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Abstract: A multicriteria decision making problem with criteria giving fuzzy 
relations between the couples of alternatives is considered. The importance of each 
of the criteria is given as weighting function depending on the membership degrees 
of the corresponding fuzzy relation. Transformed membership degrees with the help 
of these weighting functions are used in the aggregation procedure for fusing the 
relations. The properties of the weighted relations, required to decide the problems 
of choice, ranking or clustering of the alternatives’ set are proved. An illustrative 
numerical example solving the problem of alternatives’ ranking is presented as 
well. 
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1. Introduction 

The following multicriteria decision making problem is considered here. A finite set 
of alternatives is evaluated by a set of fuzzy criteria, i.e., fuzzy relations, which may 
be either fuzzy preference or similarity, or likeness ones. The criteria importance is 
computed with the help of weighting functions in the unit interval. In order to 
compute the multicriteria score of the fuzzy relations an aggregation operator will 
be used to fuse the membership degrees of two alternatives according to all 
relations (fuzzy criteria) taking into account the respective weighting functions. The 
                                                 
1 This work was supported by the Bulgarian Academy of Sciences under Grant 010077. 
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purpose is to aggregate the individual fuzzy relations in order to get a fusion 
relation as a fuzzy one, giving a possibility to decide a ranking, choice, or cluster 
problem. 

Procedures for determining the weights have been the aim of many 
investigations and discussions [2, 8, 20, 24, 26]. The weights of the criteria may be 
given as constants in most cases; besides this, they can be fuzzy numbers [9, 15, 
19], fuzzy relation between the criteria importance [18] or weighting functions [11, 
21, 1, 10].  

The idea of considering weighting functions that depend continuously on the 
criterion satisfaction values (i.e., good or bad criteria performances) is supported by 
common sense reasoning and experience in the context of decision theory [11, 21]. 
The introduction of weighting functions depending continuously on criterion 
satisfaction values produces weighted aggregation operators with complex 
dependence on these values. The more complicated case when the weighting 
functions depend continuously on the membership degrees to the fuzzy relations, is 
considered herein. Then the dependence of the chosen aggregation operator on the 
membership degrees is more complex. 

Let { , , ,..., }A a b c n=  be a set of alternatives evaluated by fuzzy criteria 

1{ , ..., }mK k k= . These criteria compare the couples of alternatives and assign 
membership degrees to the fuzzy relations corresponding to the different criteria. 
Let 1, ..., , ...,i mR R R  are the matrices of these fuzzy relations, i.e., 

( , ) ( , ) ... ( , )
( , ) ( , ) ... ( , )

, 1,..., , 2,
... ... ... ...

( , ) ( , ) ... ( , )

i i i

i i i
i

i i i

a a a b a n
b a b b b n

R i m m

n a n b n n

µ µ µ
µ µ µ

µ µ µ

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ≥
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where ( , ) [0,1]i a bµ ∈  is the membership degree of the couple of alternative 
,a b A∈  to the fuzzy relation iR  ( iR  means a fuzzy relation and a matrix 

corresponding to this relation as well, for simplicity). The weights of the criteria are 
computed using weighting functions 1( ), ..., ( ), [0,1]mf x f x x∈  of the membership 
degrees to the corresponding relation. An approach for fusing fuzzy relations 
consists in the usage of aggregation operators. A very good overview of the 
aggregation operators, by presenting the characteristics, the advantages and 
disadvantages of each operator and the relations between them, is available in       
[3, 7]. 

According to Y a g e r [25] and taking into account the problem so determined, 
each of the membership degrees may be transformed via weighting functions of the 
criteria as follows: 

(1) ( , ) ( ( ( , )), ( , )) , , 1,...,w
i i i ia b g w a b a b a b A i mµ µ µ= ∀ ∈ = , 

where ( ( , )) [0,1]i iw a bµ ∈  is the weighting coefficient computed with the help of 
the function ( )if x  for the membership degree of the given couple of the 
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alternatives to the fuzzy relation iR and g(w, x) satisfies the following properties 
[25]: 

( , ) ( , )x y g w x g w y> → ≥ ; ( , )g w x  is monotone in w ; 
(0, ) id, (1, )g x g x x= = , 

with the identity element, id, such that it does not change the aggregated value by 
adding it to the aggregation. The weighted aggregation is obtained as 

(2) 1( , ) Agg( ( , ), ..., ( , ), ..., ( , )) ,w w w w
i ma b a b a b a b a b Aµ µ µ µ= ∀ ∈ ,  

where Agg denotes some aggregation operator. The form of g depends on the type 
of aggregation performed, e.g., it may be t-norm or t-conorm [25], taking into 
account their properties. 

The properties of the new relations characterized by membership 
functions ( , ), , , 1, ...,w

i a b a b A i mµ ∈ = , with a product t-norm for g and arithmetic 
mean operator for Agg, weighted by using the functions ( ), 1, ...,if x i m= (also 
called a generalized mixture operator [11]), will be studied.  

2. Weighting functions and weighted relations 

Let the membership degrees from the comparison of the alternatives ,a b A∈  to the 
fuzzy relations 1, ..., , ...,i mR R R  be 1 1( , ) ,a b xµ = ..., ( , ) , ...,i ia b xµ =  ( , )m ma b xµ = . 
The generalized mixture operator is defined as 

(3) 1 1

1

1 ,

( )Agg( , ..., , ..., )

( )

m
i i ii m i

m
i ii

a b

f x xx x x
a b

f x
=

=

=⎧
⎪⎪= ⎨ ≠⎪
⎪⎩

∑
∑

  

, , 1, ..., ,a b A i m∀ ∈ =  

where :[0,1] [0, ), 1, ..., ,if i m→ ∞ =  are weighting functions, which are supposed 
to be continuous. 

Introduce the following notations for all ,a b A∈ : 

(4) 
1

( , ) ( )m
i ii

S a b f x
=

=∑ ,  

(5) 
1

( ) ( )( )
( , )( )

i i i i
i i m

i ii

f x f xw x
S a bf x

=

= =
∑

,  

i.e. ( )i iw x  is a weighting coefficient with the normalization condition 

1
( ) 1m

i ii
w x

=
=∑ . 

The aggregated relation obtained as a result of such fusion has the following 
membership degrees for all , :a b A∈  
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(6) 1 1

1

( ) ( )
( , )

( , )( )

m m
i i i i i iw i i

m
i ii

f x x f x x
a b

S a bf x
µ = =

=

= =∑ ∑
∑ 1 1

( ) ( , ).m m w
i i i ii i

w x x a bµ
= =

= =∑ ∑  

The functions ( ), 1, ..., ,if x i m=  have to be monotonic and sensitive. These 
continuous functions are defined in the unit interval for [0,1]x∈  and they have 
continuous derivatives '( ), 1, ..., ,if x i m=  in this interval. It is proved [11] that the 
sufficient condition for the strict monotonicity of the operator (3) (i. e., to be an 
aggregation operator) is 0 '( ) ( ), 1,..., , [0,1]i if x f x i m x≤ ≤ = ∈ . New sufficient 
conditions for weighting functions are introduced in [13], in order to ensure the 
monotonicity of the generalized mixture operator (3). Let ( ), 1, ..., ,if x i m=  be 
monotone smooth weighting functions. Then the generalized mixture operator is 
monotone whenever all non-decreasing ( )if x  fulfill 
(7) 0 '( ) ( )   [0,1]i if x f x x≤ ≤ ∀ ∈  
or 
(8) 0 '( )(1 ) ( )   [0,1]i if x x f x x≤ − ≤ ∀ ∈  

and all non-increasing ( )if x  fulfill  
(9) ( ) '( ) 0   [0,1]i if x f x x+ ≥ ∀ ∈   
or 
(10) ( ) '( ) 0   [0,1]i if x f x x x+ ≥ ∀ ∈ .  

The following fitting [13] weighting functions will be considered here [11]: 
• Linear weighting functions 

(11) ( ) 1i if x xβ= +  with parameters 0 1, 1, ..., , 2i i m mβ≤ ≤ = ≥ .  
• Parametric linear weighting functions  

(12) 1( ) (1 ),
1

i
i i i i

i

xf x xβ
α γ β

β
+

= = +
+

 0 1, 0 1, , 1, ...,
1

i
i i i

i

i mα
α β γ

β
< ≤ ≤ ≤ = =

+
. 

It is obvious that 0 (0) (1 ) (1) 1i i i i if fα β α< = + ≤ = ≤  and therefore the parameters 

iα  control the value (1)if , when the criteria satisfaction values are one. The 
parameters iβ controls the ratio between the largest and smallest values of the 
function (12), when the criteria satisfaction values are zero and one, i.e., 
1 (1) / (0) 1 2, 1, ...,i i if f i mβ≤ = + ≤ = .  

• Quadratic weighting functions 
(13) 2( ) 1 ( ) ,i i i if x x xβ γ γ= + − +  0, 0.i iβ γ≥ ≥   

The linear weighting functions (11) correspond to 0=iγ  in (13). 
The above conditions for monotonicity of (3) are performed for weighting 

functions (13) if [11]: 
(14) 0 1, ( ), 1,..., ,i i i c i i mγ γ β β γ≤ ≤ ≤ ≤ =   
with 
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(15) 
i

1 for 0 0.5,
( )

2 (1 ) for 0.5 1.
i i

c i
i i i

γ γ
β γ

γ γ γ γ

+ ≤ ≤⎧⎪= ⎨
+ − ≤ ≤⎪⎩

  

Taking into account the operator (3) and the product t-norm for g in (1), the 
new membership degrees of the weighted relations are: 

(16) 
1 if ,

( , ) ( )( ) if  
( , )

w
i i i i

i i i

a b
a b f x xw x x a b

S a b
µ

=⎧
⎪= ⎨ = ≠⎪⎩

 

, , 1, ..., ,a b A i m∀ ∈ =  

where ( )i if x  is one of the above weighting functions. 
The properties of (16) and (3) will be studied.  

3. Some definitions of fuzzy relations properties 

Let : [0,1]X Xµ × →  be a membership function of a binary fuzzy relation            
R, , ,x y z X∈  and T be a t-norm.  The relation R is called: 

(i) reflexive if and only if ∀ : ( , ) 1;x X x xµ∈ =  
(ii) symmetric if and only if ∀ , : ( , ) ( , );x y X x y y xµ µ∈ =  
(iii) perfect antisymmetric if ( , ) 0x yµ >  then ( , ) 0y xµ =  , ,x y X∀ ∈  x y≠  

[14]; 
(iv) T-transitive if and only if ∀ , , :x y z X∈  ( ( , ), ( , )) ( , )T x y y z x zµ µ µ≤ . 
The following definitions of transitivity are used here: 

, , : min( ( , ), ( , )) ( , ).x y z X x y y z x zµ µ µ∈ ≤  
Z a d e h [27] suggested several useful definitions for transitivity, which are 

compared in [23]. The weakest of them is the max-∆ transitivity, 
i.e. ( , ) max(0, ( , ) ( , ) 1)a c a b b cµ µ µ≥ + − . It is shown [23] that this is the most 
suitable notion of transitivity for fuzzy ordering.  

(vi) The relation R is max-∆ transitive if and only if  
∀ , , : max(0, ( , ) ( , ) 1) ( , ).x y z X x y y z x zµ µ µ∈ + − ≤  

The above properties are composed to generate new classes of fuzzy relations. 
(vii) A similarity relation is reflexive, symmetrical and max-min transitive 

fuzzy relation [6].   
(viii) A fuzzy preorder is reflexive and max-∆ transitive fuzzy relation [6].  
(ix) A likeness relation is reflexive, symmetrical and max-∆ transitive fuzzy 

relation [6]. 
(x) A fuzzy partial ordering is reflexive, perfect antisymmetrical and max-∆ 

transitive fuzzy relation [23]. 
(xi) A fuzzy linear ordering is a fuzzy partial ordering such that 

∀ ,   if     either  ( , ) 0 or ( , ) 0x y X x y x y y xµ µ∈ ≠ > >  [6]. 
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4. Properties of the weighted relations and the generalized mixture 
operator 

The dependence between the properties of an aggregated relation and the 
corresponding individual relations is useful information, because it is required for 
solving a ranking, choice, or cluster problem. The preservation of fuzzy relations’ 
properties by weighted transformations of these relations and by their aggregation 
process is considered in [4, 5, 12, 16, 17]. 

The dependence between the properties of 1, ..., , ...,i mR R R  and 
transformations (16) and aggregation relations (3) will be studied.  

If the relations with membership functions ( , ), , , 1, ..., ,i a b a b A i mµ ∈ =  are 
reflexive and symmetrical it is obvious that the weighted relations (16) and the 
generalized mixture operator (3) preserve these properties. The transformations (16) 
and (3) do, however, not preserve the property of T-transitivity of the initial 
relations as it is seen from the following. 

Let , 1, ..., ,iR i m=  be T-transitive relations, i.e., 
( , ) ( ( , ), ( , )) , , , 1, ..., .i i ia c T a b b c a b c A i mµ µ µ≥ ∀ ∈ =  

Introducing the notations ( , ) , ( , ) , ( , ) ,i i i i i ia c z a b x b c yµ µ µ= = =  the above 
inequality becomes ( , ), 1, ..., .i i iz T x y i m≥ =  Two ways to show that the 
generalized mixture operator preserves or does not preserve the T-transitivity, are 
proposed. The first one consists in proving the preservation of T-transitivity of the 
weighted relations (16) and then use the results (3), obtained in [16]. The other way 
is to use the sufficient condition for preserving the T-transitivity suggested in [22], 
i.e., 

(17) 1 1 1

1 1 1

( ( , )) ( , ) ( ) ( )
, .

( ( , )) ( ) ( )

m m m
i i i i i i i i i i ii i i

m m m
i i i i i i ii i i

f T x y T x y f x x f y y
T

f T x y f x f y
= = =

= = =

⎛ ⎞
⎜ ⎟≥
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑

 

Some examples show that (3) does not preserve the T-transitivity of fuzzy 
relations. The test is done only for max-min and max-∆ transitivity.  

Example 1. Let 1R  and 2R  be reflexive and max-min transitive relations, i.e., 
1, min( , ), 1, min( , ) , , , 1, 2, 3:ii ij ik kj ii ij ik kjx x x x y y y y k i j k= ≥ = ≥ ∀ =  

( ) ( )1 2

1 0.6 0.8 1 0.3 0.3
0.3 1 0.7 , 0.7 1 0.5
0.2 0.2 1 0.7 0.5 1

ij ijR x R y
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Compute the weighted relations (16) with one of the above weighting 
functions.  

• Let 1( ) 1 0.3ij ijf x x= + ,      2 ( ) 1 0.7ij ijf y y= +  from (11).  

The transformed weighted relations 1
wR , 2

wR  according to (4), (5), (16) and the 
aggregated relation R by (3) are: 
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1

1 0.294 0.408
0.126 1 0.329 ,
0.084 0.088 1

wR
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 2

1 0.153 0.147
0.406 1 0.265 ,
0.406 0.280 1

wR
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

1 0.447 0.555
0.632 1 0.594 .
0.490 0.368 1

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The examination shows that the two relations are not max-min transitive, 
because for 1

wR  one has 0.084 < min(0.088, 0.126), for 2
wR  → 0.147 <      

min(0.153, 0.265). Therefore, R is not a max-min transitive relation, due to the 
results in [16], which is confirmed by the test done here, e.g. 
0.368 min(0.490, 0.447).<  

• Let 1

1 0.2
( ) 0.6 ,

1 0.2
ij

ij

x
f x

+
=

+
  2

1 0.8
( ) 0.5

1 0.8
ij

ij

y
f y

+
=

+
 from (12).  

In this case, 1 ,wR  2 ,wR  according to (4), (5), (16) and (3), are 

1

1 0.37 0.50
0.16 1 0.42 ,
0.11 0.11 1

wR
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 2

1 0.12 0.11
0.32 1 0.20 ,
0.32 0.21 1

wR
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 
1 0.49 0.61

0.48 1 0.62 .
0.43 0.32 1

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

2
wR is not max-min transitive, because 13 12 23min( , )y y y< and therefore, R is 

not max-min transitive as well, e.g. 0.32 min(0.43, 0.49).<  
• Let 2

1( ) 1 (0.6 0.2) 0.2 ,ij ij ijf x x x= + − +  2
2 ( ) 1 (0.5 0.4) 0.4ij ij ijf y y y= + − +  

from (13). Their parameters satisfy the conditions (14) and (15). In this case, 
according to (4), (5), (16) and (3): 

1

1 0.33 0.46
0.14 1 0.40 ,
0.09 0.10 1

wR
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 2

1 0.14 0.13
0.37 1 0.24 ,
0.38 0.26 1

wR
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 
1 0.47 0.59

0.51 1 0.64 .
0.47 0.36 1

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The relations 1 ,wR 2
wR  and R are not max-min transitive, because 

31 32 21min( , )x x x< , 13 12 23min( , )y y y<  and for R – 0.36 min(0.47, 0.47).<  

Example 2. Let 1R  and 2R  be reflexive and max-∆ transitive relations, i.e.,  
1, max(0, 1), 1, max(0, 1) , , , 1, 2, 3 :ii ij ik kj ii ij ik kjx x x x y y y y k i j k= ≥ + − = ≥ + − ∀ =  

( ) ( )1 2

1 0.6 0.9 1 0.7 0.3
0.7 1 0.7 , 0.7 1 0.5 ,
0.1 0.4 1 0.2 0.5 1

ij ijR x R y
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and 1( ) 1 0.8 ,ij ijf x x= +   2 ( ) 1 0.9ij ijf y y= +  from (11). 
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The sufficient condition for preservation of this transitivity is the validity of 
(17) for all , , , 1, 2, 3,ij ijx y i j =  e.g. for the element (31) of the aggregated relation 
one has: 

31 32 21 32 21

31 32 21 32 21

1 32 21 2 32 21

0.1 max(0, 1) max(0, 0.4 0.7 1) 0.1 ( , ),
0.2 max(0, 1) max(0, 0.5 0.7 1) 0.2 ( , ),

( ( , )) 1.08, ( ( , )) 1.18,

x x x T x x
y y y T y y
f T x x f T y y

= ≥ + − = + − = =
= ≥ + − = + − = =

= =
 

and then it has to be proved that 

1 32 21 32 21 2 32 21 32 21

1 32 21 2 32 21

1 32 32 2 32 32 1 21 21 2 21 21

1 32 2 32 1 21 2 21

( ( , )) ( , ) ( ( , )) ( , )
( ( , )) ( ( , ))

( ) ( ) ( ) ( )max 0, 1 .
( ) ( ) ( ) ( )

f T x x T x x f T y y T y y
f T x x f T y y

f x x f y y f x x f y y
f x f y f x f y

+
≥

+

⎛ ⎞+ +
≥ + −⎜ ⎟+ +⎝ ⎠

 

The computations show that the left side of this inequality is equal to 0.15 and 
the right side is equal to 0.1523, i.e. the operator (3) does not always preserve the 
max-∆ transitivity of fuzzy relations. From the practical point of view, comparing 
the two ways for examination of the preservation of the T-transitivity it is obvious 
that the first way is easy for the computations. 

Therefore, the operator (3) does not preserve the T-transitivity of fuzzy 
relations and the following proposition is very useful, in this case.  

Proposition 1. If the relations , 1, ..., ,iR i m=  are max-min transitive, then 
(16) transforms them to max-∆ transitive fuzzy relations. 

P r o o f.  Let , 1, ...,iR i m= , be max-min transitive relations, i.e. 
( , ) min( ( , ), ( , )) , , , 1, ..., .i i ia c a b b c a b c A i mµ µ µ≥ ∀ ∈ =  

It has to be proved that 

(18) ( , ) max(0, ( , ) ( , ) 1) , , , 1, ..., ,w w w
i i ia c a b b c a b c A i mµ µ µ≥ + − ∀ ∈ =   

where according to (16) and the notations ( , ) ,i ia b xµ =  ( , ) ,i ib c yµ =  
( , ) , 1,..., ,i ia c z i mµ = =  

( )( , ) ,
( , )

w i i
i i

f xa b x
S a b

µ =  ( )( , ) ,
( , )

w i i
i i

f yb c y
S b c

µ =  ( )( , ) .
( , )

w i i
i i

f za c z
S a c

µ =  

a) Case with linear weighting functions (11) 
This case is a special case of the quadratic weighting functions for 0.iγ =  

b) Case with parametric linear weighting functions (12) 
The inequality (18) becomes 

(19) (1 ) max
( , )

i i i iz z
S a c

γ β+
≥

(1 ) (1 )0, 1 ,
( , ) ( , )

i i i i i i i ix x y y
S a b S b c

γ β γ β⎛ ⎞+ +
+ −⎜ ⎟

⎝ ⎠
 

where according to (4) 
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1
( , ) (1 ),

m

i i i
i

S a b xγ β
=

= +∑  
1

( , ) (1 ),
m

i i i
i

S b c yγ β
=

= +∑  
1

( , ) (1 ).
m

i i i
i

S a c zγ β
=

= +∑  

• If 1,i ix y+ ≤  then taking into account (5), ( ) ( ) 1,i i i i i iw x x w y y+ ≤  because 
( ) 1, ( ) 1.i i i iw x w y≤ ≤  Therefore (18) holds. 

• If 1,i ix y+ >  then it has to be proved, that 

(20) (1 )
( , )

i i i iz z
S a c

γ β+
≥

(1 )
( , )

i i i ix x
S a b

γ β+
+

(1 ) 1.
( , )

i i i iy y
S b c

γ β+
−  

According to min( , ), for all , , , 1, ..., , ..., ,i i i i i i iz x y x y z i m z≥ =  can be 
preordered in such a way that 

,  1,..., ;i i ix z y i k≤ ≤ =    ,  1, ..., .i i iy z x i k m≤ ≤ = +  

Let [1, ], i.e. .j j jj k x z y∈ ≤ ≤  Introducing the notations 
(1 ) ,j j j jz z Zβ+ =  (1 ) ,j j j jx x Xβ+ =  (1 )j j j jy y Yβ+ =  

(20) becomes to 

(21) 
( , )

j jZ
S a c
γ

≥
( , )

j jX
S a b
γ

+ 1.
( , )

j jY
S b c
γ

−   

If  
( , )

jZ
S a c

≥
( , )

jX
S a b

 or  
( , )

jZ
S a c

≥ ,
( , )

jY
S b c

 then 

( , )
j jZ

S a c
γ

≥
( , )

j jX
S a b
γ

( , )
j jY

S b c
γ

max 0,
( , )

j jX
S a b
γ⎛

≥ +⎜
⎝

1
( , )

j jY
S b c
γ ⎞

− ⎟
⎠

 

and (20) is proved. 

The more complicated case is when 
( , )

jZ
S a c

<
( , )

jX
S a b

 and 
( , )

jZ
S a c

< ,
( , )

jY
S b c

 

i.e., 

(22) ( , ) ( , )j jS a b Z S a c X<  and  ( , ) ( , ) .j jS b c Z S a c Y<   

From [1, ], i.e. ,j j jj k x z y∈ ≤ ≤  it follows that j jX Z≤  and therefore from 
(22) ( , ) ( , ) ( , ),S a c S b c S a b> >  for example. According to (21) one has to prove 
that 

(23) 1
( , )

j jZ
S a c
γ

+ ≥
( , )

j jX
S a b
γ

+ ,
( , )

j jY
S b c
γ

  

i.e., ( , ) ( , )[ ( , )] ( , ) ( , ) ( , ) ( , ) ,j j j j j jS a b S b c Z S a c S b c S a c X S a b S a c Yγ γ γ+ ≥ +  but 

(24) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ ( , ) ] 0,j j j jS a b S b c S a c S a b S a c Y S a b S a c S b c Yγ γ− = − ≥  

(25) ( , ) ( , ) ( , ) ( , ) ( , )[ ( , ) ( , ) ] 0.j j j j j j jS a b S b c Z S b c S a c X S b c S a b Z S a c Xγ γ γ− = − ≤  
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Compare (24) and (25). If (24) is greater or equal to (25), then (23) is proved. 
The results from the comparisons of the separated multipliers are: 

( , ) ( , ), ( , ) .jS a c S b c S a b γ> >  According to the third multiplier one has: 

(26) 
1

1 1
( , ) (1 ) (1 )(1 ) (1 ),

j m

j j i i i j j j j i i i
i i j

S b c Y y y y yγ γ β γ β γ β
−

= = +

− = + + + − + +∑ ∑   

(27) 
1

1

( , ) ( , ) [ (1 )(1 ) ] (1 )(1 )
j

j j i i i j j j j j j j j j
i

S a c X S a b Z z x x z x xγ β β γ β β
−

=

− = + + + + + +∑  

1

1 1

1

[ (1 )(1 ) ] [ (1 )(1 ) ]

(1 )(1 ) [ (1 )(1 ) ].

jm

i i i j j j i i i j j j
i j i

m

j j j j j j i i i j j j
i j

z x x x z z

x z z x z z

γ β β γ β β

γ β β γ β β

−

= + =

= +

+ + + − + + −

− + + − + +

∑ ∑

∑
 

Compare the addends from (26) and (27), separately. One has: 
1 1 1

1 1 1
(1 ) (1 )(1 ) (1 )(1 ) ,

j j j

i i i i i i j j j i i i j j j
i i i

y z x x x z zγ β γ β β γ β β
− − −

= = =

+ ≥ + + − + +∑ ∑ ∑  

because  
(1 ) (1 )(1 ) (1 )(1 )i i i i i i j j j i i i j j jy z x x x z zγ β γ β β γ β β+ ≥ + + − + +  

from 
(28) 2 2 2 21 ,i i j i i j j j i j i j j i i j j j i j i jy z x z z x z x z x x z xβ β β β β β β β β+ + + + + ≥ + + +  
and  

1i i ix z y≤ ≤ ≤  for  1, ..., ,i k=  [1, ],j k∈   
,i i i i jy z xβ β≥  2 2 ,j j j jz xβ β≥  2 21 .i i j i j i j i j i jx z x z z xβ β β β β+ + ≥  

Besides,  
(1 )(1 ) (1 )(1 ) (1 )(1 ) ,j j j j j j j j j j j j j j j jy y z x x x z zγ β γ β β γ β β+ − ≥ + + − + +  

because  
(1 )(1 ) (1 )(1 )( ),j j j j j j j j jy y z x x zβ β β+ − ≥ + + −   

taking into account that the left side of the above inequality is positive and the right-
hand side is negative ( ).j jx z≤  

Finally, 

1 1 1

(1 ) (1 )(1 ) (1 )(1 ) ,
m m m

i i i i i i j j j i i i j j j
i j i j i j

y z x x x z zγ β γ β β γ β β
= + = + = +

+ ≥ + + − + +∑ ∑ ∑  

because: 
• if ,i k≤  this is analogical to the case, when [1, 1],i j∈ −  
• if ,i k>  then ,i i iy z x≤ ≤  but j i jx z y≤ ≤  and from (28) ,j jx z≤  

2 2, ,i i j i i j j j j jx z z x z xβ β β β≥ ≥  2 21 ,i i i j i j i j i jy x z z xβ β β β β+ + ≥  i.e., the inequality (23) 
holds and hence (19) is proved. 
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c) Case with quadratic weighting functions (13) 
In this case  

2

1 1 1
( , ) ( ) (1 ( ) ) ,

m m m

i i i i i i i i
i i i

S a b f x x x m Xβ γ γ
= = =

= = + − + = +∑ ∑ ∑  

(29) 2

1 1 1
( , ) ( ) (1 ( ) ) ,

m m m

i i i i i i i i
i i i

S b c f y y y m Yβ γ γ
= = =

= = + − + = +∑ ∑ ∑   

2

1 1 1
( , ) ( ) (1 ( ) ) .

m m m

i i i i i i i i
i i i

S a c f z z z m Zβ γ γ
= = =

= = + − + = +∑ ∑ ∑  

It has to be proved that (18) holds. 
Let [1, ] and  ,j j jj m x z y∈ ≤ ≤  e.g. min( , ),i i iz x y≥  for all , , ,i i ix y z  

1,..., .i m=  If it can be proved that 

(30)  
( )
( , )

j j jf z z
S a c

≥
( )
( , )

j j jf x x
S a b

( )
,

( , )
j j jf y y
S b c

  

then (18) is valid in view of the inequality max(0, 1),z xy x y≥ ≥ + −  
, , [0,1].x y z∈  

From  ,j j jx z y≤ ≤  it follows that ( ) ( ) .j j j j j jf z z f x x≥  
If ( , ) ( , ),S a c S a b≤  ( , ) ( , )S a c S b c≤  or ( , ) ( , ) ( , ),S a c S a b S b c≤  then (18) is 

valid. 
Let ( , ) ( , ),S a c S a b>  ( , ) ( , )S a c S b c>  and ( , ) ( , ) ( , ),S a c S a b S b c>  then it 

has to be proved in (30), that 

(31)  1
( , )S a c

≥
( )

( , ) ( , )
j j jf y y

S a b S b c
⇒ ( , ) ( , ) ( , ) ( ) .j j jS a b S b c S a c f y y≥  

This inequality may be rewritten taking into account (29), as follows: 

1 1 1
( )( ) ( ) ( ).m m m

i i j j j ii i i
m X m Y f y y m Z

= = =
+ + ≥ +∑ ∑ ∑  

But 2 ( ) ,j j jm mf y y≥  because 2,m ≥  2(1 ( ) ) 1 2j j j j j j jy y yβ γ γ β+ − + ≤ + ≤  

and ( ) j1 1 1
 ( ) ,m m m

i i j j ii i i
m X Y f y y Z

= = =
+ ≥∑ ∑ ∑  which follows from  i i ix z y≤ ≤  or 

 yi i iz x≤ ≤  by assumption. Therefore, (31) is valid. 
The properties reflexivity, symmetry and max-∆ transitivity of the aggregation 

operator (3) gives a possibility to decide the problems of choice, ranking or 
clustering after the computation of the aggregated relation. The following 
propositions are useful for this purpose. 

Corollary 1. If , 1, ..., ,iR i m=  are reflexive and max-min transitive relations, 
then the relations , 1, ..., ,w

iR i m=  with membership functions (16) are fuzzy 
preorders. 

The proof follows from Proposition 1 and the definition for fuzzy preorder 
(see Section 3). 
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Corollary 2. If , 1, ..., ,iR i m=  are similarity relations, then the relations 
, 1, ..., ,w

iR i m=  with membership function (16) are likeness relations. 
The proof follows from Proposition 1 and the definition of likeness relation 

given in Section 3. 
Corollary 3 [16]. If the relations , 1, ..., ,w

iR i m=  are fuzzy preorders, then the 
aggregation relation with the membership function (3) is a fuzzy preorder relation 
as well. 

Corollary 4 [16]. If , 1, ..., ,w
iR i m=  are likeness relations, then the 

aggregation relation  with membership function (3) is a likeness relation as well. 

5. Numerical example 

This example illustrates the application of the results obtained in deciding the 
problem of alternatives’ ranking. The computed aggregated relations R from the 
example 1 and weighting functions (11), (12) and (13) are: 

1 0.447 0.555
0.632 1 0.594 ,
0.490 0.368 1

a b c
a

R b
c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

      
1 0.49 0.61

0.48 1 0.62 ,
0.43 0.32 1

a b c
a

R b
c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

1 0.47 0.59
0.51 1 0.64 .
0.47 0.36 1

a b c
a

R b
c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

These fuzzy preference relations are fuzzy preorders (Corollary 3). Then, the 
perfect antisymmetry relations R′ of R are computed (see the definition in  
Section 3), i.e., if ( , ) ( , ) ( , ) ( , ) ( , ) 0,R a b R b a R a b R a b R b a′ ′≥ → = ∨ =  

1 0 0.555
' 0.632 1 0.594 ,

0 0 1

a b c
a

R b
c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

   
1 0.49 0.61

' 0 1 0.62 ,
0 0 1

a b c
a

R b
c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

    
1 0 0.59

' 0.51 1 0.64 .
0 0 1

a b c
a

R b
c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The relations R′  are fuzzy partial orderings, because they are reflexive, 
perfect antisymmetrical and max-∆ transitive. It is obvious that these relations are 
fuzzy linear orderings, i.e., 

• for the linear weighting function (11) this ordering is:  
0.632 0.555 ;b a c⎯⎯⎯→ ⎯⎯⎯→  
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• for the weighting function (12) this ordering is:  
0.49 0.62 ;a b c⎯⎯⎯→ ⎯⎯⎯→  

• for the weighting function (13) this ordering is:  
0.51 0.59 .b a c⎯⎯⎯→ ⎯⎯⎯→  

It can be seen that, the orderings in the cases with linear and quadratic 
weighting functions are equal and they differ from the ones with parametric linear 
function. 

6. Concluding remarks 

Weighting functions and fuzzy relations are considered herein instead of constant 
weights of the criteria and crisp evaluations of the criteria. The introduction of 
weighting functions, depending continuously on the criterion satisfaction values 
produces weighted aggregation operators with complex dependency on these 
values. The advantage of these functions consists in their ability to fine the small 
values and to reward the great values of the membership degrees. The proved 
properties of the weighted relations give a possibility to use transformed relations in 
aggregation procedures. The aggregated preorder relation may be used in the 
decision making problems for choice or ordering among the set of alternatives. The 
property of likeness of the aggregated relation is useful for solving a clustering 
problem of the alternatives’ set.  
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