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1. Introduction 

Multicriteria decision making is evaluated as the fifth in order (among fifteen in 
number) priority research directions of the scientific discipline “Operations 
Research” [14]. It is one of the most dynamically developing directions in the last 
decades. 

The problems for multicriteria decision add can be divided in two separate 
classes depending on their formal statement. In the first class of problems a finite 
set of explicitly set constraints in the form of functions define an infinite number of 
feasible alternatives. These problems are called continuous problems for 
multicriteria decision add or problems of Multicriteria Optimization (МО). In the 
second class of problems a finite number of alternatives are explicitly given in a 
tabular form. These problems are called discrete problems for multicriteria decision 
add or problems of Multicriteria Analysis (МА). A lot of real life problems in 



 19 

management may be formulated as problems of multicriteria optimization or 
multicriteria analysis. 

Several criteria (objective functions) are simultaneously optimized in МО and 
МА problems in the feasible set of solutions (alternatives). In the general case there 
does not exist one alternative, optimizing all the criteria. But there exists a set of 
alternatives, differing by the following characteristic: each improvement in the 
value of one criterion leads to deterioration in the value of at least one other 
criterion. This set of alternatives is called a set of non-dominated alternatives or 
Pareto Optimal (PO) set. Each alternative from this set can be a solution of the 
multicriteria problem. However, in practice it is necessary to choose one alternative 
as a final solution of the problem. In order to choose the most preferred solution, 
additional information, set by the so called Decision Maker (DM) is necessary. The 
information, which the DM sets, reflects his/her global preferences related to the 
quality of the alternative sought. 

The work in the Institute of Information Technologies at Bulgarian Academy 
of Sciences (IIT-BAS) in multicriteria decision making area is natural continuation 
of the many years’ activity in the area of integer, combinatorial and network single-
criterion optimization of the team members. Prof. Dr Vassil Vassilev was the 
founding force and the leader of the research and applied developments in the area 
of МО and МА. During the last two decades new efficient scalarizing problems, 
MO algorithms and interactive “optimizationally motivated“ algorithms for MA 
have been developed, which lie in the basis of the software systems created. The 
results achieved are presented in prestigious scientific journals and reported at 
international conferences.  

The next chapters of the paper discuss the developments with the most 
considerable scientific and research contribution to the area of multicriteria decision 
making, carried out at IIT-BAS. 

2. Research investigations in the area of multicriteria optimization  

The research investigations at IIT-BAS in MO area are mainly connected with the 
application of the scalarizing approach to solving linear, linear integer, convex 
nonlinear, nonlinear integer and flow multicriteria problems.  

The general statement of MO problem is as follows:  

“max”{ ( ), }kf x k K∈   

under the constraints 

( ) ii bxg ≤ ,   i∈M, 
0 ,j jx d≤ ≤    j∈N, 

1( , ..., )nx x x=  is an n-dimensional vector, the values of which are the searched 

solution of the problem; 
T

1( ) ( ( ), ..., ( ))kf x f x f x=  is a vector of the objective 
functions or the criteria vector; ZXf =)(  denotes the image of the set of the 
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feasible solutions X in the criteria space. The type of the functions of the criteria 
( ),kf x  ,k K∈  and of the constraints  gi(x), i∈M, with respect to the variables xj, 

j∈N, as well as the type of these variables, define the type of МО problems. The 
term scalarization means transformation of the multicriteria optimization problem in 
one or several single-criterion optimization problems. The basis for such 
transformation consists in the fact that each PO solution of the multicriteria 
optimization problem can be obtained as an optimal solution of the scalarizing 
problem. The scalarizing problems differ depending on the information they require 
from the DM about his/her preferences in connection with the compromise solution 
sought. The scalarizing problems are placed in the basis of the most widely used 
methods for solving MO problems – the interactive methods, where the generation 
of PO solutions is obtained, using single criterion optimization.  

The first developments related to scalarizing problems and interactive 
algorithms for MO are connected with the experience gained and the results 
obtained during the development of efficient approximate algorithms, designed for 
NP problems of single-criterion optimization. When interactive algorithms are 
developed for solving multicriteria nonlinear and integer (linear and nonlinear) 
optimization problems, it is obligatory to take in mind the time, necessary for the 
solution of the scalarizing problems. If this time is too long, the DM may give up 
the study of different solutions. The use of efficient approximate algorithms in 
solving scalarizing problems can increase considerably the qualities of MO 
interactive algorithms. Another significant problem in the development of such 
algorithms is to what extent the information, required from the DM, reflects his/her 
preferences and could direct the search towards the most preferred solution.  

2.1.  Scalarizing problems of the reference directions  

The first results in the area of the scalarizing approach, applied for solution of MO 
problems, are connected with the formulated problems of the reference directions 
(RD). RD scalarizing problems [9, 10, 16, 28], are the basis of some interactive 
methods, designed with the purpose to solve linear and nonlinear integer 
multicriteria problems. On the basis of the criteria values in the current solution kf , 
the DM sets the desired (acceptable) levels of the criteria in the reference point z . 
Depending on these values, the criteria are divided into three groups – ≥K , ≤K  
and =K , at that ≥∈Kk , if improvement of these criteria kk fz ≥  is searched 
for; ≤∈Kk if deterioration is acceptable kk fz ≤  and =∈Kk ; if the goal is to 
preserve the value reached kk fz = . Different types of scalarizing problems of this 
type can be formulated. One of the formulations of the scalarizing problem of the 
Reference Directions (RD) has the form (RD1):  

To maximize 

(1) ( )( ) min k k

k K k k

f x fS x
z f≥∈

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

  

under the constraints  
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(2) ≤∈−+≥ Kkfzzxf kkkk ),()( α , 
(3) =∈= Kkzf kk , , 
(4) x ∈ X, 
where α  is a parameter, α > −1. 

The optimal solution of this scalarizing problem is a weak PO solution of MO 
problem. In the general case it is an optimization problem with a non-differentiable 
objective function. Every concrete scalarizing problem RD1 can be reduced to an 
equivalent optimization problem with a differentiable objective function at the 
expense of additional variables and constraints. The equivalence of each pair of 
optimization problems is with respect to the obtained values of the criteria 
(objective functions) and of the main variables. 

The objective functions of RD scalarizing problems maximize the minimal 
difference between the values of the criteria with indices ≥∈Kk  in the solution 
sought and in the current solution fk. In this way a solution is sought, which is 
located as further as possible from the current solution found. The values of the 
criteria with indices ≥∈Kk  increase, whereas the values of the criteria with 
indices ≤∈Kk  can diminish, while searching for a new solution along the 

reference direction, defined by the reference point kz  and the current solution 
found fk. The current solution of the multicriteria problem is a feasible solution of 
RD problems. This simplifies the exact, as well as the approximate methods for 
solving integer variants of the problem, because they start with a known initial 
feasible solution. Depending on parameter α, when searching for a new solution 
along the reference direction, two strategies can be realized: The first strategy is of 
the type “great profits-great losses”, while the second one is of the type “not great 
profits-small losses”. 

2.2. Scalarizing problems of the modified reference point  

The scalarizing problems of the Modified Reference Point (MRP) are used in some 
methods  [18, 19, 30], designed to solve convex nonlinear integer multicriteria 
problems. On the basis of the values of the criteria in the current solution, the DM 
divides the criteria into three groups − ≥K , ≤K  and =K , and determines the 
desired or acceptable levels of the criteria at the reference point z , at that kk fz =  

for =∈Kk . Different types of scalarizing problems of this type can be formulated. 
A such problem, aiding the discovery of PO solutions, has the form given below. 

To minimize 

(5) ( ) ( )( ) max max , maxk k k k

k K k Kk kk k

z f x f f xS x
z f f z≥ ≤∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

+ 

+ ( ) ( ) ( )k k k k
k

k kk K k K k Kk k

z f x f f x f x
z f f z

ρ
≥ ≤ =∈ ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑  
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under the constraints 

(6) ( ) , ,k kf x f k K =≥ ∈  

(7) ,x X∈  

where ρ  is a small positive number. 

MRP scalarizing problems have three features, enabling to a high extent the 
overcoming of the computational difficulties, connected with their solution as 
integer programming problems or as nonlinear programming problems. On the 
other hand, they allow the decrease of DM’s loading when comparing the new 
solutions. The first feature is connected with the fact that the current preferred 
solution (found at the previous iteration) of the multicriteria problem is a feasible 
solution of MRP problems. This facilitates both the exact and approximate methods 
for MRP solutions, since they start with a known initial feasible solution. The 
second feature is connected with the property, that the feasible area of MRP 
problems is a part of the feasible area of the multicriteria problem, in contrast to the 
feasible areas of the scalarizing problems of the reference points, which coincide 
with the feasible area of the multicriteria problem. Depending on the parameters 
values, the feasible area of MRP problems can be comparatively narrow and the 
feasible solutions found by exact or approximate methods, can be located very near 
to PO surface of the multicriteria problem. The obtaining and use of such 
approximate PO solutions can decrease considerably the time, during which the DM 
expects new solutions for evaluation. The dialogue with the DM can be improved 
on the account of decrease in the quality of the solutions obtained in the criteria 
space. The third feature is connected with DM’s possibility to realize search 
strategies of the type “not great profits – small losses”. This is due to the fact that 
with the help of MRP problems, an optimal solution is sought, which minimizes 
Chebyshev’s distance from the feasible criteria up to the current reference point, the 
components of which are equal to the criteria values, intended by the DM, that are 
improved, and to the current values of the criteria, that are deteriorated. The 
obtained weak PO or PO solution and the current solution are comparatively close 
and the DM can make his choice more easily. This is also in force when the 
scalarizing problem is solved approximately and more feasible solutions are 
obtained, that are comparatively near to the current solution and in between as well. 
In other words, the influence of the so called “limited comparability” of weak PO or 
PO solutions is decreased. RD scalarizing problems have the same property, but in 
them it depends on the parameter α and its realization requires higher qualification 
of the DM concerning the scalarizing problem applied. 

2.3. Classification-oriented scalarizing problems  

RD and MPR scalarizing problems are particularly appropriate for the solution of 
MO integer problems, because they enable the diminishment of the computational 
difficulties, related to their solving, and also the requirements towards the DM in 
comparison and evaluation of the new solutions obtained. As for the information, 
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required from the DM in the search for new solutions, these scalarizing problems 
are comparatively close to the scalarizing problems of the reference point [33]. In 
Classification-Oriented Scalarizing Problems (COSP) the DM can present his/her 
local preferences not only by desired and acceptable levels, but also by desired and 
acceptable directions and intervals of alteration of the values of the separate criteria 
[23, 31]. In this way the DM can describe his/her local preferences with greater 
flexibility, accuracy and certainty. Depending on these preferences, at each iteration 
the set of the criteria can be divided into seven or less than seven classes, denoted as 

>K , ≥K , =K , <K , ≤K , ><K  and 0K . Every criterion fk(x), ,k K∈  could enter 
into one of these classes, as follows: 

• >∈Kk , if the DM wishes the criterion fk(x) to be improved; 
• ≥∈Kk , if the DM wishes the criterion fk(x) to be improved by a desired 

value  0>∆∆ kk , ; 

• =∈Kk , if the DM wishes the current value of the criterion fk(x); not to be 
deteriorated; 

• <∈Kk , if the DM agrees the criterion fk(x) to be deteriorated; 
• ≤∈Kk , if the DM agrees the criterion fk(x) to be deteriorated at most by 

an acceptable value 0kδ > ; 
• ><∈Kk , if the DM wishes the criterion fk(x) not to be altered out of the 

bounds for a given interval, defined as:  ( ) +− +≤≤− kkkkk tfxftf ; 

• 0Kk ∈ , if the DM wishes the criterion fk(x) to be freely altered. 
In order to obtain a solution, better than the current PO solution of MO 

problem, on the basis of the implicit classification of the criteria, done by the DM, 
the following COSP scalarizing problem may be used: 

To minimize 
(8) ( )( ) ( )( ) ( ( )( )( ˆ( ) max max / , max / , max /k k k k k k k k k

k K k K k K
S x z f x G z f x G f f x G

≥ ≤ <∈ ∈ ∈
= − − − +  

( )( ) ( )( ) ( )( ) ( )( )max /k k k k k k k k k
k K k Kk K k K

f f x G z f x z f x f f xρ
>

≥ <∈ ∈ ≤∈ ∈

⎛
+ − + − + − + − +⎜

⎝
∑ ∑ ∑

( ) ( )
0

( )k k k
k K k K K K

f f x f x
> = ><∈ ∈ ∪ ∪

⎞
+ − − ⎟

⎠
∑ ∑ , 

under the constraints 
(9) ( ) , ,k kf x f k K K> =≥ ∈ ∪  
(10) ( ) , ,k k kf x f k Kδ ≤≥ − ∈  
(11) ( ) ,k k kf x f t k K− ><≥ − ∈ , 
(12) ( ) ,k k kf x f t k K+ ><≤ + ∈ , 
(13) ,x X∈  
where kf , ,k K∈  is the value of the criterion fk(x) in the current preferred PO 
solution; 
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kkk fz ∆+= , ≥∈Kk , is the desired level for the criterion ( )xfk ; 

,k k kz f δ= −  ≤∈Kk , is the acceptable level for the criterion  ( )xfk ; 

kG , ,k K∈  is a scaling coefficient, determined as follows: 
, ,k k kG z f k K K≥ ≤= − ∈ ∪  

<> ∪∈−= KKkzfG kkk ,* ; 
ρ is a small positive number. 

Usually COSP scalarizing problems are optimization problems with non-
differentiable objective functions. Every scalarizing problem COSP can be reduced 
to an equivalent optimization problem with a differentiable objective function at the 
expense of additional variables and constraints. The equivalence of each pair of 
optimization problems is proved in relation to the obtained values of the criteria 
(objective functions) and the basic variables. 

The more significant characteristics of COSP problems, connected with the 
possibilities to improve the dialogue with the DM, are the following:  

• COSP give more freedom to the DM to express his/her local preferences in 
the search for a better (weak) PO solution. The DM can describe his/her local 
preferences with the help of desired and acceptable levels of the values of a part or 
of all the criteria, and also with the help of desired and acceptable directions and 
intervals of change in the values of a part of the criteria. In this way the DM can 
describe his/her local preferences with greater flexibility, accuracy and certainty. 

• The current preferred solution of the multicriteria problem is a feasible 
solution of the current COSP scalarizing problem, which decreases considerably its 
solution time. 

• The feasible solutions of COSP scalarizing problem are located near the PO 
solutions of the multicriteria problem. However, the more the criteria the DM wants 
to be freely improved or agrees to be freely deteriorated are, the more the quality 
falls. The narrow feasible area of COSP scalarizing problems enables the successful 
use of approximate single-criterion algorithms, which is particularly important, 
when these problems are integer.  

2.4. Generalized scalarizing problems  

The long experience gained during the development and study of scalarizing 
problems in the solution of MO problems, has supplied the opportunity to define the 
so-called generalized scalarizing problems GENWS and GENS [20, 34]. They are a 
generalization of the scalarizing problems of the weighted sum, of ε-constraints 
problems, of the reference point problems, of the reference direction problems and 
of the classification-oriented problems. The generalized scalarizing problems 
GENWS and GENS combine to a great extent their qualities as well. In order to 
obtain a weak PO solution, starting directly or indirectly from the current weak PO 
solution, the following generalized scalarizing problem GENWS could be applied 
as follows. 
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To minimize 
(14) S(x) = max ( ( )( ) ( ) 2

22
1

11 )(maxmax RGxfFRGxfF kkk
Kk

kkk
Kk

−−
≤≥ ∈∈

 

( )( ) ( )( ) ) ( )( )∑
∈∈∈

−+−−
><

0

5544
3

33 maxmax
Kk

kkkkkk
Kk

kkk
Kk

GxfFGxfFRGxfF , 

under the constraints 
(15) ( ) ,k kf x f k K K> =≥ ∈ ∪ , 
(16) ( ) ,k k kf x f D k K ≤≥ − ∈ , 
(17) ( ) ,k k kf x f t k K− ><≥ − ∈ , 
(18) ( ) ,k k kf x f t k K+ ><≤ + ∈ , 
(19) x∈X, 
where:  

• K is the set of all the criteria; 
• 1 2 3 4 5, , , ,k k k k kG G G G G  are scaling coefficients; 
• 1 2 3 4 5, , , ,k k k k kF F F F F  are parameters, associated with aspiration, current and 

other levels of the criteria values;  
• 1 2 3, ,R R R  are equal to the arithmetic operation  “+” or to a divider “,” ; 
• kD  is the value, with which the DM agrees the criterion with an index k∈K 

(0< kD <∞) to be deteriorated; 
• −

kt  and +
kt  are the lower and upper bounds of the acceptable (for the DM) 

interval of alteration of the value of the criterion with an index ><∈Kk ; 
• kf  is the value of the criterion with an index Kk ∈ in the current solution 

obtained; 
• ≥K  is the set of the criteria, about which the DM wishes their current 

values to be improved to levels 1
kF , set by him ; 

• >K  is the set of criteria, about which the DM wants their current values to 
be improved; 

• ≤K  is a set of criteria, about which the DM agrees their current values to 
be deteriorated to acceptable levels 2

kF , set by him, but not more than defined 
values k kf D−   ( 2

kF k kf D≥ − ); 
• <K  is the set of the criteria, about which the DM agrees their current 

values to be deteriorated; 
• =K  is the set of the criteria, about which the DM wants their current values 

not to be deteriorated; 
• ><K  is the set of the criteria, about which the DM agrees their values to be 

altered in given intervals; 
• 0K  is the set of the criteria, about which the DM does not set explicit 

preferences about the alteration of their values. 
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GENWS scalarizing problem has got sense, when ≥K ≠ Ø,  and/or  >K ≠ Ø,  
or KK =0 . That is why we accept that ≥K  and/or >K ≠ Ø or KK =0 . In the 
general case the constraints (15)-(18) define a subset XX ∈1 , which contains 
weak PO solutions. 

In order to obtain PO solutions, GENS scalarizing problem can be used, 
instead of GENWS scalarizing problem, having the following form: 

To minimize 
(20) )(xT = max ( ( )( ) ( )( )1 1 2 2

1 2max maxk k k k k k
k Kk K

F f x G R F f x G R
≤

≥ ∈∈

− −   

( )( )3 3max k k k
k K

F f x G
<∈

− ( )( ) ) ( )( )∑
∈∈

+−+−
>

0

5544
3 max

Kk
kkkkkk

Kk
GxfFGxfFR  

+ ( )( ) ( )( ) ( )( )1 1 2 2 3 3
k k k k k k k k k

k K k K k K

F f x G F f x G F f x Gρ
≥ ≤ <∈ ∈ ∈

⎛
− + − + − +⎜

⎝
∑ ∑ ∑

( )( )4 4
k k k

k K

F f x G
>∈

+ −∑ ( ) 6
k k

k K K

f x G
= ><∈ ∪

⎞
− ⎟

⎠
∑  

under constraints (15)-(19) and ρ is a small positive number. 
In the general case GENWS and GENS scalarizing problems are optimization 

problems with a non-differentiable objective function. Every scalarizing problem 
GENWS or GENS (with determined values of 1 2 3, ,R R R ) can be reduced to an 
equivalent optimization problem with a differentiable objective function at the 
expense of additional variables and constraints. The equivalence of each pair of 
optimization problems is with respect to the obtained values of the criteria 
(objective functions) and the basic variables. For different values of 1 2 3, ,R R R  
different types of equivalent problems can be obtained. 

Each one of the known scalarizing problems, such as the scalarizing problem 
of the weighted sum, the scalarizing problem of ε-constraints, Chebyshev’s 
scalarizing problem, the scalarizing problems of the reference point, the scalarizing 
problems of the reference direction and classification-oriented scalarizing problems 
can be obtained for a given combination of the parameters through GENWS or 
GENS scalarizing problems. For the first five types of scalarizing problems, the 
values of the criteria in the current solution obtained are not directly included in the 
scalarizing problem parameters, although based on these values the DM sets the 
values of the parameters of the scalarizing problem. In the classification-oriented 
scalarizing problems, the values of the criteria in the current solution obtained are 
parameters of the scalarizing problem. In the scalarizing problems of the weighted 
sum, the DM sets his/her preferences with the help of the values of the criteria 
weights, and in the scalarizing problems of ε-constraints − by selection of one 
function for maximization and definition of the lower limit of alteration of the 
remaining criteria. The reference point is determined by the aspiration levels of the 
criteria, which levels the DM wishes or agrees to be obtained in the new solution. 
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These aspiration levels of the criteria are parameters of the scalarizing problems of 
the reference point. The values of the criteria in the current solution found can also 
be parameters of the scalarizing problem. Defining desired or acceptable alterations 
in the values of the criteria in the current solution obtained, the DM indirectly 
classifies the separate criteria into different groups. 

For example, in order to generate the scalarizing problem of the weighted sum 
by GENWS scalarizing problem, the following substitutions are made: 

≥K =
≤K = <K = >K = =K = ><K =Ø, 

KK =0 , 
05 =kF , 

kkG ω=5  and 15 =∑
∈Kk

kG . 

The famous scalarizing problem NIMBUS [8] can be obtained from GENWS 
scalarizing problem through the following substitutions: 

<K = ><K = Ø, 
=3R  “,” , 

kk zF =1 , 
*4
kk zF = , 

Dk = k∆ , 

032 == kk GG , 

*
41 1

k
kk z

GG == . 

Altering the parameters of the scalarizing problem GENWS or GENS, a lot of 
new scalarizing problems with different characteristics could be obtained. The 
qualities of every scalarizing problem are determined by the possibilities, provided 
to the DM to set his/her preferences, by the capacities for overcoming the 
computational difficulties in solving certain types of NP optimization problems, as 
well as by the quality of the obtained solutions. 

2.5. Interactive methods for solving multicriteria optimization problems  

The interactive methods are among the most widely spread methods for solving MO 
problems. Every iteration of such method consists of two phases: a computational 
phase and a dialogue phase. During the computational phase one or more (weak) 
PO solutions are generated with the help of a scalarizing problem. During the 
dialogue phase these weak PO or PO solutions are presented to the DM for 
evaluation. In case the DM does not approve any of these solutions as a final 
solution (the most preferred solution) of the initial multicriteria problem, then to 
improve these solutions he/she provides information, concerning his/her local 
preferences. This information is used to formulate a new scalarizing problem that is 
solved at the next iteration. 
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The quality of every interactive method depends to a high extent on the quality 
of the dialogue with the DM. On its hand, the quality of the dialogue with the DM is 
determined by the type of the information he sets for improvement of a local 
preferred (weak) PO solution, by the time of the scalarizing problems solution, by 
the possibilities for DM’s learning with regard to the multicriteria problem being 
solved, by the type and number of the new weak PO or PO solutions, compared 
with the current preferred solution.  

When solving linear and convex nonlinear MO problems, linear and convex 
nonlinear programming problems are used as scalarizing problems. These problems 
are easy solvable problems. That is why in the interactive methods for solving 
multicriteria linear and convex nonlinear problems, the solution time of the 
scalarizing problems does not play such a significant role. The attention is drawn to 
the type of the information, which the DM can present for improvement of the local 
preferred PO solution. The possibilities for DM’s learning during the solution time 
of linear and convex nonlinear multicriteria problems is the other important feature 
of the interactive methods. Besides enabling DM’s freedom to move in PO criteria 
set, these possibilities are also expressed in the discovery of more than one PO 
solution during the computational phase. These solutions are presented for 
evaluation to the DM. In the comparison and evaluation of more than two PO 
solutions, in particular when they differ significantly one from another and the 
criteria number is big, the DM could encounter considerable difficulties in the 
selection of a current (final) preferred PO solution [4, 6]. 

In solving integer and non-convex nonlinear MO problems, integer and non-
convex nonlinear programming problems are used as scalarizing problems. These 
problems are of the type of NP problems [2]. The exact algorithms for their solution 
have exponential complexity. Even the finding of a feasible integer solution is so 
difficult, as finding an optimal solution. That is why when developing interactive 
methods, solving integer and non-convex nonlinear problems, it is necessary to take 
into account the time for scalarizing problems solution. In case this time is too big, 
the dialogue with the DM, even though user friendly, might not take place (if the 
DM refuses to wait too long for the scalarizing problem solution). 

On the basis of the scalarizing problems of the Reference Direction (RD), the 
interactive methods RD-IM [9, 16, 28] are developed, with the purpose to solve 
linear, nonlinear and linear integer MO problems. These interactive methods are 
learning oriented methods. This means that the DM can freely seek the final or the 
most preferred solution of the initial multicriteria problem from the sets of PO, 
weak PO or approximate weak PO solutions. For this purpose, during DM’s 
learning phase, the DM must receive a notion about these sets, about the feasible 
ranges of criteria alteration, about some general relations between the changes of 
the separate criteria. That is why, in the development of the interactive method for 
solving MO integer problems, three different strategies are used to search for new 
solutions for evaluation. The first strategy, called integer strategy, is the search of 
each iteration of PO or weak PO integer solution by exact solving the corresponding 
integer scalarizing problems. The second strategy, called approximate integer 
strategy, searches at some iterations approximate weak PO integer solutions by 
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approximate solution of the corresponding scalarizing problems. During the 
learning phase, and in problems of large dimension, up to the mere end, only 
approximate weak PO integer solutions are sought. The third strategy, called mixed 
strategy, accomplishes during most of the iterations a search for continuous PO 
solutions by solving continuous scalarizing problems, at that periodically an integer 
PO, an integer weak PO or an approximate integer weak PO solution is sought, 
which is close to the current continuous PO solution found. The search for 
continuous PO solutions is a solution of MO continuous problem. The notions 
integer PO solution, integer weak PO solution or approximate integer weak PO 
solution mean such a solution of MO integer problem in the criteria space, the 
solution of which in the variables space, is an integer solution. 

On the basis of the scalarizing problems of the Modified Reference Directions 
(MRP), the interactive methods [18, 30] have been developed for solving linear, 
nonlinear and convex nonlinear integer PO problems. The scalarizing problems 
MRP are particularly appropriate for including in the interactive methods for 
solving linear integer and convex nonlinear integer MO problems due to their three 
features: a known feasible initial integer solution, narrow feasible area, independent 
on parameters (the feasible integer solutions of this problem lie near to PO front) 
and a possibility for slight changes in the criteria values.  

On the basis of COSP scalarizing problems, some interactive methods [23, 31] 
have been developed for solving linear, nonlinear and linear integer MO problems. 
COSP scalarizing problems belong to the classification-oriented scalarizing 
problems and the DM can describe his/her local preferences with the help of desired 
and acceptable levels of a part or of all the criteria (as in RD and MRP problems), 
as well as with the help of desired and acceptable directions and intervals of 
alteration in the values of a part or all criteria. COSP scalarizing problems indicate 
two more properties (like RD and MRP scalarizing problems), connected with the 
fact that the current preferred solution of the multicriteria problem is a feasible 
solution of the new scalarizing problem and the feasible solutions of COSP 
scalarizing problems in the criteria space are located close to the PO surface of the 
corresponding multicriteria problem. COSP scalarizing problems enable the 
expansion of the information, with the help of which the DM can set his/her local 
preferences. This information expansion, however, leads to enlargement of the 
feasible set of criteria alteration in the criteria space and of the variables in the 
variables space. Hence, the feasible solutions of MRP problems are found nearer to 
PO surface, than the feasible solutions of COSP problems. In relation to this, when 
solving integer MO problems with large dimensions and when to reduce the time 
for new solutions obtaining, the scalarizing problems must be solved 
approximately, it is better to use MRP scalarizing problems, than COSP scalarizing 
problems. On the other hand, MRP problems have the least in number variables and 
constraints and from a computational viewpoint they prove to be the most 
appropriate for the case considered. 

The main features of the interactive MO methods developed may be presented, 
as follows: 
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• a possibility to widen the information, with the help of which the DM can 
set his/her local preferences;  

• a possibility to obtain continuous solutions and approximate integer 
solutions, which decreases the waiting time of the DM in solving integer 
multicriteria problems; 

• decrease of the number of the integer scalarizing problems being solved; 
• a possibility for relatively rapid DM’s learning with regard to the 

multicriteria problems being solved, presenting at each iteration more weak PO or 
PO solutions for evaluation, and DM’s freedom also to move freely over the whole 
area of these solutions. 

A generalized interactive MO method is developed with the help of GENWS 
and GENS scalarizing problems. The interactive methods above discussed are 
representatives of the most widely spread interactive methods – the methods of the 
reference point, the methods of the reference direction and the classification-
oriented methods. GENWS-IM generalized interactive method is with variable 
scalarization and parameterization. It is a generalization of the interactive methods 
described − RD-IM, MRP-IM and COSP-IM, as well as of a large part of some well 
known interactive methods. This generalization is with respect to the classes of the 
solved problems, the type of the given preferences, the number and type of the 
scalarizing problems used, the strategies used to seek new PO solutions.  

MOIP software system has been developed [21, 29] on the basis of RD-IM 
interactive methods and intended to support the solution of MO linear integer 
problems. MRP-IM interactive method is realized in MONIP research program 
[17], intended to solve MO convex non-linear integer  problems. 

MKO-1 and МKO-2 software systems are designed to support the solution of 
МО linear and linear integer problems. They include COSP-IM classification-
oriented interactive methods [25-27]. 

GENWS-IM interactive method is a good basis for the development of a 
software system with improved interface with the DM, both related to the class of 
MO problems being solved, and also to the possibilities to set his/her preferences. 
GENWS-IM interactive method could become the basis for creating an intelligent 
system, supporting  МО problems solution. 

3. Research developments in the area of multicriteria analysis  

When solving MA problems, the DM plays a significant role. His/her global and 
local preferences define the final (the most preferred) solution of the respective 
multicriteria problem. Depending on the way of DM’s preferences information 
acquisition and processing, and whether it is accepted that there exists a limit in 
DM’s possibilities to do comparison among the alternatives, a large part of the 
methods for solving MA problems can be divided into three separate classes [32]: 

• methods, in which DM’s preferences are aggregated as a result of the 
synthesis of one generalized criterion  (approach of the multi-attribute utility 
theory);  
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• methods, in which DM’s global preferences are aggregated as a result of 
the synthesis of one or several generalized relations of the preferences among the 
alternatives (outranking approach); 

• methods, in which DM’s local preferences are accumulated iteratively after 
direct and indirect comparisons between two or more alternatives  (interactive 
approach). 

The outranking methods and the methods, based on the theory of multi-
attribute utility, are traditional methods for solving a wide class of MA problems. 
At least so far, these methods have not any rival alternative when solving problems 
with a large number of criteria and a comparatively small number of alternatives. 

The problems with a large number of alternatives and a comparatively small 
number of qualitative criteria, in which the DM is not able to evaluate 
simultaneously all alternatives, are similar to МО problems. Some interactive 
methods have been developed with the purpose to solve this type of problems. The 
interactive methods (VIMDA method [5], method of the aspiration levels [7], 
InterQuad method [15], LBS method [3], CBIM method [11] are “optimization 
motivated” and belong to the methods from the third class. The contribution of the 
research developments at IIT-BAS in the area of MA is notably in the design of 
efficient “optimization motivated” interactive algorithms. They are constructed on 
the basis of the formulated discrete scalarizing problems. 

3.1. Discrete scalarizing problems 

The first discrete scalarizing problem, suggested for solution of multicriteria choice 
problems, is the scalarizing problem of the reference directions [22]. The DM is 
presented a current preferred set of l ranked alternatives for evaluation and 
selection, or a current alternative, or the most preferred alternative. The parameter l 
is defined by the DM and it is quite smaller than the total number of the 
alternatives. In case the DM is not satisfied, on the basis of the current preferred 
alternative, he/she determines the desired alteration in the values of the criteria or 
desired direction of their alteration. DM’s preferences are reflected in the 
formulated discrete scalarizing problem. On the basis of the scalarizing problem 
solutions, a new currently preferred set of l ranked alternatives is formed. . 

The discrete scalarizing problem, called DOSP1 [11], is a discrete analog of 
the classification-oriented scalarizing problem of MO. It is based on the 
information, provided by the DM for the desired or acceptable levels, directions and 
intervals of change of the values of some or of all the criteria with respect to the 
current preferred alternative. After the solution of DOSP1 scalarizing problem, 
depending on the value of its objective function, the alternatives are ranked in an 
ascending order. The first l ranked alternatives form the current preferred set of 
alternatives, which is displayed to the DM for evaluation and choice of the current 
preferred alternative.  

The current selection of alternatives is generated at each iteration. Let h 
denotes the index of a current preferred alternative. The following denotations, 
connected with this alternative, will be introduced: 
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− I'  is the set of alternatives with exception of the alternative with an index h, 
I' = I\h;  

− ahj is the value of the criterion with an index j∈J, for the current preferred 
alternative; 

− >≥
hh KK U  is the set of criteria with indices j∈J, about which the DM wants 

their values to be improved with respect to their values in the current preferred 
alternative, where: 

− ≥
hK   is the set of criteria with indices j∈J, about which the DM wants their 

values to be improved with the aspiration value hj∆ ; 

− >
hK  is the set of criteria with indices j∈J, about which the DM wants their 

values to be improved in a desired direction; 
− <≤

hh KK U  is the set of criteria with indices j∈J, about which the DM agrees 
their values to be deteriorated compared to their values in the current preferred 
alternative, where: 

− ≤
hK  is the set of criteria with indices j∈J, about which the DM agrees their 

values to be deteriorated by no more than hjδ ; 

− <
hK  is the set of criteria with indices j∈J, about which the DM agrees their 

values to be deteriorated in a given direction; 
− ×K  is the set of criteria with indices j∈J, about which the DM wishes their 

values to be within the interval )( +− +≤≤− hjhjhjhjhj taata , in relation to their 
values in the current preferred alternative; 

− =K  is the set of criteria with indices j∈J, about which the DM does not wish 
their values to be deteriorated; 

− 
0K  is the set of criteria with indices j∈J, towards which the DM is 

indifferent; 
− hja  is the desired aspiration value of the criterion with an index ≥∈ hKj , 

≥∈∆+= hhjhjhj Kjaa ,   ; 

j'Λ  is the difference between the maximal and minimal value of the criterion 
with an index j ; 

.max minj ij iji I'i I'
' a a

∈∈
Λ = −  

DOSP1 scalarizing problem is defined as follows: 
min ( , ) min{max[min( ) / , max ( ) / ]

max( ) / }
h h h

h

hj ij j hj ij ji I i I j K j K K

hj ij j
j K

S i h a a a a

a a

≥ < ≤

>

′ ′∈ ∈ ∈ ∈

∈

= − Λ − Λ +

+ − Λ
U

 

under the constraints 
,   ,  ,hj ij h ha a i I' j K K> =≥ ∈ ∈ U  
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,  ,  ,hj ij hj ha a i I' j Kδ ≤≥ − ∈ ∈  

,  ,  ,hj ij hj ha a t i I' j K− ×≥ − ∈ ∈  

,  ,  ,hj ij hj ha a t i I' j K+ ×≤ + ∈ ∈  
where 

,  if   ,

 ,  if     ,
j

j
j j

'

' '

ε ε

ε

Λ ≤⎧⎪Λ = ⎨ Λ Λ >⎪⎩
 

ε  is a small positive number. 
When solving DOSP1 scalarizing problem, the value of ( , )S i h  is computed 

for each alternative with an index i, satisfying the problem constraints. The 
objective function ( , )S i h  is a “modified” Chebyshev’s distance between the 
alternative with an index i and the “aspiration” alternative, defined by the problem 
conditions. 

3.2. Interactive methods for solving multicriteria analysis problems  

The interactive methods are used to solve MA problems with a large number of 
alternatives and a small number of qualitative criteria. The advantages of the 
interactive methods are connected with DM’s opportunities to control the process of 
search for the most preferred alternative, selecting from sets of currently ranked 
alternatives. In order to obtain the sets of ranked alternatives, discrete optimization 
scalarizing problems are applied. Weak PO (nondominated) alternatives are found 
with the help of the discrete classification-oriented problem DOSP1. On its basis, a 
discrete classification-oriented interactive method CBIM is designed, intended for 
solving problems of discrete multicriteria choice with a large number of alternatives 
and a small number of qualitative criteria, and providing the DM the possibility to 
control the process of seeking for the most preferred alternative selected among sets 
of currently ranked alternatives. This is a new type of МА methods, expanding 
DM’s possibilities to describe his/her local preferences and for evaluation of the 
solutions obtained.   

The software systems MKA-1 and MKA-2, [24, 27], developed at IIT-BAS, 
are intended for solving МА problems. АHP weighting method [13], 
PROMETHEE II outranking method [1], as well as CBIM interactive method [11, 
22] are included in MKA-1 system. MKA-1 system operates wit two type of criteria 
– qualitative and quantitative criteria. MKA-2 system is an extension of MKA-1 
system. One outranking method more − ELECTRE III [12], is added to it and the 
possibility to work with weighting and ranking types of criteria is expanded. 

4. Directions of future investigations 

Usually the optimization problems, which arise in different spheres of human 
activity, are multicriteria problems. The dimensions of the real life multicriteria 
problems, that have to be solved, are continuously increasing. That is why the 
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attempts of many researchers are focused on the development of new more efficient 
algorithmic approaches for their solution. One of the trends in the future research 
activities at IIT-BAS is the development of interactive algorithms, which combine 
the achievements of the classical scalarization and population-based methodology 
for more efficient solving of some classes of NP multicriteria optimization 
problems. For example, the development of interactive evolutionary algorithms of 
integer MO could avoid the multiple solving of integer scalarizing problems, 
needed by the DM in the classical interactive algorithms for learning the 
characteristics of the PO set of a given problem. The generation of a set of 
solutions, approximating the PO front, will enable the DM to gain an idea of the 
possible alternative values of the objective functions, of some common features of 
PO solutions, etc. This information will allow the more exact defining of the 
preferences with the purpose to find a better PO solution. In this way the obtaining 
of the most preferred solution will be achieved after a smaller number of iterations, 
which saves time, while DM’s confidence in the quality of this solution will be 
preserved. 

The development of an intelligent system, supporting the solution of MO 
problems, on the basis of GENWS-IM generalized interactive method, is one of the 
forthcoming scientific-applied activities. This software system will afford the DM, 
depending on his/her qualification, to set the preferences in the most convenient 
way. On the basis of the information received, the most appropriate method for 
solving MO problem will be selected.  The development of integrated software 
systems for multicriteria decision making is also one of the directions for the future 
research and applied work. They will unite the functions, concerning the better 
construction and edition of the models of МО and МА problems and the different 
approaches to their solution. 
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