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Abstract: In the study, the effectiveness of combinations of cepstral features, 
channel compensation techniques, and different local distances in the Dynamic 
Time Warping (DTW) algorithm is experimentally evaluated in the text-dependent 
speaker identification task. The training and the testing has been done with noisy 
telephone speech (short phrases in Bulgarian with length of about 2 seconds) 
selected from the BG-SRDat corpus. The employed cepstral features are – Linear 
Predictive Coding derived Cepstrum (LPCC), Mel-Frequency Cepstral Coefficients 
(MFCC), Adaptive Component Weighted Cepstrum (ACWC), Post-Filtered 
Cepstrum (PFC) and Perceptually Linear Predictive coding derived Cepstrum 
(PLPC). Two unsupervised techniques for channel compensation are applied – 
Cepstral Mean Subtraction (CMS) and Relative Spectral (RASTA) technique. In the 
DTW algorithm two cepstral distances are utilized – the Euclidean and the Root 
Power Sum (RPS) distance. The experiments have shown that the best recognition 
rate for available noisy speech data was obtained by using the combination of the 
MFCC, CMS and the DTW-RPS distance. 
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1. Introduction 

Automatic speaker recognition methods can be divided into two groups: text-
independent and text-dependent methods. In text-independent methods, the speaker 
identity must be recognized without any information about the lexical content of 
analyzed speech. On the other hand, in text-dependent methods, the speaker has to 
utter only known to the recognition system words or phrases. In the case of the pure 
text-dependent recognition (also known as the fixed-text recognition), the speaker 
has to say the same word or phrase in the training and recognition modes [3]. 
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The speaker recognition is a general term which embraces two tasks – speaker 
identification and speaker verification. The closed-set speaker identification (task 
chosen in this study) is a classical recognition task – the unknown speaker is 
associated with the speaker from the known speakers set whose model is the best-
matched model for the unknown speaker test utterance. In the speaker verification 
task, the claimed speaker identity must be accepted or rejected based on a threshold 
comparison criterion [3].  

Three speaker-modelling techniques: Dynamic Time Warping (DTW), 
Hidden Markov’s Models (HMM) and VQ (Vector Quantization) are used in the 
text-dependent speaker recognition task and their performances are comparatively 
analyzed in [18]. The authors in [18] claim that for text-dependent case and limited 
amount of training data the DTW (with Linear Predictive Coding derived Cepstrum 
(LPCC) feature) outperforms the rest two approaches. For more data, the 
performances of the used algorithms are comparable to each other.  

The effectiveness of different combinations of three cepstral features: LPCC, 
Mel-Frequency Cepstral Coefficients (MFCC) and Post-Filtered Cepstrum (PFC) 
and 3 speaker-modelling techniques: DTW, Gaussian Mixture Models (GMM) and 
Multi Layers Perceptron (MLP) is analyzed experimentally in [16]. In this study, 
the text-dependent speaker identification experiments are carried out with speech 
database that contains the recordings of the isolated digits 0-9 collected over 50 
speakers. The experiments in [16] have shown that the highest identification rate is 
achieved by the GMM with MFCC feature.  

It is known that the typical scenario in the area of the text-dependent speaker 
recognition is the speaker verification [3, 18]. However, the speaker verification 
paradigm includes techniques for thresholds settings and these techniques 
complicate the analysis of the recognition performance as a result of the feature 
extraction approaches and classification parameters settings. It seems reasonable to 
analyze in advance the recognition performance as a function of different 
parameters in a pure recognition task (for instance, the closed-set speaker 
identification) and subsequently to use this information in a forthcoming speaker 
verification research. This is possible because the performance trends in the speaker 
identification are usually applicable to the verification task [18]. 

The focus of this study is to evaluate experimentally with noisy telephone 
speech the effectiveness of different combinations of cepstral features, channel 
compensation methods, and different local distances in the DTW-based text-
dependent speaker identification with fixed phrase. The speech data used in the 
experiments are selected from the BG-SRDat corpus [12]. These data are short 
phrase in Bulgarian with length of about 2 seconds recorded over noisy telephone 
channels and collected over 12 speakers. 

In the study the employed cepstral features are – LPCC, MFCC, Adaptive 
Component Weighted Cepstrum (ACWC), PFC and Perceptually Linear Predictive 
coding derived Cepstrum (PLPC). Two unsupervised techniques for channel 
compensation are applied – Cepstral Mean Subtraction (CMS) and Relative 
Spectral (RASTA) technique. In the DTW algorithm two cepstral distances are 
utilized – the Euclidean and the Root Power Sum (RPS) distance. 
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2. Cepstral features 

2.1. LPCC 

To calculate the LPCC, the Linear Predictive Coding (LPC) coefficients must be 
first calculated. Then the cepstral coefficients )(LPC mc  can be computed by the 
following recursion [14]: 
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where ,...,,1),( Pmma =  are LPC coefficients and P is the model order. 

2.2. MFCC 

The often-used Mel-cepstrum is based on the Fourier power spectrum and its 
coefficients are the Mel-frequency cepstral coefficients. In this case, the Fourier 
power spectrum of speech signal is filtered by band pass filters (with triangular 
form) placed along the Mel-frequency scale (linear up to 1000 Hz and logarithmic 
above). To obtain the Mel-cepstrum, the cosine transform is applied to the 
logarithmic output of the filters [14]. 

If the logarithmic energy on the output of the k-th filter is )log( kE  then the  
Mel-cepstrum )(MEL mc  is 
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where K is the number of the band-pass filters, m=1,…, M is the cepstral 
coefficients index [14]. 

2.3. ACWC 

The all-pole model for a given speech frame can be expressed in parallel form by 
means of partial expansion [2] 
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where ,,...,0, Piai =  are LPC coefficients and P is the model order, ir  are residues 
of the poles and iz  represents the center frequency and the bandwidth of the i-th 

component of the LP model. It is observed in [2] that the residues are highly 
sensitive to the channel effects. In the ACW cepstrum proposed in [2] the variations 
caused by channel variability are removed by residues normalization. 

The ACW spectrum (all residues are set to be equal to unity) is proposed  
in [2] and it is in the form  
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According to [2] the ACWC )(ACW mc is  

(6) )()()( LPCACW mcmcmc b
n−= , 

where )(LPC mc is the LPCC, m > 0 and )(mcb
n  can be computed by a recursion 

using the coefficients }{ ib [2, 15]. 
The LP power spectrums of the two voiced frames (vowel e) are shown in 

Fig. 1. These voiced frames are selected from two utterances of the same phrase. 
The utterances are obtained from the same speaker but they are recorded from 
different telephone calls. In Fig. 1, there is a large mismatch between spectrums 
regardless that some spectral peaks are nearly at the same frequencies. 

The ACW spectrums of the same signals are shown in Fig. 2. It is evident that 
the processing proposed in [2] reduces significantly the mismatch between two 
spectrums. It is interesting to note that in Fig. 2 there is no apparent spectral tilt.  

  
Fig. 1. LP spectrums for vowel e 
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Fig. 2. ACW spectrums for vowel e 

2.4. PFC 

The post-filtered cepstrum )(PFC mc  is obtained in the form 
])[()( LPCPFC

mmmcmc βα −= , where 9.0,1 == βα , m > 0 and )(LPC mc  is the 
LPCC. The post-filtered cepstrum includes a subtractive component that can be 
thought as a channel cepstral estimate and which is adaptive on a frame basis [10]. 

2.5. PLPC 

In this approach, some processing steps based on characteristics of human ear are 
applied on the speech power spectrum to produce the auditory spectrum. Then this 
spectrum is approximated by the spectrum of the linear prediction all-pole model. 

To obtain the auditory spectrum from the power spectrum the following 
processing steps are executed: 

• critical-band filtering in the frequency domain; 
• frequency correction (preemphasis) with equal-loudness curve; 
• amplitude compression by intensity-loudness power law. 
The inverse Fourier transform on the auditory spectrum yield the 

autocorrelation function. Then the values of autocorrelation function are used by the 
Levinson algorithm to estimate the linear prediction coefficients. The cepstral 
coefficients of the PLPC are obtained later from them [7]. 
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3. Channel compensation techniques  

Two often-used unsupervised techniques for channel compensation – the CMS and 
the log-RASTA are included in this study. These techniques are distinguished by 
the fact that they do not explicitly use any channel information.  

3.1. Cepstral mean subtraction  

In many cases, the communication channel can be approximated by a linear system. 
Therefore, the channel influence on the speech can be represented in the cepstral 
domain through an additive component to the cepstrum of the clean speech. It is 
supposed that the cepstral mean of the clean speech is zero. In this case, to 
compensate the channel effect, the channel cepstrum can be removed by subtraction 
of the cepstral mean. This temporal mean is a rough estimate of the channel 
response. Despite all, this approach is widely used in the speaker recognition 
system now [4].  

3.2. RASTA 

The relative spectral analysis technique (RASTA) is based on the idea that the rate 
of changing of the short-term spectrum for linguistic and non-linguistic components 
in speech is different [8]. This means that the spectral components of the 
communication channel vary more quickly or more slowly than the spectral 
components of the speech and they could be separated (filtered). The core part of 
RASTA processing is a band-pass filtering of the spectral parameters trajectories by 
an IIR filter. The convolutive (in the time domain) distortions in the communication 
channel can be reduced by using the RASTA filtering in the logarithmic domain 
(spectral or cepstral). The RASTA approach can be combined with the perceptually 
linear prediction method (so called PLP-RASTA approach) or can directly be 
applied to the cepstral trajectories [8]. 

4. Dynamic time warping 

In the study, the DTW algorithm called the normalize-wrap method is applied [11]. 
In this algorithm, the length normalization on both the reference and test pattern is 
used before performing the actual DTW algorithm. In the DTW, the relaxed 
endpoints constraints, Itakura’s form of local constraints and Euclidean and Root 
Power Sum cepstral distances as local distances are implemented [9, 11, 19]. 

5. Experiments, results and discussions 

The speech data are selected from the BG-SRDat corpus [12]. This corpus is in 
Bulgarian language and it is recorded over noisy telephone channels and intended 
for speaker recognition. The speech data is collected from different types of 
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telephone calls and various acoustical environments. The data are sampled with 
frequency of 8 kHz at 16 bits, PCM format, and mono mode. 

The speech data used in the study include 261 records of a short phrase (with 
length of about 2 seconds) collected from 12 speakers (male). Each speaker utters 
the phrase at least 15 times. For training are used 120 utterances or 10 utterances 
per speaker for his reference model (template) creation. The rest of data – 141 
utterances (some speakers possess more than 10 utterances for test) are used in 
testing mode. In the study, the 5-fold cross-validation algorithm for data selection is 
implemented. 

In the pre-processing step, the preemphasis is not applied. Hamming 
windowing frames of 32 ms are utilized, with frame rate of 10 ms. The 
autocorrelation method for linear prediction is used and for each frame is computed 
the LPCC with 14 coefficients. The number of the PLP and the MFC cepstral 
coefficients is 14, too. These cepstral coefficients are calculated by using of 17 
critical-band filters and 24 Mel-frequency spaced filters, respectively. The zeroth 
cepstral coefficients are not used. 

To avoid processing of non-speech parts in the signal (located before and after 
the recorded phrase) the endpoint detection is applied. The endpoint detection 
algorithm is based on the previous research of the author [13]. It is worth to note 
that in the experiments are used all frames between the phrase endpoints. No 
additional frames selection is applied. 

In the DTW algorithm the reference is placed along the Y-axis and the path 
width is set at 300 ms. The speaker’s reference is obtained by averaging (after 
dynamic time warping alignment) of his training utterances [11, 19].  

In text below the combinations of different processing algorithms are noted 
with the acronyms. For instance, the acronym LPCC-CMS-ACWC placed in the 
Table 1 means the sequential calculations, first the LPCC for each frame, next the 
CMS over the whole phrase and finally the ACW cepstrum for each frame [1]. 

In the study are experimentally evaluated three RASTA filtered cepstrums – 
PLP-RASTA, MFCC-RASTA and LPCC-RASTA. The last two cepstrums are 
obtained by applying of the RASTA filtering directly on their trajectories. The 
temporal filtering of the cepstral trajectories is often used approach for channel 
effects reducing in the cepstral features-based speech and speaker recognition 
systems. The RASTA filtering is performed typically on the MFCC trajectories. 
That way of direct filtering is explained in [5, 6] and is based on the linear 
relationship between Mel-frequency log spectrum and the MFCC. This relationship 
allows the applying of the RASTA filter directly on the MFCC trajectories. The 
MFCC, filtered in this way, are named in the text as MFCC-RASTA. The LPC 
cepstral trajectories are also filtered by the RASTA filter and the obtained cepstrum 
is named as LPCC-RASTA.  

In the study, the log-RASTA filtering with non-zero initial conditions is used. 
In this case, an additional speech snatch with length of about 200 ms is located 
before the utterance-starting sample provided by the endpoints detector. The 
parameters of the RASTA filter are selected according to the recommendations  
in [8]. 



 10

In Table 1 the identification results are shown – the overall accuracy and the 
average half width of the 95% confidence interval for each feature combination and 
for each DTW local distance. In the study, the overall accuracy of the classification 
is calculated by the trace of the confusion matrix, divided by the sum of the 
elements in the matrix. 

 Table 1. The identification results 

DTW local distance 
Euclidean RPS No Features combinations 

Accuracy 95% CI Accuracy 95%CI 
1 LPCC-CMS-ACWC 0.8865 0.0234 0.8822 0.0238 
2 LPCC-CMS 0.8028 0.0293 0.8907 0.0230 
3 MFCC-CMS 0.8127 0.0288 0.9106 0.0211 
4 LPCC-CMS-PFC 0.8751 0.0244 0.8921 0.0229 
5 PLPC-CMS 0.7134 0.0333 0.8156 0.0286 
6 LPCC-RASTA 0.8014 0.0278 0.8609 0.0236 
7 MFCC-RASTA 0.7971 0.0280 0.8751 0.0224 
8 PLP-RASTA 0.7007 0.0326 0.8595 0.0237 

The goal of this research is to examine experimentally different combinations 
of cepstral features, channel compensation techniques, and DTW local distances in 
recognition tasks with short and noisy speech data. The short length of the phrase 
and the fact that it is phonetically unbalanced (more exactly, the consonants 
predominate over the vowels [12]) complicate the recognition process.  

These experiments revealed that the log-RASTA filtering did not outperform 
the CMS as channel compensation technique in the DTW-based fixed-text speaker 
identification task. In comparison with the CMS, as can be seen in the Table 1, the 
RASTA filtering always provides lower accuracy for the Euclidean distance cases. 
However, for the RPS distance this filtering produces ambiguous results (higher 
accuracy for the PLP-RASTA and lower one for the MFCC-RASTA and LPCC-
RASTA).  

It is necessary to note that the cepstral mean in the CMS technique is 
computed over short phrase with length of about 2 seconds. It is known that the 
accuracy of the channel cepstrum (i.e. the cepstral mean) estimation depends on the 
amount of speech data. For short length data, it is most likely that the cepstral mean 
is an inaccurate estimate of the channel cepstrum [4]. Nevertheless, the highest 
accuracy in the study is obtained with the feature combination MFCC-CMS (for the 
DTW-RPS distance). 

The RPS distance is the cepstral distance between two index-weighted cepstral 
vectors. It is known that index weighting in cepstral domain reduces the influence 
of low-order cepstral coefficients that convey the information for spectral slope 
[17]. The use of the DTW-RPS distance increases the accuracy for all feature 
combination with the exception of the LPCC-CMS-ACWC. Probably the twofold 
effect on the spectral slope, firstly by the ACW algorithm, and secondly by the 
cepstral index weighting in the DTW-RPS distance results in undesirable 
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enhancement of the high-order cepstral coefficients and causes the error rate 
increasing for this feature combination. 

In the study, it is found that the log-RASTA filtering is inefficient for 
available speech data. Its performance level was worse than the CMS one. It is 
evident that the RPS distance has substantial effect on the recognition rate. In other 
words, the suppression of the speech spectrum tilt by the RPS distance has more 
influence on the final recognition rate than the used cepstrum-based channel 
compensation techniques. 

6. Conclusions 

In the study, the effectiveness of combinations of cepstral features, channel 
compensation techniques, and different local distances in the DTW algorithm is 
experimentally evaluated in the fixed-text speaker identification task with short 
phrases of telephone speech. Based on the experimental results the following 
conclusions are made: 

– the highest accuracy of 0.9106 is achieved for the feature combination 
MFCC-CMS and the DTW-RPS distance; 

– when RASTA filtering is applied the highest accuracy of 0.8751 is achieved 
for the MFCC-RASTA and the DTW-RPS distance; 

– when the DTW-Euclidean distance is used, the highest accuracy of 0.8865 is 
obtained for the feature combination LPCC-CMS-ACWC; 

– the DTW-RPS distance has more substantial effect on the recognition rate 
than the channel compensation techniques. 

Future work will focus on two main objectives – the evaluation of different 
algorithms, (e.g., the HMM and the MLP) in the same experimental framework and 
the examination of some modifications of the channel compensation techniques to 
obtain better results with short and noisy speech data.  
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