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1. Introduction 

The paper is devoted to the development of an interval and fuzzy method and 
algorithm for solving the Most Reliable Route problem under parametric 
uncertainty. In the case when we need to transmit data packages between a source 
node and a destination node in a communication network and we have to select a 
route that links these two nodes, and maximizes the plausibility that a package will 
not be corrupted in a non repairable fashion on the route. Another example is 
associated with the transportation problem, when one has to determine a route that 
maximizes the possibility of not being stopped on the route. 

The most reliable route problem is formulated in a probabilistic setting and 
solved using the well known shortest route algorithm [10]. In this paper, we 
consider higher degree of uncertainty. First, we use possibilities to represent the 
plausibility of not being stopped on the route. Thereafter, the degree of uncertainty 
is further increased by introducing the concept of interval possibilities as an 
extension of fuzzy sets concept of possibility [1]. Interval possibilities are more 
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appropriate in the case, when the values of possibilities are uncertain, but expected 
to fall within given intervals. 

A method to solve the most reliable route problem is proposed in [10]. The 
author converted probability to log probability. Then the classical shortest route 
algorithm is used to find the shortest distance (log). Finally, convert back this log 
probability to non-log probability. 

Several simple methods and algorithms are proposed for solving the most 
reliable route problem in a finite fuzzy network under parametric uncertainty in  
[3, 4, 6]. The aim of these algorithms is to find the most reliable route in a given 
network that maximizes the possibility of not being stopped on the route. The 
possibilities on the route segments are certain and described by real values, or 
uncertain and described by an interval, given by upper and lower limits. These 
algorithms are applicable when the given network is acyclic and cyclic. The author 
analyzed the complexity of these algorithms, and all algorithms are polynomial 
algorithms [6].  

Theoretical Preliminaries are given in Section 2. In Section 3, the most reliable 
route method and algorithm are described, the complexity of the algorithm is 
analyzed, and an example is considered. Conclusion is made in Section 4.  

2. Theoretical preliminaries  

First the interval analysis concepts are introduced [7, 9]. Let R be the set of all real 
numbers. By an interval V we mean a closed bounded compact subset of R: 

(1) V={v:v∈R, y≤v≤z, y, z∈R, –∞<y≤z<∞}.  

The set of all intervals is denoted by I (R). The real numbers of R are usually 
denoted by small letters, and the intervals of I(R) are denoted by capital letters. 
Denote the lower (left) endpoint of interval V by v and its upper (right) endpoint of 
interval V by .v  Then the interval V is written as 

V=[v, v ]={v|v≤v≤ v }. 
Using the set inclusion relation ⊂  and the relation ≤ , we can define the 

supremum-like (supr) and infimum-like (inf) elements [7]: 
(2) supr (V, W) = [supr(v, w), supr( v , w )], 
(3) inf (V, W) = [inf(v, w), inf( v , w )], 
where V, W ∈ I(R), so that the partially ordered set I(R) satisfies the structure of a 
lattice. 

Let ‘∗’ denote any of the interval arithmetic operations, +, −, ×, ⁄. Then the set 
theory definition of an interval arithmetic operation is as follows:  

wvWV ∗=∗ { | }, WwVv ∈∈ . 
The sum of vV [= , ]v , and wW [= , ]w  denoted by WV + , is again an 

interval, i.e., )(RIWVZ ∈+= . Hence 
(4) [ , ] [ , ] [V W v v w w v w+ = + = + , ]wv + . 
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To compare intervals the concept of metrics ρ is introduced. The distance 
ρ(V, W) between two intervals vV [= , ]v , wW [= , ]w , and , ( )V W I R∈ , is 
defined by  

(5) V(ρ , )W  = { }1 | | | | .
2

v w v w− + −  

The intervals vV [= , ]v , wW [= , ]w , and , ( )V W I R∈  can be compared. 
The following important result holds [2]: 

WV ≤  iff 
(6) ( , inf( , )) ( , inf( , ))V V W W V Wρ ρ≤ . 

In a similar way it can be proven that  
WV ≥  iff 

(7) ( , sup ( , )) ( , sup ( , ))V r V W W r V Wρ ρ≤  

and that 
V ∼ W (equivalence) iff 

(8) ( , sup ( , )) ( , sup ( , )) ( , inf( , )) ( , inf( , )),V r V W W r V W V V W W V Wρ ρ ρ ρ= = =  

where V ∼ W means WV ⊂  and | wv − |=| wv − |, i.e., the midpoints of V and W 
coincide. 

In practical cases when V ∼ W and one has to make a choice in a sense of ≤, 
the condition (6) should be modified. We say that WV ≤  if 
(9) ( , inf( , )) ( , inf( , ))V V W W V W v wρ ρ= ∧ ≤   
or 
(10) ( , inf( , )) ( , inf( , )) .V V W W V W v wρ ρ= ∧ ≤  

The choice among (9) and (10) depends on the application. When we need to 
obtain the smallest possible value, we may select (9). When we need to guarantee 
that the highest possible value be as small as possible, we may select (10). 

We use, further, the notation WV ≤  in the usual sense, when wv ≤  and wv ≤ , 
and in the case of inclusion WV ⊂ , when ( , inf( , )) ( , inf( , ))V V W W V Wρ ρ≤ , or 
when (9) and (10) may be applied. 

Let m(V) denotes the midpoint of V, 2)()( vvVm += . Then 

(11) V≤  W iff m(V) ≤  m(W). 
Denote by [m(V), ∆(V)] the interval V, vV [= , ]v , where 2)()( vvVm +=  is 

the midpoints of V, and 2)()( vvV −=∆  is the half-width of V, so that 

(12) vV [= , ]v  = )()([ VVm ∆− , )]()( VVm ∆+  

or 
(13) )([ VmV = , )](V∆ . 

The following result is easily shown. 
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Let V, W, Y )(RI∈ . Then WVY +=  iff 
(14) )()()( WmVmYm += , 
(15) )()()( WVY ∆+∆=∆ . 

We will introduce some fuzzy networks concept [8]. Consider a finite graph G, 
NNG ×⊂ . A route in a fuzzy network is a sequence of distinct nodes, 

1i
x , 

2i
x , 

…,
ri

x , where Nx
ki
∈ , k = 1, 2, …, r, with the condition 

ki
x(∀ , )

1+ki
x : ),(

1+ℜ kk ii xxµ  > 0,  k = 1, …, r – 1, 

where 
1

( , )
k ki ix xµ

+ℜ  is the membership function of the pair ordered pair (
ki

x , 
1+ki

x ) 
for fuzzy relation xik

 ℜ xik+1
.  

Let X ∧ Y denotes the operator min (X, Y). With each route (
1i

x , 
2i

x , …, 
ri

x ) a 
value is associated by 
(16) 

1
( ixl , …, )

ri
x  = 

1
( ixℜµ , )

2i
x ∧

2
( ixℜµ , )

3i
x ∧, …,  ∧

1
(

−ℜ ri
xµ , )

ri
x . 

Let ixH ( ; )jx  be the set of all ordinary routes between two arbitrary elements 

of N, ix  and jx , 

(17) H(xi, xj) = Exxxxxxxxh
kr ijiiiiji ∈|=== ),...,,();({

21
,  k = 2, …, r – 1}. 

The strongest route ixH (∗ , )jx  from xi to xj can be obtained 

(18) ixl (∗ , )jx  = ( )ji xxH ;
∨

1
( ixl  = ix , 

2i
x , …, 

1−ri
x , )ji xx

r
=  

where X ∨ Y = max {X, Y}. 
The value defined by (16) may be extended to operators other than ∧ under the 

restriction that these considered have the properties of associativity and 
monotonicity. If ∗ is such an operator, then  
(19) 

1
( ixl , …, )

ri
x  

1
( ixℜ= µ , )

2i
x  ∗ 

2
( ixℜµ , )

3i
x  ∗ … ∗ 

1
(

−ℜ ri
xµ , )

ri
x . 

In particular, if ∗ is a product operator, denoted multiplication (or ‘×’ ordinary 
multiplication) and defined in [8], then 

(20) 
1

( ixl , …, )
ri

x  
1

( ixℜ= µ , )
2i

x  . 
2

( ixℜµ , )
3i

x  . … . 
1

(
−ℜ ri

xµ , )
ri

x . 

Due to the property 
(21) v ⋅ w ≤ v ∧ w     if   v, w ∈ [0, 1].  

3. Most Reliable Route method and an algorithm based on interval 
possibilities for cyclic network 

The aim is to develop a simple method and algorithm for solving the most reliable 
route problem, when the possibilities of not being stopped on the segments of the 
route are uncertain. The concept of interval possibility is introduced as an extension 
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of the fuzzy set concept of possibility to describe the uncertainty that usually exists 
when possibilities have to be evaluated. 

The method and the algorithm are based on the strongest route concept given 
by (18). Let µij denotes the interval possibilities of not being stopped on the arc  
(i, j). Following Dubois and Prade (1996), we consider the possibility as the degree 
of truth or the plausibility of an assertion, in the case, the plausibility of not being 
stopped on the arc (i, j). The aim is to choose a route that maximizes the possibility 
of not being stopped in going from a origin node (source node) to a destination 
node. Hence the value l of the route, given by (16) has a possibilistic meaning in 
this problem. Consider for example the case where we need to transmit data 
packages between an origin node and a destination node. The problem is to choose 
a route that maximizes the possibility that a package will not be corrupted in a non-
repairable fashion on the route. We shall refer to such similar situations as 
situations in which one wishes to maximize possibility of not being stopped on the 
route. 

Let jP  be the interval possibilities (generalized length) from node 1 to node j, 

and [ , ].j jj
P p p=  By definition for the starting node 1, P1=[1.0, 1.0]. The 

destination node is denoted by t, nt ≤ . The interval values of jP , j = 2, …, t, will 
be computed recursively using the formula  
(22) 

jNijP
∈

= max }{ ijiP π× , 

where i ranges over the set of all preceding nodes jN . ijπ  is the interval 

possibilities between current node j and its predecessor i, and ijij ππ [= , ]ijπ , 

0≥ijπ  jNi∈ .  
The formula (22) is represented in the form 

(23) }log{logmaxlog ijiNij PP
j

π+=
∈

, 

where, if F denotes any of the intervals jP , iP  or ijπ , FF [loglog = , ]logF . 

Since 0log ≤ijπ , and 0log ≤iP , maximizing this sum is equivalent to the 
following minimization problem: 
(24) }{min ijiNij DUU

j

+=
∈

,  

where  
(25) jj PU log−= , ii PU log−= , log .ij ijD π= −   

The operation min {} is performed on the basis of (6) and/or (9), (10).  
Now we develop an algorithm based on interval possibilities for the cyclic 

network. Let ∗
iU  = [ ∗

iu , 
∗
iu ] be the interval distance of the last permanently 

labeled node i. Denote by 
iA  the set of numbers of all adjacent nodes to node i. 
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Then, the temporary interval distance jj uU [= , ]ju  in the label of any adjacent node 
j, iAj∈  is determined as 

(26) ijiijij duDUU +=+= ∗∗ [ , ]iji du +
∗  

and the label of node j is updated if the new distance Uj is shorter than the labeled 
distance up to now. The comparison of distances in the two labels [[ ju , ju ], k] and 

[[ ju , ju ], i] is accomplished using the definition (5), equations (3), (6), and the 
conditions (9) and (10). 

The next permanent label is obtained by selecting the minimum distance 

(27) }{min kkk UUU == ∗
∗ , k ∈ Q, 

using again the (3), (5), (6), (9), and (10). In (27), Q represents the set of numbers 
of all temporary labeled nodes up to now, and }){minarg( kQk

Uk
∈

∗ = . 

An effective interval algorithm is developed, using the midpoint and half-
width notation (13), and conditions (11), (12), (14), (15).  

Let uj, ui
* and dij denote the midpoints of the corresponding intervals Uj, Ui

* 
and Dij. Then the interval formula (26) is replaced by a noninterval one 
(28) uj = ui

*+ dij, u1 = 0, j ∈Ai, 
and the label of node j is updated by comparing real numbers.   

The next permanent label is obtained by comparing real (noninterval) values 
(29) }{min kk

uu =∗ , Qk∈ . 

We use the following labeling of node j:  
(30) Node j,   label = ],,[ kjj ku ∆ ,  
where uj is the midpoint of interval Uj, ∆kj the is the half-width of interval Dkj, and k 
is the last permanently labeled node.  

Further it is assumed that the network is described using interval notation with 
midpoint and half-width (13). The problem is to find a shortest route from node 1 to 
any node t, nt ≤ . 

Denote by B the counter of iterations, by Q the set of all temporarily labeled 
nodes up to now, and by iA  the set of all adjacent nodes j to node i. 

Hence, a preliminary step includes the conversion of interval possibilities to 
log interval possibilities, using (25), and then, the conversion of the usual interval 
notation in (24) to midpoint and half-width notation, using (13). 

The following algorithm based on interval possibility for the cyclic network is 
proposed: 

Step 1. Assign a permanent label [u1, k, ∆k1] to node 1. Assign temporary 
labels ]),(,[ )( jjkj jku ∆  to node j,  j = 2, …, n.  

Define the sets iA  of all adjacent node i, i = 1, …, n – 1.  
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Set i=1, ui=0, k = –, ∆ki = –, ∞=ju , −=jjk )( , −=∆ jjk )(  for  j = 2, …, n.  
Set 1=B .  
Set 1AQ = .  
Step 2. From the last permanently labeled node i with label [ , , ]i kiu k ∆ , obtain 

the temporary labels of all adjacent nodes j, iAj∈ .  
Leave the temporary label ( )[ , ( ), ]j k j ju k j ∆  of node j unchanged unless 

ui+dij<uj, in which case update the label, that is, change it to  
ijij duu +=[ , ijk =)( , ])( ijjjk ∆=∆ , iAj∈ . 

Step 3. Consider the set {[uj, )( jk , jjk )(∆ ]} of labels of all temporarily labeled 
nodes from iteration 1 to the current iteration, Qj∈ , and make permanent the label 
in which uj is the smallest, }{min jQjj

uu
∈

=∗ , })arg(min{ juj =∗ . 

Set )( ∗= jkk , ∗=
ji uu , ∗∗∆=∆

jjkki )(
. 

Step 4. If 1−= nB  go to Step 5, otherwise,  
Set 1+= BB . Set QQ (= |

)(
) ∗∪

jk
Ak .  

Set ∗= ji AA  and return to Step 2. 

Step 5. Obtain the optimum route H between node 1 and the destination node 
t, starting from node t and tracing backward through the nodes using the label’s 
information.  

Step 6. Obtain the half-width )( tU∆  of the interval solution tU  by summing 

the corresponding ij∆  encountered along the optimum route •H , 

∑
•∈

∆=∆
Hji

ijtU
),(

)( . 

Step 7. Obtain the interval solution tU , 
Ut = [ )( tt Uu ∆− , )( tt Uu ∆+ ]. 

Step 8. Obtain the shortest route logarithmic interval length and convert back 
to non-logarithmic notation. 

3.1. Analysis of the complexity of the most reliable route algorithm based on 
interval possibilities for cyclic network 

Consider the network in Fig. 1, where N = {1, 2, 3, 4, 5, 6, 7}, and A = {(1, 2),       
(1, 3), (1, 4), …, (6, 7)}, and the last permanently labeled node 1, ∗

1u  = [0, −, 0]. 
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Fig. 1. Cyclic network with seven nodes 

 

Iteration 1. Nodes 2, 3, 4, 5, 6, 7 can be reached directly from the last 
permanently labeled node 1, ∗

1u  = [0, −, 0]. We need six additions to obtain the 
temporary labels 1,iu  corresponding to node 1, 1,iu  = ∗

1u  + id1 , i = 2, …, n, five 
comparisons are needed to find the next permanent label node, )(min 1,7,2 ii

u
=

 =          

min(u2,1, u3,1, u4,1, u5,1, u6,1, u7,1). Assume the next permanently labeled node is 4, 
that is, )(min 1,7,2 ii

u
=

 = ∗
1,4u . 

In general, when the number of nodes is n, we need n−1 additions and n−2 
comparisons. 

Iteration 2. Nodes 2, 3, 5, 6, and 7 can be reached from last permanently 
labeled node 4. We need five additions to compute the new temporarily labels with 
distances 4,iu , ii duu 41,44, += ∗ , i = 2, 3, 5, 6, 7. To find next permanently labeled 
node 9 comparisons are needed, min(u2,4, u3,4, u5,4, u6,4, u7,4, u2,1, u3,1, u5,1, u6,1, u7,1). 
Assume the next permanently labeled is node 3 (from node 4), that is, ∗

4,3u . 
In general, when the number of nodes is n, we need n − 2 additions and         

2(n − 3) + 1 comparisons. 

Iteration 3. Nodes 2, 5, 6, and 7 have direct connection from the last 
permanently labeled node 3. Four additions are needed to compute the new 
temporary labels ui3, ii duu 34,33, += ∗ , i = 2, 5, 6, 7. Eleven comparisons are needed to 
find the next permanently labeled node. Assume the next permanently labeled is 
node 5 (from node 1), that is, ∗

1,5u . 
In general, when the number of nodes is n, we need n − 3 additions and         

3(n − 4) + 2 comparisons. 

Iteration 4. Nodes 2, 6 and 7 can be reached directly from the last permanently 
labeled node, node 5. Three additions are needed to compute the new temporary 
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labels 5,iu , ii duu 51,55, += ∗ , i = 2, 6, 7. Eleven comparisons are needed to obtain the 
next permanently label node. Assume the next permanently labeled is node 2 (from 
node 3), that is, ∗

3,2u . 
In general, when the number of nodes is n, we need n − 4 additions and         

4(n − 5) + 3 comparisons. 

Iteration 5 or Iteration (n − 2). Nodes 6 and 7 can be reached directly from 
the last permanently labeled node 2. Only two additions are needed to compute the 
new temporary labels, 2,iu , ii duu 23,22, += ∗ , i = 6, 7. Nine comparisons are needed 
to obtain the next permanently label node. Assume the next permanently labeled is 
node 6 (from node 3), that is, ∗

3,6u . 
In general, when the number of nodes is n, we need n − 5 additions and         

5(n − 6) + 4 comparisons. 
Hence the number of additions is n − (n − 2), and the comparisons is              

(n −2)(n − (n − 1)) + (n − 3).  

Iteration 6 or Iteration (n − 1). Node 7 has direct connection with the last 
permanently node 6. We need only one addition to get the new temporary label, 

6,7u , 673,66,7 duu += ∗  and only five comparison to find the next permanently 
labeled node. Assume the next permanently labeled is node 7 (from node 5), that is, 

∗
5,7u . 

In general, when the number of nodes is n, we need n − (n − 1) additions and 
6(n − 7) + 5, or (n − 1)(n − n) + (n − 2) = (n − 2) comparisons.  

We have (for the general case): 
Additions 

(n − 1) + (n − 2) + (n − 3) + (n − 4) + … + n − (n − 2) + (n − (n − 1)) =  
2

)1( −nn . 

Comparisons  
(n − 2) + 2(n − 3) + 1 + 3(n − 4) + 2 + 4(n − 5) + 3 + … + (n −2)(n − (n − 1)) +       

+ (n − 3) + (n − 1)(n − n) + (n − 2) = A + B + C , 
where 

A = n(1 + 2 + 3 + 4 + … + n – 2 + n – 1) = ∑
−

=

1

1

n

i
in  = 

2
)1(2 −nn , 

C = (1 + 2 + 3 + 4 + … + n – 3 + n – 2) = ∑
−

=

2

1

n

i

i  = 
2

)1)(2( −− nn , 

B = –2 – 2×3 – 3×4 – 4×5 … –(n−2)×(n−1) – (n−1)×n ⇒ we may neglect it. 

We need maximum n–1 additions to obtain half-width and another two 
additions to get traditional interval representation of shortest route logarithmic 
length plus two additions convert to non-logarithmic notation of shortest route 
length.  

The total number of additions, S, is as follows: 
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S = 
2

)1( −nn  + (n – 1) + 2 + 2. 

So, the running time of the algorithm is limited by O(addi = S, comp = A +C).  
If we develop a most reliable route algorithm (based on interval possibility for 

cyclic network) based on traditional interval representation, the complexity of the 
algorithm will be very high (to compare two intervals 1 to 21 comparisons and 0 to 
4 additions are needed, see, e.g. [6]).  

3.2. Numerical example of the most reliable route algorithm based on interval 
possibilities for cyclic network 

Consider the network represented in Table 1. Using (25) and (13), the network in 
Fig. 2 is obtained. As an example, 1212 [ππ = , 12π ] = [0.7, 0.9] so that 

1549.0log 12 −=π , 0458.0log 12 −=π  and [–1.0, –1.0] × [log 12π , log 12π ] = 
[0.0458, 0.1549]. Using the midpoint and half-width notation (13), we obtain the 
equivalent representation of the interval 12D , 1004.0[log 1212 =−= πD , 0.0546]. 

Table 1. Logarithmic transformation of interval possibilities 
Road segment 

(i,  j) 
],[ ijijij πππ =  log 

ijπ  log ijπ  [ 1, 1] [log ijπ− − × , ]log ijπ  )(log[ πm ,  
)](logπ∆  

(1, 2) [0.70, 0.90] –0.1549 –0.0458 [0.0458, 0.1549] [0.1004, 0.0546] 
(1, 3) [0.80, 1.00] –0.0969 0.0000 [0.0000, 0.0969] [0.0485, 0.0485] 
(1, 4) [0.50, 0.70] –0.3010 –0.1549 [0.1549, 0.3010] [0.2280, 0.0730] 
(2, 3) [0.70, 0.90] –0.1549 –0.0458 [0.0458, 0.1549] [0.1004, 0.0546] 
(2, 5) [0.50, 0.70] –0.3010 –0.1549 [0.1549, 0.3010] [0.2280, 0.0730] 
(2, 6) [0.40, 0.60] –0.3979 –0.2218 [0.2218, 0.3979] [0.3100, 0.0880] 
(3, 4) [0.65, 0.75] –0.1870 –0.1249 [0.1249, 0.1870] [0.1560, 0.0310] 
(3, 5) [0.60, 0.80] –0.2218 –0.0969 [0.0969, 0.2218] [0.1590, 0.0625] 
(3, 6) [0.40, 0.60] –0.3979 –0.2218 [0.2218, 0.3979] [0.3100, 0.0880] 
(3, 8) [0.30, 0.50] –0.5228 –0.3010 [0.3010, 0.5228] [0.4119, 0.1109] 
(4, 6) [0.40, 0.60] –0.3979 –0.2218 [0.2218, 0.3979] [0.3100, 0.0880] 
(4, 7) [0.70, 0.90] –0.1549 –0.0458 [0.0458, 0.1549] [0.1004, 0.0546] 
(4, 8) [0.40, 0.60] –0.3979 –0.2218 [0.2218, 0.3979] [0.3100, 0.0880] 
(5, 9) [0.85, 0.95] –0.0705 –0.0222 [0.0222, 0.0705] [0.0464, 0.0242] 
(6, 9) [0.70, 0.90] –0.1549 –0.0458 [0.0458, 0.1549] [0.1004, 0.0546] 
(7, 3) [0.30, 0.50] –0.5228 –0.3010 [0.3010, 0.5228] [0.4119, 0.1109] 
(7, 9) [0.60, 0.80] –0.2218 –0.0969 [0.0969, 0.2218] [0.1590, 0.0625] 
(8, 9) [0.60, 0.80] –0.2218 –0.0969 [0.0969, 0.2218] [0.1590, 0.0625] 

Using this algorithm we obtain the following results:  

Iteration 0. Assign the first permanent label [0,  –,  –] to node 1. 
Iteration 1. Nodes 2, 3 and 4 can be reached directly from the last permanently 

labeled node 1, and the temporary labels are [0.1004, 1, 0.0546], [0.0485, 1, 
0.0485], and [0.228, 1, 0.073] respectively.  

The smallest distance u corresponds to node 3. Thus, node 3 is permanently 
labeled, with label [0.0485, 1, 0.0485]. 
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Iteration 2. Nodes 4, 5, 6 and 8 have direct connection with the last 
permanently labeled node 3, and the temporary labels are [0.2045, 3, 0.031], 
[0.2075, 3, 0.0625], [0.3585, 3, 0.088], [0.4604, 3, 0.1109]. 

Node 4 has two temporary labels {[0.228, 1, 0.073], [0.2045, 3, 0.031]}, we 
will keep the new temporary label, because it includes the smallest distance.  

Now, we have five temporary labels [0.1004, 1, 0.0546], [0.2045, 3, 0.031], 
[0.2075, 3, 0.0625], [0.3585, 3, 0.088] and [0.4604, 3, 0.1109] associated with 
nodes 2, 4, 5, 6 and 8 respectively. Node 2 has the smallest u = u* = min (0.1004, 
0.2045, 0.2075, 0.3585, 0.4604) = 0.1004, hence its label [0.1004, 1, 0.0546] is 
changed to permanent, and so on. 

All the computational results are summarized in Fig. 2.  
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Fig. 2. Most reliable route based on interval possibilities for cyclic network 

Tracing backward using label’s information the most reliable route is as 
follows: 
9 ⇒ [0.2539, 5, 0.02419] ⇒ 5 ⇒ [0.2075, 3, 0.0625] ⇒ 3 ⇒ [0.0485, 1, 0.0485]] 

⇒ 1 ⇒ [0, –, 0]. 

The half-width of the optimal solution is: ∆9 = ∆59 + ∆35 + ∆13 = 0.1352. 
We have got the midpoint and half-width values, and now it is possible to 

obtain the interval possibility. 
9U  = [ 9u , 9u ] = [(0.2539 − 0.1352), (0.2539 + 0.1352)] = [0.1187, 0.3891]. 

jj PU log−= . 
Thus, log P9 = [–0.3891, –0.1187]. So, P9 = [0.408, 0.760]. 
The most reliable route is (1 ⇒ 3 ⇒ 5 ⇒ 9), and the corresponding interval 

possibility is [0.408, 0.760]. 
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4. Conclusions 

A method and an algorithm are proposed for solving the most reliable route 
problem in a finite fuzzy cyclic network. The uncertainty about the reliability of a 
route is represented in a possibilistic setting. The plausibility of not being stopped 
on a segment of the route is described using the corresponding possibilities. The 
concept of interval possibilities is introduced to increase the degree of uncertainty. 
The new algorithm maximizes the possibilities of not being stopped on the route 
between an origin node and a destination node. The complexity of the algorithm is 
evaluated.  

The transformation of the initial representation into a logarithmic form is 
accomplished only once at the beginning and than the simple midpoint algorithm  
[5, 6] for solving the interval shortest-route problem is applied. The new approach 
yields a simple and computationally effective algorithm when the exact values of 
parameters are unknown, but the upper and lower limits within which the values are 
expected to fall are given. Instead of comparing intervals using distance (5) and 
supremum-like or infimum-like intervals (2) or (3), the algorithm compares real 
values, i.e., the midpoints of intervals. A numerical example is given to illustrate 
the efficient assessment of the solution and the workability of the developed 
algorithm.   
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