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Abstract: This paper presents a method, based on the Strength Pareto Evolutionary 
Algorithm (SPEA), designed to solve multi-objective convex integer optimization 
problems. The proposed method has the aim to overcome some shortcomings of 
SPEA, as noted in [2]. An interaction phase with the Decision Maker (DM) is also 
included in the method, so that the search process can be quickly directed to the 
part of the search space, where the location of a desired non-dominated solution is 
expected. In this manner good convergence of the method  is ensured. 
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I. Introduction  

The multi-objective convex integer optimization problem can be stated in the 
following general form: 
(1) minimize f(x) = [ f1(x), f2(x), …, fk(x)]T 
(2) subject to: gj(x) ≤ 0,   j = 1, 2, ..., m, 
(3) xi

(L) ≤ xi ≤ xi
(U),        i = 1, 2,…, n, 

(4) x ∈ Zn, 
where gj(x),  j = 1, 2,…, m, are convex functions.  
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A solution x ∈ Zn is a vector of n decision variables: x = (x1, x2, …, xn)T. The 
value xi

(L) is the known lower bound and the value xi
(U) is correspondingly the upper 

bound of the variable xi.  The solutions satisfying the constraints (2)-(4) constitute a 
feasible decision space V ⊂ Zn. The objective functions values (1) constitute  a       
k-dimensional space, called objective space S⊂Rk. Here we consider the term 
“solution” as a vector of variables in  the decision space and the term “point” as the 
vector of criteria values in the objectives space. We use the notations “x” for the 
solutions and “s” for the point s =  f(x)  = (s1, s2, …, sk)T. 

The domination between two solutions is defined as follows (see [1, 2]): 

Definition 1. A solution x(1) is said to dominate the solution x(2), if both the 
following conditions are true: 

1. The solution x(1)  is no worse than x(2) in all objectives. Thus, the solutions 
are compared based on their objective function values (i.e. based on the  location of 
the corresponding points s(1) and s(2) on the objectives space). 

2. The solution x(1)  is strictly better than x(2) in at least one objective. 
All points which are not dominated by any other point s ∈ S are called the 

non-dominated points of class one, or simply the non-dominated points. The non-
dominated points together make up a front in the objectives space. The points lying 
on the non-domination front are called Pareto-optimal points (together they 
constitute the Pareto-optimal front). 

The local Pareto-optimal solutions are defined in multi-objective optimization 
(see [2, 3]) as follows. 

Definition 2. If for every member x in a set Q  there exists no solution y (in the 
neighborhood of x such that ⎢⎢y – x ⎢⎢∝ ≤ ε, where ε is a small positive scalar) 
dominating any member of the set Q, then solutions belonging to the set Q 
constitute a local Pareto-optimal set. 

There are two basic multi-objective optimization problems: 
1. Find a set of Pareto-optimal solutions, which satisfy in the best way the 

DM’s preferences. 
2. Find a set of solutions which are diverse enough to represent the entire 

range of the Pareto-optimal front. 
The evolutionary multi-objective optimization algorithms handle the multi-

objective optimization problems in the following manner (see [1]): 
Step 1. Find multiple non-dominated points as close to the Pareto-optimal 

front as possible, with a wide trade-off among objectives. 
Step 2. Choose one of the obtained points using higher-level information. 

II. Preliminary considerations 

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Z i t z l e r 
and T h i e l e (1998, 1999). This approach was conceived as a way of integrating 
different evolutionary multi-objective optimization algorithms. SPEA uses an 
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archive containing non-dominated solutions previously found (the so-called 
external non-dominated set or external population). At each generation, non-
dominated individuals are copied to the external population. For each individual in 
this external population, a strength value is computed. This strength is similar to the 
ranking value of MOGA [3], since it is proportional to the number of solutions to 
which a certain individual dominates. In SPEA, the fitness of each member of the 
current population is computed according to the strengths of all external non-
dominated solutions that dominate it. The fitness assignment process of SPEA 
considers both closeness to the true Pareto front and uniform distribution of 
solutions at the same time. Thus, instead of using niches based on distance, Pareto 
dominance is used to ensure that the solutions are properly distributed along the 
Pareto front. Although this approach does not require a niche radius, its 
effectiveness relies on the size of the external non-dominated set. In fact, since the 
external non-dominated set participates in the selection process of SPEA, if its size 
grows too large, it might reduce the selection pressure, thus slowing down the 
search. Because of this, those authors decided to adopt a clustering technique that 
reduces the number of individuals in the external population (external non-
dominated set) so that its size remains below a certain threshold. 

There is also a second algorithm by Zitzler and Thiele, which is known as 
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [4, 6]. It has three main 
differences with respect to its predecessor SPEA: 

1) it incorporates a fine-grained fitness assignment strategy which takes into 
account for each individual the number of individuals that dominate it and the 
number of individuals by which it is dominated; 

2) it uses a nearest neighbor density estimation technique which guides the 
search more efficiently; 

3) it has an enhanced archive truncation method that guarantees the 
preservation of boundary solutions. 

A simulation study was performed on six evolutionary multi-objective 
optimization algorithms: SPEA, NSGA, VEGA, HLGA, NPGA, FFGA in [7]. The 
results indicated that the elitism is an important factor in evolutionary multi-
objective optimization. On one hand, SPEA clearly outperformed all other 
considered algorithms, and this was the only method among all considered, that 
incorporates elitism as a central part of the algorithm. On the other hand, the 
performance of the other algorithms could be improved significantly when SPEA’s 
elitist strategy is included.  

There are some shortcomings of SPEA (see [2]): 
1) The non-dominated sorting of the whole population is not used for 

assigning fitness and for this reason the fitness values do not favor all non-
dominated solutions in the same way equally. This feature is dependent on the exact 
population and densities of solutions in the search space.  

2) In SPEA fitness assignment, an external solution which dominates more 
solutions gets a worse fitness. This assignment is justified when all dominated 
solutions are concentrated near the dominating solution. Since in most cases this is 
not true, the crowding effect should come only from the clustering procedure. 
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Otherwise, this fitness assignment may provide a wrong selection pressure for the 
non-dominated solutions.  

3) The number of objectives as a convergence factor is considered in [5]. The 
results showed that the performance of SPEA2 deteriorates substantially as the 
number of objectives increases.   

To overcome these shortcomings we propose in our SPEA-based multi-
objective optimization algorithm the following: 

• We include a two-phase procedure for accelerated approaching the whole 
population to the Pareto front. In this manner it is ensured that the dominated 
solutions are close to the dominating solutions from the external population and the 
SPEA fitness assignment becomes justified. 

• We include an interaction step, where a Decision Maker (DM) sets a 
reference point fr in the objectives space. The DM has the possibility to change his 
preferences periodically and to replace the former reference point by a new one. 
This step ensures the convergence of the method to the satisfactory non-dominated 
solution. 

• We use the current reference point to rearrange the clusters in ascending 
order according to their Euclidean distance to fr in the objectives space. Then we 
define a direction vector between the solution from nearest cluster to fr and the 
solution from second in its distance to fr cluster, and make a step along this 
direction for all solutions in the current population, taking into account the 
constraints (2)-(4) of the problem, so that the new generated solutions remain 
feasible. In this way we move the whole population in direction to the reference 
point and accelerate the search process. In case the point from the new obtained 
nearest to fr cluster after this movement has shorter distance to the reference point, 
than the previous nearest to fr cluster, the search process continues without 
interaction with the DM. Otherwise, the closest point to DM’s preferences is 
already found and it is presented to the DM for evaluation. Another possibility is to 
present the series of computed non-dominated solutions according to the improving 
direction to the fr . If the DM is satisfied with one of the computed points he/she 
stops the search procedure. Otherwise, the DM sets new preferences and the search 
process continues.   

The new proposed steps and phases overcome the shortcomings of SPEA. The 
obtained new evolutionary method uses a close enough to the Pareto front 
population and has quickly convergence to the desired non-dominated solution. 

III. The SPEA-based method 

First we describe a procedure for accelerated approaching. 
Let us denote the internal population by P = {xi, i = 1, …, N}, and the external 

population by   
_
P = {

_
x i, i=1, …, 

_
N }. 

Two-phase procedure for accelerated approaching of internal population P to 
the Pareto front. 
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Phase 1  

1. For each 
_
x j

 ∈ 
_
P : 

1a) Find the most distant solution xi(j) ∈ P; 

1b) Set l = 0, xi(j)
l =  

_
x  j

  , σ – precision (sufficiently small positive scalar);  
1c) l = l+1. 

1d) Calculate the solution xi(j)
l =  xi(j)

l–1 + α(
_
x j

  – xi(j)), where α is a positive 
scalar. In case xi(j)

l violates some constraint from the system (2)-(4), go to 1e), 
otherwise go to 1c).  

1e) Reduce α twice, check if α < σ. If “Yes” – go to 1f), otherwise set  xi(j)
l =  

xi(j)
l–1  and go to 1c). 

1f) Round off the obtained solution xi(j)
l to the nearest integer solution. If it 

is infeasible, find a feasible solution in its neighborhood and set xi(j)
l equal to it. 

2. Copy all the obtained xi(j) solutions to 
_
P . 

Phase 2  

1. Calculate the mean vector p of all vectors xi(j)–xi from Phase 1 as 

∑ −=
i

iji xx
N

p )(1 )(
_ . 

2. Replace each solution xi ∈ P in the internal population by the nearest integer 
solution to xi = xi + µp, where µ is a positive scalar parameter, depending on the 
problem properties. By means of this parameter the population is moved close to 
the Pareto frontier, remaining still feasible. 

3. Round off the obtained xi to the nearest integer solution. If it is infeasible, 
find a feasible solution in its neighborhood and set xi equal to it. 

SPEA-based method 
Step 1. Set itlim – the iterations limit. Set icount = 1  – number of the current 

iteration. 
Step 2. Create an initial population P of size N by random generation of N 

integer n-dimensional vectors with uniform distribution around the Tchebycheff 
center Xt of the feasible domain. 

Create an empty external population 
_

0P  of size 
_
N . (It is recommended that 

_
N = 0.2N, and N = min{kn, 2k}, but in the interval [10; 100]. Here k is the number 
of objectives.  

Step 3. Compute the points si =  {f1(xi), f2(xi), …, fk(xi)} for each solution 
xi∈P0. Find the current approximate non-dominated points and save the 

corresponding xi-vectors in 
_

0P . 
Step 4. Perform the Two-phase procedure for accelerated approaching P to 

the Pareto front. 
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Step 5. DM sets a reference point fr in the objectives space. Set initial vector 
dmin, which components are big positive numbers and h = 0 – iteration counter. 

Step 6. Perform SPEA evolution generation [2, p. 251] including a clustering 
technique to reduce the number of individuals in the external  

population 
_
P .  

Note. In the clustering technique we work with the nearest point according to 
the DM’s references instead of using clusters’ centroids as it is in SPEA. 

Step 7. Arrange the clusters Ch
i, i = 1,…, s(h), in an ascending order according 

to their distances to the reference point fr. Let the cluster with minimal distance dh to 
f r be denoted by Ch

1
 , and the cluster on the second place in this ascending order – 

by Ch
2.  
Let the corresponding solutions be x1(h) ∈ Ch

1 and solution x2(h) ∈ Ch
2.  

If  dh < dmin, then set dmin = dh, set h = h+1 and go to Step 8,  
 otherwise set d = dh − 1, z = C1

h − 1,  x = x1(h−1) and go to Step 9.   
Step 8. Moving Calculate the improving vector q = x1(h–1) – x2(h−1) and               

xi = xi + q. 
Replace each solution xi ∈ P in the internal population by the nearest integer 

solution. Go to Step 6. 
Step 9. The DM evaluates f r, z (or all solutions {z} from internal iterations 

{h}) and if he/she is satisfied by current solution z (or several of them) then go to 
Step 10, otherwise set icount = icount + 1 and if icount > itlim, then ask the DM to 
choose to go to Step 10 or to Step 5. 

Step 10. End.  

IV. Illustrative example 

We consider the following illustrative example: 
min    f1 = 1/(x1+1), 
min    f2 = 1/(x2+1), 

subject to: 
x1

2 + 100. x2
2  ≤ 106, 

0  ≤  x1  ≤  1000, 
0  ≤  x2  ≤  100, 

x1, x2 ∈ Z. 
At Step 2 we create the following initial population P0:  

x1 = (400; 40),   x2 = (500; 40),   x3 = (600; 40), 
x4 = (400; 50),   x5 = (470; 50),   x6 = (540; 50), 
x7 = (600; 50),   x8 = (400; 60),   x9 = (500; 60), 
x10 = (600; 60); 

At Step 3 we obtain: 
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s1 = (0.002494; 0.02439),   s2 = (0.001996; 0.02439), 
s3 = (0.001664; 0.02439),   s4 = (0.002494; 0.01961), 
s5 = (0.002123; 0.01961),   s6 = (0.001848; 0.01961), 
s7 = (0.001664; 0.01961),   s8 = (0.002494; 0.01639), 
s9 = (0.001996; 0.01639),   s10 = (0.001664; 0.01639). 

There is only one current approximate non-dominated point s10. The 

corresponding  x10 = (600; 60) is deleted from P0 and is included in 
_
P 0. 

At Step 4 we perform the Two-phase procedure: 
 
Phase 1 

1a) The most distant solution xi(j) ∈ P for x10   is x1(10) = (400; 40).  
1f) The obtained x1(10)

l, rounded off to the nearest integer solution is        

x1(10) = (704; 71). It dominates the approximate non-dominated solution in 
_

0P , and 

for this reason we replace x10  by  x1(10)  in 
_

0P . 

Phase 2 
1. The obtained mean vector p = (304, 31). 
2. For this example we choose µ = 0.5. Replace each solution xi ∈ P in the 

internal population by the nearest integer solution to xi = xi + 0.5p. 
3. Round off the obtained xi to the nearest integer solution. If it is infeasible, 

find a feasible solution in its neighborhood and set xi equal to it. The obtained new 
internal population is P0: 

x1 = (552; 55), x2 = (652; 55), x3 = (752; 55), 
x4 = (552; 65), x5 = (622; 65), x6 = (692; 65),  
x7 = (752; 65), x8 = (552; 75), x9 = (652; 75). 

The corresponding points in the objectives space are: 
s1 = (0.001808; 0.01786),   s2 = (0.001531; 0.01786),  
s3 = (0.001328; 0.01786),   s4 = (0.001808; 0.01515),  
s5 = (0.001605; 0.01515),   s6 = (0.001443; 0.01515), 
s7 = (0.001328; 0.01515),   s8 = (0.001808; 0.01316),  
s9 = (0.001531; 0.01316). 

At Step 5 DM sets a reference point f r = (0.0049751; 0.0066225). It 
corresponds to the solution xr = (200, 150). 

At Step 6 there are two new non-dominated solutions: x7 and x9. After the 

clustering procedure the solutions (650, 75) and (704, 71) remain in 
_
P  and delete 

the solution x7. Two new solutions are generated: (661, 75) and (552, 71). 
At Step 7 the cluster located closest to the reference point is that one 

containing the solution (650, 75). 
At Step 8 we obtain the improving vector q = (–54, 4). The obtained new 

population P is the following: 
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x1 = (498; 59),   x2 = (598; 59),   x3 = (698; 59), 
x4 = (498; 69),   x5 = (568; 69),   x6 = (638; 69),  
x7 = (698; 69),   x8 = (498; 79),   x9 = (607; 79),  
x10 = (498; 75). 

And the process continues further to Step 6. 
The feasible domain is presented on Fig. 1. The objectives space is presented 

on Fig. 2. 
 
 

 
Fig. 1. The feasible domain in the variables space 
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Fig. 2. The objectives space,  f1(min) = 0.000999,  f2(min) = 0.0099 
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V. Conclusion 

The basic characteristics of the presented here evolutionary method for solving 
MCDM integer problems can be summarized as follows: 

• it is elitist MCDM evolutionary method; 
• it is an interactive method in contrast to SPEA method; 
• the step of generation of new population is the same as in SPEA method; 
• the step of clusterization is enriched/complemented by an arrangement 

according to the DM’s preferences; 
• accelerated approaching to the Pareto frontier. 
In contrast to SPEA method which finds an approximation of efficient 

frontier we include an interaction step to solve the problem for best satisfactory 
solution.  
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