – the identity 
matrix; 

2
)(vec nA F∈ – the column-wise vector representation of the matrix 

nnA ×∈ F , where 1×= nn FF ;  ]),([ BlkABA =⊗  – the Kronecker product of the 

matrices )],([ lkAA =  and B; 
22

2
nn

n
×∈RP – the so called vec-permutation matrix, 

such that )(vec)(vec 2 YY n
T P=  for each nnY ×∈ F ; ⋅  – a vector or a matrix norm; 

⋅ 2 – the Euclidean vector or the spectral matrix norm; ⋅ F – the Frobenius norm.  

2. Statement of the problem 

Consider the non-linear matrix equation (1). The perturbed equation is   
(2) QQAAXXAAXX ts δδδδδ +=+++±+ )()()()( * , 
where δA, δQ are perturbations in the matrix coefficients A and Q, respectively, 
which represent equivalently the rounding and parameter errors, accompanying the 
numerical solution of equation (1). The perturbation in the solution X+ δX of the 
perturbed equation (2) is δX. The purpose of the sensitivity analysis of (1) is to 
derive perturbation bounds for 

F
Xδ  as a linear or nonlinear function of the 

perturbations in the data.  
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3. Sensitivity estimates 

For sake of convenience, we denote the bounds by their original notations. 

3.1. The bounds of Yi n, L i u, F a n g [9] 

In [9] the nonlinear matrix equation QAXAX ts =+ * , with A – nonsingular n 
square complex matrix, Q – an Hermitian positive definite matrix and s and t – 
positive integers is considered. Several bounds for the Frobenius norm of the 
perturbation in the solution 

F
Xδ  are proposed. By means of numerical 

experiments on the base of Example 1 from [3] the effectiveness of the bounds 
proposed in the paper are compared to the bounds proposed in [3] and [7]. The 
results show that for this example among the bounds proposed in the three sources 
the bounds err1ξ  (3.5), err2ξ  (3.16) and err1η  (3.18) from [9] are the sharpest. 
Therefore we consider the perturbation bounds 1errξ  (3.5), err2ξ  (3.16) and err1η  
(3.18) proposed in [9]: 
(3) err1F ξδ ≤X , 

( ),2.
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(4) err2F ξδ ≤X , ( ),2 2
F2F2Ferr2 AXAAXQ tt δδδξξ −− ++=   

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−
=

+−+− 1
*

2
2

1
*

1
*

2
2

1
* /

1,~/~
1max

tsts xAtsxxAAtxs δ
ξ , 

s

ts
tQx

1

min* )( ⎥⎦
⎤

⎢⎣
⎡

+
= λ , 

s

ts
tQQx

1

min* )(~
⎥⎦
⎤

⎢⎣
⎡

+
+= δλ , 

where )(min Hλ  is the minimal eigenvalue of the Hermitian matrix H, H = Q,         
Q + δQ, 
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3.2. The bounds of Y i n, L i u [8] 

Y i n and L i u [8] have proposed two perturbation bounds rr1E (3.5) and rr2E  (3.15) 
for the solution of the nonlinear matrix equation QAXAX ts =− * , with A – 
nonsingular n square complex matrix, Q – positive definite matrix and s and t – 
positive integers: 
(7) 1rrF EX ≤δ , 
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3.3. The bound of L i, Z h a n g [6] 

Although the authors consider the particular case of equation (1) when s = 1, for 
completeness we include their bound in our analysis because it concern the case 

)0,1[−∈t . For the complex matrix equation QAXAX t =− −*  with )0,1[−∈t  in 
[6] is proved the following Theorem 3.1, which gives a perturbation bound for the 
solution of the equation. Under the assumptions of A, A + δA, Q, Q + δQ ∈Cn×n   
with Q and δQ positive definite and denoting )( *

max AAk λ= , )( *
min AAk λ= , 

)(max Qq λ= , ),(min Qq λ=  with ),( βα  − the solution of the system tkq −+= βα , 

tkq −+= αβ , 2
121)( Qpqp tt δαβαββε −+ +−+= , 23

2

4
Qt

t δα
αβ

εζ −= . If  

(10) 22
2
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(11) *
2

2 ξ
δ

≤
X
X

, 22* QA δωδςξ += , 
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2222
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2222

32 24

2
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t

δαδδβαεε

βαω
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As it is seen from the expressions above, the perturbation bound *ξ  (11) and 
the condition (10) of its existence does not use any knowledge of the solution X or 

XX δ+ of the unperturbed and the perturbed equations. This allows the analyzing 
of the sensitivity of the equation before solving it, which is an undeniable 
advantage.  

3.4. The bound of J i a, W e i [4] 

Considering the real matrix equation QAXAX ts =+ T , where s, t are both 
nonnegative integers, in [4] Jia and Wei make algebraic perturbation analysis of its 
unique symmetric positive definite solution with respect to perturbations in the data 
matrices A and Q. The following perturbation bound is obtained for equation 

QAXAX ts =+ T  with unique solution [ ]IIX 11 , αβ∈ ,  

(12) ( ) 11
1

1
1

2
2

~~ −−−< ts tsA αβ  

and unique solution [ ]IIXX 11 ˆ,ˆ αβδ ∈+  to the corresponding perturbed equation. 
For any arbitrary 0>ε , if  

(13) ( ) ( ) 1

211F )(3~,~2
−

+< tXXA δεηαβετδ   
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with ( ) 2
1
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3

2)( ⎟
⎠
⎞

⎜
⎝
⎛ +++= −tXXAA δαβτεεη ,   

2
2

11 ~~)~,~( Ats ts −− −= αβαβτ  
and  

(14) ( )εαβτδ 11F
~,~

3
1

<Q ,  

then  
(15) εδ <FX .  

Here )ˆ,max(~
111 ααα = , )ˆ,max(~

111 βββ = , where 1111
ˆ,ˆ,, βαβα  are the unique 

positive roots of  
)()()( max

T
min1 QxAAxxg ts λλ −+= , )()()( min

T
max2 QxAAxxg ts λλ −+= , 

)(ˆ))()((ˆ)ˆ(ˆ max
T

min1 QQxAAAAxxg ts δλδδλ +−+++= , 
)(ˆ))()((ˆ)ˆ(ˆ min

T
max2 QQxAAAAxxg ts δλδδλ +−+++= , respectively. 

3.5. The bounds of K o n s t a n t i n o v, P e t k o v, P o p c h e v, A n g e l o v a [5]  

K o n s t a n t i n o v et al. [5] consider the sensitivity of the nonlinear matrix 
equation (1) with s and t real numbers. Using the technique of Frechet derivatives 
and applying the method of Lyapunov majorants and the Scauder fixed point 
principle, local and non-local perturbation bounds for the positive definite solution 
of equation (1) are obtained. Explicit expressions of local perturbation bounds, 
when s, t = ± r, ±1/2, 1/3, ± 1/p, ± r/p ( ∈pr,  N) and a non-local perturbation 
bound, when s, t = ± r, ±1/2, 1/3, 1/p ( ∈pr,  N) are proposed. 

• Local bound 
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• Non-local bound 

Under the condition on the perturbations in the data 
(17) { }0)()(2)(:0 201 ≤+≥=Ω∈ δδδδδ aaa  
for the Frobenius norm of the perturbation in the solution is valid the non-local 
bound  
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4. Numerical examples 

Four models are used for the numerical experiments. Example 1 (Example 1 from 
[3]) and Example 2 (Example 2 from [2]) are preferred in the literature, when 
analysing the effectiveness of perturbation bounds for equation (1). Examples 3 and 
4 are modifications of Example 1 form [3] for the case of a complex equation (1). 
The computations are performed on a PC with 2.61 GHz Pentium Dual-Core using 
MATLAB (MATLAB is a trade mark of MathWorks). To facilitate the analysis of 
the results in the tables the ratio of the corresponding perturbation bound to the 
estimated value is given, for example F1err / Xδξ . Unit value means the full match 
of the bound and the estimated value. A value above unite indicates how many 
times the bound exceeds the estimated value. When the necessary assumptions are 
violated, the results are noted by asterisk. 

4.1. Example 1 [3] 

Let for the real matrix equation  

QAXAX ts =± T  

⎥
⎥
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⎥
⎥
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⎢
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⎢
⎢
⎢
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−
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45
32A , 

( ),1232725.0diag=X  AXAXQ ts T±= . 
The perturbed matrix equation is  

QQAAXXAAXX ts δδδδ +=+++±+ )()()()( T , 
with )( 5 EIeA j +=δ , )( 5 EIeA j −=δ , j

je 21.0=  for j = 2, 3, 4, 5, 

,)()()()( T QAAXXAAXXQ ts −+++±+= δδδδ  and 

⎥
⎥
⎥
⎥
⎥
⎥
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⎢
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⎢
⎢
⎢
⎢

⎣

⎡
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11111
11111
11111
11111
11111

E . 

Case 4.1.1. Consider equation QAXAX ts =+ T , with s = 1 and t = –2 (Case 1 of 
Example 4.2 [9]). The perturbation in the solution is estimated by the bounds of 
Yin, Liu, Fang 1errξ  (3), 2errξ  (4), err1η  (5) from Subsection 3.1 and the bounds of 
Konstantinov et al. )(est δ  (16), )(δf  (18) from Subsection 3.5 for j = 2, 3, 4, 5.  
The corresponding conditions for existence (6) and (17) are satisfied. As it is seen 
from Table 4.1.1 the bounds est(δ) (16), )(δf  (18) give the tightest results for this 
example.  
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Then we modify the example (as in Example 1 from [3]) by choosing the 
diagonal matrix ( )123225.0diag=X  for the solution of the unperturbed 
equation (1). The numerical experiments show that the bounds err1ξ  (3), err2ξ  (4), 

err1η  (5) cannot be used, because their necessary assumptions (6) are violated. The 
condition of existence (17) of the bound )(δf  (18) is violated for j = 2. An asterisk 
in Table 2 notes this. The bound )(est δ  (16), as well as the bound )(δf  (18) for     
j = 3, 4, 5 are still working, but are quite conservative. 

Table 2. Case (4.1.1): QAXAX ts =+ T , with s = 1, t = – 2. 
Ratio of the estimated value and the perturbation bound  

j j=2 j=3 j=4 j=5 
( )1232725.0diag=X  

F1err / Xδξ  2.3514 2.3505 2.3505 2.3505 

Ferr2 / Xδξ  34.7406 35.4032 35.4100 35.4101 

Ferr1 / Xδη  2.3502 2.3505 2.3505 2.3505 

F/)(est Xδδ  1.7022 1.7012 1.7012 1.7012 

F/)( Xf δδ  1.7078 1.7013 1.7012 1.7012 
( )123225.0diag=X  

F1err / Xδξ  * * * * 

Ferr2 / Xδξ  * * * * 

Ferr1 / Xδη  * * * * 

F/)(est Xδδ  23.874 23.630 23.628 23.628 

F/)( Xf δδ  * 24.217 23.634 23.628 

Case 4.1.2. Consider equation QAXAX ts =+ T , with s = 2 and t = –2 and 
( )1232725.0diag=X  (Case 2 of Example 4.2 [9]). The results for              

j = 2, 3, 4, 5 are given in Table 3. The conditions (6) and (17) of existence of the 
bounds are satisfied. The bound Ferr2 / Xδξ  is considerably more conservative than 

the others bounds considered in the example. The bounds Ferr1 / Xδξ , Ferr1 / Xδη , 

F/)(est Xδδ  and F/)( Xf δδ  are relatively sharp. 

Table 3. Case QAXAX ts =+ T , with s = 2, t = –2. Ratio of 
perturbation bounds and estimated value 

j j = 2 j = 3 j = 4 j = 5 

Ferr1 / Xδξ  3.7339 3.7340  3.7340 3.7340 

Ferr2 / Xδξ  18.9405 19.0049 19.0056 19.0056 

Ferr1 / Xδη  3.7334 3.7340 3.7340 3.7340 

F/)(est Xδδ  2.9619 2.9615 2.9615 2.9615 

F/)( Xf δδ  2.9710 2.9615 2.9615 2.9615 
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Case 4.1.3. Consider the real matrix equation QAXAX ts =− T , with s = 1,                  
t = –1/2. Let the solution of the equation be ( )1232725.0diag=X  and then 

( )123225.0diag=X . The sensitivity of this equation is studied by L i, 
Z h a n g [6] and K o n s t a n t i n o v  e t  a l. [5]. Therefore here the effectiveness of 
the perturbation bounds *ξ  (11) from Subsection 3.3 and )(est δ  (16), )(δf  (18) 
from Subsection 3.5 is analysed [5]. The conditions (10) and (17) of existence of 
the bounds are satisfied. As it is seen, the perturbation bound *ξ  (11) is more 
conservative than the bounds )(est δ  (16), )(δf  (18), when 

( )1232725.0diag=X  and deteriorates significantly, when 
( )123225.0diag=X  while the bounds )(est δ  (16), )(δf  (18) stay 

sharp (Table 4). 

Table 4. Case QAXAX ts =− T , with s = 1, t = –1/2.  Ratio of 
perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
( )1232725.0diag=X  

2* / Xδξ  13.0637 12.9448 12.9436 12.9436 

FXδδ /)(est  1.5868 1.5866 1.5866 1.5866 

F/)( Xf δδ  1.5893 1.5866 1.5866 1.5866 

( )123225.0diag=X  

2* / Xδξ  85.1575 64.6569 64.5465 64.5454 

F/)(est Xδδ  1.7000 1.6982 1.6982 1.6982 

F/)( Xf δδ  1.7043 1.6983 1.6982 1.6982 

Case 4.1.4. Consider equation QAXAX ts =− T , with s = 2, t = –3 and 
( )1232725.0diag=X . The perturbation in the solution is estimated by the 

perturbation bounds rr1E  (7) and rr2E  (8) from Subsection 3.2 proposed by Y i n, 
L i u [8] and the bounds of K o n s t a n t i n o v et al. [5] )(est δ  (16), )(δf  (18) 
from Subsection 3.5. The results for j=2, 3, 4, 5 are given in Table 5. 

Table 5. Case QAXAX ts =− T , with s = 2, t = –3. Ratio 
of perturbation bound and estimated value   

j j=2 j=3 j=4 j=5 

Frr1 / XE δ  5.4561 5.4571 5.4571 5.4571 

Frr2 / XE δ  6.1619 6.1619 6.1619 6.1619 

F/)(est Xδδ  2.9001 2.8995 2.8995 2.8995 

F/)( Xf δδ  2.9150 2.8996 2.8995 2.8995 
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Case 4.1.5. Consider QAXAX ts =+ T , with ( )1232725.0diag=X . 
Perturbation bounds for this case of equation (1) are given by J i a and W e i – the 
bound (15) from Subsection 3.4 and by K o n s t a n t i n o v  e t  a l. [5] – the bounds 

)(est δ  (16), )(δf  (18) from Subsection 3.5. Expression  
(19) ,*F

εδ ≤X   

)2())~,~((:
F

2

F2F22

1
11* QAXXAXXA tt δδδδδαβτε ++++= −  

from [4] is used to calculate the bound of Jia and Wei. The results for j=2, 3, 4, 5, 
s=2, t=3 and for s=3, t=2 are given in Table 6. The submission (12) is not fulfilled, 
when s=2, t=3. The necessary conditions (13)-(15) are violated and the bound (15) 
of Jia and Wei cannot be computed. All the conditions of existence are satisfied, 
when s=3, t=2, but the sharpness of the bound *ε  of Jia and Wei, obtained by 
expression (19) varies for the different ranges of the perturbations in the data.  

Table 6. Case QAXAX ts =+ T , with ( )1232725.0diag=X .  Ratio of 
perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
s = 2, t = 3 

F* / Xδε  * * * * 

F/)(est Xδδ  4.6438 4.6466 4.6466 4.6466 

F/)( Xf δδ  4.6867 4.6470 4.6466 4.6466 
s = 3, t = 2 

F* / Xδε  25.2187 5.4619 2.3918 1.3427 

F/)(est Xδδ  7.8299 7.8321 7.8321 7.8321 

F
/)( Xf δδ  8.2443 7.8358 7.8321 7.8321 

Case 4.1.6. Consider equation QAXAX ts =− T , with s=1, t=3/4 and s=1, t=1/3. 
Let ( )1232725.0diag=X . Only K o n s t a n t i n o v et al. [5] propose 
perturbation bounds for this case of equation (1). The results of the bounds from 
Subsection 3.5 )(est δ  (16), when s=1, t=3/4 and )(est δ  (16), )(δf  (18), when 
s=1, t=1/3 for j=2, 3, 4, 5 are given in Table 7. As it is seen, the bounds are quite 
tight. 

Table 7. Case QAXAX ts =− T , with ( )1232725.0diag=X . Ratio of 
perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
s=1, t=3/4 

F
/)(est Xδδ  2.2888 2.2881 2.2881 2.2881 

s=1, t=1/3 

F
/)(est Xδδ  1.8707 1.8703 1.8703 1.8703 

F
/)( Xf δδ  1.8723 1.8703 1.8703 1.8703 
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4.2. Example 2  

Consider Example 2 from [2] for the real matrix equation QAXAX ts =± T .  

Let 0
0

A
A
dA k= , where k

kd −−= 10
20
19 , k=2, 3, and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

21000
12100
01210
00121
00012

0A . 

Let 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5.21111
15.2111
115.211
1115.21
11115.2

X  and AXAXQ ts T−= . 

Consider the perturbed matrix equation 

QQAAXXAAXX ts δδδδ +=+++±+ )()()()( T , 

where 
CC
CCA j

+

+
= −

*

*

10δ ,   j = 2, 3, 4, 5, C is a random matrix generated by the 

MATLAB function randn,  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= −

11111
11111
11111
11111
11111

10 jXδ  

and .)()()()( T QAAXXAAXXQ ts −+++±+= δδδδ  

Case 4.2.1. Consider the real matrix equation QAXAX ts =+ T  with s = 1, t = –2 
and then with s = 2, t = −2. The effectiveness of the bounds 1errξ  (3), err2ξ  (4), 1errη  
(5) from Subsection 3.1 and the bounds )(est δ  (16), )(δf  (18) from Subsection 
3.5 is analyzed. The results for i = 2, 3, j = 2, 3, 4, 5 are listed in Table 8. The 
necessary conditions (6) are violated, when s = 1, t = –2 and the bounds of Yin, Liu, 
Fang cannot be used. All the conditions of existence are satisfied for s = 2, t = –2. 
As it is seen the perturbation bound err2ξ  (4) is quite conservative. 
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Table 8. Case QAXAX ts =+ T , with s=1, t –2 and s=2, t=−2. Ratio of 
the estimated value and the perturbation bound  

j j=2 j=3 j=4 j=5 
s = 1, t = –2 

k = 2 
F

/)(est Xδδ  1.7939 1.7939 1.7939 1.7939 

F
/)( Xf δδ  1.7956 1.7939 1.7939 1.7939 

k = 3 
F

/)(est Xδδ  1.8191 1.8191 1.8191 1.8191 

F
Xf δδ /)(  1.8191 1.8191 1.8191 1.8191 

s = 2, t = –2 
k = 2 

Ferr1 / Xδξ  5.3240 5.3238 5.3237 5.3237 

Ferr2 / Xδξ  20.4811 20.4802 20.4802 20.4802 

Ferr1 / Xδη  5.3240 5.3238 5.3237 5.3237 

F
/)(est Xδδ  4.9534 4.9532 4.9532 4.9532 

F
/)( Xf δδ  4.9607 4.9533 4.9532 4.9532 

k = 3 
Ferr1 / Xδξ  5.3456 5.3456 5.3455 5.2022 

Ferr2 / Xδξ  21.4253 21.4253 21.4251 20.8507 

Ferr1 / Xδη  5.6161 5.6161 5.6161 5.4551 
F

/)(est Xδδ  4.9654 4.9654 4.9654 4.8323 
F

/)( Xf δδ  4.9655 4.9654 4.9654 4.8323 

Case 4.2.2. Consider the real matrix equation QAXAX ts =− T  with s = 2, t = –3. 
The perturbation bounds rr1E  (7), rr2E  (8) from Subsection 3.2 and )(est δ  (16), 

)(δf  (18) from Subsection 3.5 are compared. The conditions (7) and (17) of 
existence of the bounds are satisfied.  The results are too close (Table 9). 

Table 9. Case QAXAX ts =− T , with s = 2, t = –3.  
Ratio of perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
k=2 

Frr1 / XE δ  5.3012 5.3010 5.3010 5.3010 

Frr2 / XE δ  5.7760 5.7758 5.7758 5.7758 

F
/)(est Xδδ  4.3707 4.3705 4.3705 4.3705 

F
/)( Xf δδ  4.3763 4.3706 4.3705 4.3705 

k=2 
Frr1 / XE δ  5.3232 5.3232 5.3232 5.1769 

Frr2 / XE δ  5.8174 5.8174 5.8173 5.6575 
F

/)(est Xδδ  4.3709 4.3709 4.3709 4.3709 
F

/)( Xf δδ  4.3710 4.3709 4.3709 4.3708 

Case 4.2.3. Consider equation QAXAX ts =− T , with s = 1, t = 3/4 and s = 1,         
t = 1/3.  Only K o n s t a n t i n o v  et al. [5] propose perturbation bounds for this case 
of equation (1). The results of the perturbation bounds )(est δ  (16), when s = 1,        
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t = 3/4 and )(est δ  (16), )(δf  (18), when s = 1, t = 1/3 for j = 2, 3, 4, 5 are given in 
Table 10. 

Table 10. Case QAXAX ts =− T , with s = 1, t = 3/4 and s = 1,          
t = 1/3.  Ratio of perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
s=1, t=3/4 

k=2 
F

/)(est Xδδ  5.3542 5.3540 5.3540 5.3540 
k=3 

F
/)(est Xδδ  5.5241 5.5241 5.5236 5.4609 

s=1, t=1/3 
k=2 

F
/)(est Xδδ  2.2093 2.2093 2.2093 2.2093 

F
/)( Xf δδ  2.2099 2.2093 2.2093 2.2093 

k=3 
F

/)(est Xδδ  2.2985 2.2985 2.2983 2.3120 
F

/)( Xf δδ  2.2985 2.2985 2.2983 2.3120 

4.3. Example 3  

Let modify Example 1 form Subsection 4.1 by choosing the matrix A as  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−−−
−−−

−−
−−

++

=

i

i
ii

A

11111
11111
10111
10011

10001

45
32 , 

where i is the imaginary unit. Let the solution X of the equation be 
( )1232725.0diag=X . 

Case 4.3.1. Consider the complex matrix equation QAXAX ts =+ H , with s = 1 and 
t = –2. Perturbation bounds for this type of equation (1) are the proposed by Y i n. 
L i u and F a n g in [9] – bounds err1ξ  (3), err2ξ  (4), err1η  (5) described in Subsection 
3.1 and the local and non-local bounds of K o n s t a n t i n o v et al. [5] – )(est δ  
(16), )(δf  (18) from Subsection 3.5. The necessary conditions (6) for the existence 
of the bounds err1ξ  (3), err2ξ  (4), err1η  (5) are violated for j = 2.  The bounds cannot 
be used and asterisks in Table 11 note this fact. The bound err2ξ  (4) give complex 
values for j = 3, 4, 5, although the conditions (6) are satisfied. The other bounds 
give satisfactorily estimate of the perturbation in the solution.  
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Table 11. Case QAXAX ts =+ H , with s=1, t=−2. 
Ratio of the estimated value and the perturbation 
bound  

j j=2 j=3 j=4 j=5 
Ferr1 / Xδξ  * 2.8723 2.8717 2.8717 

Ferr2 / Xδξ  * * * * 

Ferr1 / Xδη  * 2.8716 2.8717 2.8717 

F
/)(est Xδδ  2.1273 2.1267 2.1267 2.1267 

F
/)( Xf δδ  2.1349 2.1268 2.1267 2.1267 

Case 4.3.2. Consider the complex matrix equation QAXAX ts =− H , with s = 1 and 
t = –1/2. The effectiveness of the bound *ξ  (11) of Li, Zhang described in 
Subsection 3.3 and the bounds of K o n s t a n t i n o v et al. [5] )(est δ  (16), )(δf  
(18) described in Subsection 3.5 is analysed. All the conditions of existence are 
satisfied. As it is seen from Table 12 the estimates of Konstantinov et al. are very 
close. 

Table 12. Case QAXAX ts =− H , with s=1, t = −1/2.    
Ratio of perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
2* / Xδξ    13.7451 13.6101 13.6088 13.6088 

F
/)(est Xδδ  1.6376 1.6372 1.6372 1.6372 

F
/)( Xf δδ  1.6402 1.6373 1.6372 1.6372 

Case 4.3.3. Consider the complex matrix equation QAXAX ts =− H , with s = 2 and   
t = –3. The bounds of Yin, Liu [8] and of K o n s t a n t i n o v et al. [5] refer to this 
case. The results for rr1E  (7), rr2E  (8) from Subsection 3.2 and )(est δ  (16), )(δf  
(18) from Subsection 3.5, when j = 2, 3, 4, 5 are listed in Table 13. The conditions 
(7) and (17) of existence of the bounds are satisfied except condition (7), when         
j = 2. 

Table 13. Case QAXAX ts =− H , with s=2, t = −3.    
Ratio of perturbation bound and estimated value  

j j=2 j=3 j=4 j=5 
Frr1 / XE δ  * 5.7872 5.7873 5.7873 

Frr2 / XE δ  * 6.5616 6.5616 6.5616 

F
/)(est Xδδ  2.8693 2.8689 2.8689 2.8689 

F
/)( Xf δδ  2.8842 2.8690 2.8689 2.8689 
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4.4. Example 4  

Modify Example 1 form Subsection 4.1 so that the matrix A is chosen to be 
A=A0+iA0, where  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−

−−
−

=

11111
11111
10111
10011
10001

45
32

0A  

and i is the imaginary unit. Let ( )1232725.0diag=X . The bounds 
described in Subsections 3.1, 3.2, 3.3 and 3.5 are considered.  Unfortunately the 
conditions of existence (6) for the bounds of Y i n, L i u, F a n g [9] ( err1ξ  (3), err2ξ  
(4), err1η  (5), Subsection 3.1) and the conditions (9) for the bounds of Y i n, L i u [8] 
( rr1E  (7), rr2E  (8) from Subsection 3.2) are violated and these bounds cannot be 
used. The results obtained for the bounds of L i, Z h a n g [6] ( *ξ  (11), Subsection 
3.3) and K o n s t a n t i n o v et al. [5] ( )(est δ  (16), )(δf  (18) from Subsection 3.5) 
are given in Table 14. 

Table 14. Complex case A=A0+iA0.  Ratio of perturbation 
bound and estimated value  

j j=2 j=3 j=4 j=5 
QAXAX ts =+ H , s = 1, t = –2 

F
/)(est Xδδ  2.6709 2.6697 2.6697 2.6697 

F
/)( Xf δδ  2.6818 2.6698 2.6697 2.6697 

QAXAX ts =− H , s = 1, t = –1/2 

2* / Xδξ  16.7957 16.5825 16.5805 16.5805 

F
/)(est Xδδ  1.9138 1.9133 1.9133 1.9133 

F
/)( Xf δδ  1.9174 1.9134 1.9133 1.9133 

QAXAX ts =− H , s = 2, t = –3 

F
/)(est Xδδ  3.2615 3.2614 3.2614 3.2614 

F
/)( Xf δδ  3.2900 3.2617 3.2614 3.2614 

6. Concluding remarks 

In this paper the effectiveness of the perturbation bounds proposed in 5 issues for 
the real and the complex equations QAXAX ts =± *  is analysed. The comparison is 
made on the base of several numerical examples. The results of the experimental 
analysis show that for the given class of problems the bounds proposed by 
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K o n s t a n t i n o v et al. [5] for estimating the sensitivity of the solution to equation 
(1) is superior to the methods of J i a, W e i [4], L i, Z h a n g [6], Y i n, L i u [8] and 
Y i n, L i u, F a n g [9] with respect to closeness to the estimated quantity and 
comprehensive application. The bound err2ξ  (4) of Y i n, L i u and F a n g [9] is quite 
conservative, when estimating the sensitivity of the real equation and unusable in 
the complex case of the models considered. The behaviour observed and analysed 
properties of the bounds considered in the paper hold true for every problem, which 
belongs to the class of the experimental models used. 
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