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1. Introduction  

The Multiobjective Optimization Problems (MOOP) are used as fruitful models in a 
wide range of areas. As a consequence, the problem of optimizing a real function 
over the efficient set of a MOOP has various applications. The number of papers 
concerning the optimization over the efficient set increases constantly. The paper of  
Y a m a m o t o (2002)  gives a clear look over this class of problems. As some 
examples we will propose here two papers. The paper of   H o r s t, T h o a i  et al. 
(2007) considers the problem of optimizing over the efficient set of a multiobjective 
linear programming problem as a type of global optimization techniques, called 
reverse convex programming. The authors propose a method for constructing a 
concave function that can help in the procedure for optimization over the efficient 
set. The paper of  J o r g e (2005) presents an algorithm that gives a series of values 
that monotonically increase and finally gives an exact solution of the considered 
problem. The algorithm uses a disjoint bilinear program and the solution is found 
by the use of specifically designed method for nonconvex optimization. The 
purpose of the presented herein paper is to draw attention to the possibility to use 
some more simple techniques for treatment of the linear case. 
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2. Some notions, some definitions, some basic facts 

Let x∈Rn. The feasible set S⊂Rn  in the MultiObjective Linear Programming 
(MOLP) problem is defined by a system of linear constraints: 

S = {x∈Rn|cj(x) < qj;  j = 1, 2, …, m}. 

S is a convex set. In this paper  S  will be a bounded and closed set. Some linear 
functions fi(x), x∈Rn, i = 1, 2, …, k, are given, too. The MOLP problem can be 
written in the following manner  
(1)  “max“fi(x),  i = 1, 2, …, k, 
s.t. 

x ∈ S. 
The sense of this formulation is that we are looking for x such that  the 

corresponding  fi(x)  are as high as possible.  
For a fixed  x∈S  we obtain the vector   z = f(x);  here  z  is a image of  x  and  x 

is the corresponding original.  So 
Z = {z ∈ Rk | z = f (x), x ∈ S}. 

The set Z is the set of all images of x, when x∈S; S is a polyhedron, Z is a 
polyhedron, too, with the same properties. We write  Z=f(S). 

Having in mind the MOLP problem (1) let us consider z1∈Z and z2∈Z. Then z1 
dominates z2  if z1 >z2  and z1 ≠ z2, i.e.  zi

1>zi
2  for all i and zi

1 >zi
2  for one i at least.  

Let znd∈Z, then znd is nondominated if there does not exist another vector z∈Z, such 
that  z>znd  and z ≠ znd. 

The point xe∈S is efficient if there does not exist another vector  x∈S, such that  
f(x) > f(xe) and f(x)≠f(xe).  If xe is efficient this means that the vector z = f(xe) is 
nondominated. 

The set of all efficient points x∈S is denoted by E, E = {x ∈ S|x is an efficient 
point}. In some cases it is possible that E = S, but our case is  E ⊂ S. In MOLP 
problems the set E is connected, but E is not convex in the general case. E is 
bounded, because S is bounded. 

Here we shall use the term a wall Wi of the set S. So 

Wi = {x∈S|ci(x) = qi} for a chosen i. 

Wi  is a part of the boundary of S. The set E consists of parts that belong to different 
walls of S. Set E contains points that belong simultaneously to different walls of S. 

As an addition to the MOLP problem we have a linear function φ(x), x ∈Rn. In 
this paper we consider the problem min{φ(x)|x ∈ E}.  We denote this minimal value 
by d, 

min φ(x) = d, 
x ∈ E. 

This problem has an exact solution because  E  is bounded. The difficulty with 
this problem is that E is not convex. 
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Following  W i e r z b i c k i  (1980) – with respect to the MOLP problem (1) – 
the reference point method  recommends to solve the following linear programming 
problem 
(2) min D 
s.t. 

D > bi (ri – fi(x)) – lΣ fi (x), i = 1, 2, …, k, 
                                                                   i 

x ∈ S. 
Here the set S and the functions  fi (x) are defined as in definition of the MOLP 

problem, l is a small positive number and all bi  are positive real numbers. The 
variable D  is unrestricted in sign. This LP problem has a well known and 
remarkable property: for an arbitrary reference point r ∈ Rk  the obtained solution 
determines an efficient point from  S. 

This paper proposes a heuristic approach for obtaining upper and lower bounds 
for the number d. For this purpose  the following  polyhedron  S1 will be used: 

S1 = {x ∈ Rn |cj(x) < qj + δ,  j = 1, 2, …, m}. 
Here δ is a (relatively) small positive number. S ⊂ S1, obviously.  We define a wall 
of S1 as follows: 

W'j = {x∈S1|cj(x) = qj  + δ }  for a chosen j. 
The wall Wi (of S) and the wall  W'i (of S1) are “corresponding”. 
The wall Vi of Z = f(S) is 

Vi = {z∈Z|  z = f (x),  x∈Wi  ⊂ S}. 
By analogy we have   

V'i = {z∈Z1 = f(S1)| z = f(x),  x∈W'i ⊂ S1}. 

3. Some additional data and a description of the method 

Having in mind that d denotes the searched minimal value of φ, we choose a 
number  d1 <d. In what follows we will consider the set Q: 

Q = {x ∈ S | φ(x) < d1}. 

For convenience we will use the symbol ES  to denote the set E of all efficient 
points of S. By analogy the symbol EQ denotes the set of all efficient points of Q. By 
WQ we will denote the following wall: 

WQ = {x ∈ S | φ (x) = d1} = {x ∈ Q| φ(x) = d1} 
(for all other points x ∈ Q we have φ(x) < d1, obviously). 

It is clear now that Q∩ES  = ∅. Therefore  for each point x' ∈ Q there exists a 
point y'∈ ES  such that  

f(y') > f(x'). 
Remember  that all functions fi(x) are linear. 
Theorem. All efficient points of Q belong to the wall WQ, i.e. 

EQ ⊂ WQ. 
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P r o o f. Suppose the opposite, i.e. suppose that there exists a point t such that 
t ∈EQ  and  φ(t) = d2 < d1. 

But t ∉ ES  and therefore there exists  a point  yt∈ ES  such that f(yt ) > f(t). In 
addition φ(yt) > d and φ(t) = d2 < d1 < d. 

The segment  yt – t  belong to S. Therefore yt – t ∩ WQ ≠ ∅.  Let u ∈ yt – t and 
u ∈ WQ. Because the functions fi(x) do not decrease we have f(u) > f(t). This means 
that t ∉ EQ. This is a contradiction. Therefore 

EQ ⊂ WQ.     ▄ 
This theorem shows that all efficient points of Q belong to the wall WQ . Note 

that (in general) different walls of S can contain  (different) efficient points from     
E ⊂ S.  

Let we have an upper bound dup  for d, i.e. 
min{φ(x) | x ∈ E} < dup. 

The theorem allows to make the following assumption. We can choose 
another number d1 < dup  and we can consider the set Q = {x∈S | φ(x) < d1}. If we 
find that EQ ⊂ WQ, then we have the inequality 

d1 < d = min{φ(x) | x ∈ E}. 
Remember that we will use the following sets: 

S ⊂ Rn, Wi are the walls of S; 
S1 ⊃ S, S1 ⊂ Rn, W'i are the walls of S1; 
Z = f(S), Z ⊂ Rk, Vi are the walls of Z; 

Z1 = f(S1),    Z1 ⊂  Rk      V'i  are  the  walls of  Z1. 

Assertion (without a proof). 
Suppose that the wall Wi of S contains an efficient point. (The corresponding 

wall Vi of Z contains a (corresponding) nondominated point.) In this case if the 
reference point is an arbitrary point of the wall V'i of Z1, then the solution of the 
reference point problem (2) in Rk belongs to the wall Vi of Z (this solution is a 
nondominated point) and the corresponding solution in S belongs to the wall Wi of S 
and it is an efficient point of S. 

A description of the method 
1. We consider all walls W'i of S1 in a sequence. For each wall W'i we find a 

point xi such that φ(xi) = min{φ(x)| x ∈ W'i}. 
We use all points f (xi) as reference points in the RP problem. (All f (xi) belong 

to Z1.) If the wall Vi of Z contains nondominated points  then the solution of the 
reference point problem (with a reference point belonging to V'i) is such a 
nondominated point from Z, the corresponding point from S will be an efficient 
point  and the corresponding  value of φ(x) will be “small”. The smaller value of the 
so found values (through the sequential considerations of the walls V'i) is an upper 
bound  for  d . We denote this value  by φup, and we have 

min{φ(x)|x ∈ E} < φup. 

2. We choose  a number d1< φup and we consider the set 
Q = {x ∈ S| φ(x) < d1}. 
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For the set Q we solve the RP problem under additional constraint that RP 
belongs to the wall V'i of Z1 (for all i in a sequence). If we have that the equality 
φ(xi) = d1 is satisfied for all found solutions xi, then the set Q does not contain 
efficient points of  S  i.e. Q ∩ ES  = ∅. Therefore d1 < d and we have the interval 

d1 = φlow < d < φup     ▄ 

4. An example and a possible application 

Firstly we will consider the following  MOLP  problem  (D a u e r, (1991)) 
max f1(x) = 9x1 + x3, 
max f2(x) = 9x2 + x3 

s.t. 
9x1 + 9x2 + 2x3 < 81; 
8x1 + x2 + 8x3 < 72; 
x1 + 8x2 + 8x3 < 72; 

7x1 + x2 + x3 > 9; 
x1 + 7x2 + x3 > 9; 
x1 + x2 + 7x3 > 9; 

x1 < 8;  x2 < 8; 
xi > 0,  i = 1, 2, 3. 

The constraints of this example form the set  S. In addition we have 
φ(x) = 4 x1 + 5x2 + 2x3. 

D a u e r (1991) has given the list of all efficient extreme points of  S.  Here 
they are in the following Table 1. 

Table 1. The list of all efficient extreme 
points of S 

x1 x2 x3 φ(x) 
0.8 8 0.9 45 
1 8 0.0 44 
8 1 0.0 37 
8 0.8 0.9 37.8 
4 4 4.5 45 

0.0 8 1 42 
8 0.0 1 34 

The last column of this table contains the corresponding values of φ(x). The 
minimal value is  34 and it is in the last line. 

The set S1 is formed  by the following constraints 
9x1 + 9x2 + 2x3 < 82; 
8x1 + x2 + 8x3 < 73; 
x1 + 8x2 + 8x3 < 73; 

7x1 + x2 + x3 > 8; 
x1 + 7x2 + x3 > 8; 
x1 + x2 + 7x3  > 8; 

x1 < 9; x2 < 9; 
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xi > –1,  i = 1, 2, 3. 
The next step is to minimize φ(x) on each wall of S1, i. e., to solve the 

following problems: 
min φ(x) 

s. t. 
x ∈ S1 

x ∈ W'i   (for all i in a sequence; 
for example W'1 is 9x1 + 9x2 + 2x3 = 82,  W'2 is  8x1 + x2 + 8x3 = 73, etc.) 

The solutions of these problems give different vectors in Z1 (Table 2). 
Table 2. Vectors from Z1 used as reference points 

Names of vectors f1 f2 
Na) 80.83607 1.163934 
Nb) 7.836364 7.836364 
Nc) 8.888889 8.888889 
Nd) 80.875 –1.125 
Ne) –1.125 80.875 

These five vectors have been used as reference points  in the reference point 
problem (2) with respect to the set S. Table 3 contains the obtained efficient vectors 
in S and the corresponding  values of φ(x). 

Table 3. The efficient points from S, obtained by the reference point method and the corresponding 
values of φ(x) 

Components of obtained effic vectors Reference points 
(Names of vectors) x1 x2 x3 

φ(x) 

Na) 8 0 1 34 
Nb) 4.522388 4.477612 0 40.47761 
Nc) 4.522388 4.477612 0 40.47761 
Nd) 8 0 1 34 
Ne) 0 8 1 42 

Table 3 shows that the exact values of  min{φ(x)| x ∈ E} are very quickly  
found. 

But the method does not give a proof that  34  is the needed minimum.  Now 
the following problem is used with the purpose to estimate the value of 33 as a 
lower bound. 

A LINGO program for obtaining a lower bound for  min{φ(x)| x ∈E}:  
!29 NOV 09, estimation of the lower bound; 
!; 
min = D; 
!min = φ; 
f1 = 9*x1 + x3; 
f2 = 9*x2 + x3; 
9*x1 + 9*x2 + 2*x3 < 81;!The first constraint describing the set S; 
8*x1 + x2 + 8*x3 < 72; 
x1 + 8*x2 + 8*x3 < 72; 
7*x1 + x2 + x3 > 9; 
x1 + 7*x2 + x3 > 9; 
x1 + x2 + 7*x3 > 9; 
x1 < 8; 
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x2 < 8; 
x1 > 0; 
x2 > 0; 
x3 > 0; 
φ  = 4*x1 + 5*x2 + 2*x3; 
φ < 33; 
!; 
D > r1 − f1 −  0.01*f1 −  0.01*f2; 
D > r2 − f2 − 0.01*f1 −  0.02*f2; 
!; 
!@free( x1); 
!@free( x2); 
!@free( x3); 
@free( f1); 
@free( f2); 
@free( φ); 
!; 
@free( D); 
!; 
!The reference point belong to the walls of Z1 – the vector  g is used; 
!to describe  S1; 
r1 = 9*g1 + g3; 
r2 = 9*g2 + g3; 
9*g1 + 9*g2 + 2*g3 < 82;!This is the first constraint for S1; 
8*g1 + g2 + 8*g3 < 73; 
g1 + 8* g2 + 8* g3 < 73; 
7* g1 + g2 + g3 > 8; 
g1 + 7* g2 + g3 > 8; 
g1 + g2 + 7* g3 > 8; 
g1 < 9; 
g2 < 9; 
g1 > −1; 
g2 > −1; 
g3 > −1;!The last constraint for S1; 
!; 
@free( g1); 
@free( g2); 
@free( g3); 
@free( r1); 
@free( r2); 
end 

Solving this problem several times under the condition  that one of the  
constraints describing  S1  is taken as equality  and all other constraints  (for S1)  rest 
as inequalities, we obtain vectors that are efficient in  Q (Table 4). 

Table 4. The obtained efficient vectors 
in Q 

x1 x2 x3 
8 0.1515 0.1212 

3.6304 3.5942 0.2536 
8 0.1111 0.2222 

0.3529 6.1764 0.3529 
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For each one of these vectors the corresponding value of  φ (x) is 33. Our 
conclusion is that the wall φ(x) = 33 contains all efficient points of  Q. Therefore,  
we have a confirmation that 

33 < min φ < 34.   
                                                                            x∈E 

Now we can demonstrate a possible application. We will consider again the 
above MOLP problem. Can we use the described approach with the purpose to 
estimate the nadir point? We begin with computation of the nondominated extreme 
points. We know the efficient extreme points, so it is very easy to obtain Table 5. 

Table 5. The nondominated extreme points for the 
considered MOLP problem 

f1 8.1 9.0 72.0 72.9 40.5 1 73 
f2 72.9 72.0 9.0 8.1 40.5 73 1 

In Table 5 the first nondominated extreme point is [8.1, 72.9]. The second one 
is [9, 72] and so on. This table shows that 

min f1(x)  = min f2(x) = 1. 
x∈E                    x∈E 

Minimizing f1(x) over the walls of S1 we obtain the following different points 
of Z1. 

Table 6. The reference points for searching 
the minimal value of  f1(x) over E 

f1 f2 
0.885714 81.11429 
7.836364 7.836364 

–1.327273 81.14545 
–1.25 80.875 

80.83607 1.163934 

The above points from  Z1 will be used as reference points with respect to the 
set S in problem (2). It is very easy to obtain that the first one of these points 
determines the point [1; 73] from the set Z and this is the point that gives the 
minimal value of f1(x) over the set E. 

Minimizing f2(x) over the walls of S1 we obtain new points of Z1 (Table 7). 
Table 7. The reference points for searching 
the minimal value of  f2(x) over E 

f1 f2 
81.11429 0.8857143 
81.14545 –1.327273 
7.836364 7.836364 
80.875 –1.125 

1.163934 80.83607 

Using  the first one of the above points as a reference point (problem (2)), we 
obtain the point [73; 1] of Z and this point gives the minimal value of f2 (x) over the 
set E. 
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So in this example the first part of the here described method (for obtaining 
upper bounds only) gives the exact values we need. Using the second part 
(obtaining lower bounds), we get acceptable values. So we have demonstrated that 
the method can be applied for estimation of the nadir point in MOLP problems. 

A DEMO version of LINGO software for solving optimization problems has 
been used for all computations. 

5. Conclusion 

The next steps would be to obtain proofs for all used assertions in the described 
procedure. 
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