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Abstract: In error detection with block codes over symmetric memoryless channels, 
the code performance is measured by the probability of undetected error. This 
probability depends on code characteristics and on ε, the symbol error probability 
of the channel. When the undetected error probability behaves irregularly with 
respect to ε, difficulties arise in finding a code, appropriate for error detection over 
a channel with not exactly known symbol error probability (which is most often the 
case). Good and proper codes are to be preferred in such cases. We present a 
survey of known methods and techniques for the study of block codes with respect to 
properness and goodness, together with applications to families of block codes, and 
some open problems. 
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1. Introduction: Briefly about channels and codes 

Codes are used to control errors, when information is transmitted over noisy 
communication systems. The system channel may be a telephone line, a high 
frequency radio link, or a satellite communication link. The noise may be caused by 
human errors, lightnings, thermal fluctuations, imperfection in equipment, etc. In 
error control, the original message is encoded in the beginning of the channel by 
using codewords. An encoded message contains redundant information, used at the 
end of the channel for better recovering of the original message. The general model 
of a communication system is sketched below. 
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Fig. 1. Basic model of a general communication system 

The simple example, where the only messages we want to transmit, are “YES” 
or “NO”, is illustrated below. “YES” is encoded as 00000 and “NO” as 11111. 
Suppose “YES” was sent and 01001 was obtained. There are two basic methods of 
error control used by the decoder, both in agreement with the Maximum Likelihood 
Principle: error detection and error correction. In error detection the decoder would 
ask for retransmission since the vector obtained is not a codeword. In error 
correction the decoder decodes the vector into the “nearest” codeword, which is 
00000, “YES”. 

 
Fig. 2. A simple example where the message source consists of “YES” and “NO” and 

“YES” is transmitted 

Further on we consider the transmission over a q-ary symmetric memoryless 
channel (SMC). Such a channel has an alphabet with q symbols, each of them 
remaining unchanged during the transmission with probability 1 – ε  and it may 
change into any of the other q – 1 symbols with the same probability ε/(q – 1). A 
natural assumption for the channel is that it is more likely for a symbol to remain 
unchanged during the transmission, than to be changed into some other symbol, 
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which results in the restriction 0 < ε < (q – 1)/q. The q-ary symmetric channel is 
memoryless, if the errors which occur in separate uses of the channel, are 
independent. 

The next picture describes the mathematical model of a ternary SMC with 
alphabet {0, 1, 2}. 

 
Fig. 3. A ternary SMC with symbol error probability ε 

2. Block codes 

A q-ary block code is a set of sequences of the same length (codewords) with 
elements from a finite set Fq with q elements. It is well known, that there exists a 
field GF(q) over Fq (the Galois Field) if and only if q is a prime power. Let n

q
F  

denote the n-dimensional vector space over GF(q). The Hamming distance between 
two vectors x and y from n

q
F  is the number of non-zero elements in x–y. The 

Hamming weight of a vector is its distance to the zero vector. The distance 
distribution of a block code n

q
C F⊂  is a collection of numbers {A0, …, An}, where 

Ai equals the number of pairs of codewords in C at distance i, divided by the 
number of all codewords. The smallest positive distance between two codewords in 
C is denoted by d and called the code distance. A linear code of dimension k is a    
k-dimensional subspace of n

q
F . In this case d equals the minimum positive weight 

in the code and Ai equals the number of codewords of weight i,   0 ≤ i ≤ n. The dual 
code of a linear code C is defined as the subspace n

q
C F

∪⊥ ⊂  orthogonal to C. 

Remark 1. Linear q-ary codes are not defined unless q is a prime power. 
However, reasonable q-ary codes can be obtained from linear codes in different 
ways, for example by omitting all codewords containing a given fixed symbol.  

Remark 2. The restriction to linear codes is not a sign of weakness. It turns 
out that codes that are optimal in some way, very frequently are linear. 
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3. Error detection with block codes 

Let n

q
C F⊂  be a block code with M codewords. Encoding with C is carried out as 

follows. After data compression, the initial source information is presented as a 
series of symbols from Fq, which is divided into blocks of length k < n. Each block 
is a message, which is encoded in a codeword from C. In this way a message, 
written in k symbols, is after encoding written in n symbols, so that n – k symbols 
are redundant. 

Suppose the codeword x was sent and vector y was received. In error detection, 
the decoder accepts y as the codeword sent, when it is a codeword, or asks for a 
retransmission, when it is not. Thus transmission errors remain undetected only if 
the codeword sent changes during the transmission into another codeword. The 
probability of undetected error of C is given by [19, Ch. 2]: 
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The formula is derived under the assumption of equally likely messages. This 
assumption is based on the Law of Large Numbers and is basic in C. Shannon’s 
fundamental paper “Mathematical theory of communication” from 1948. Another 
expression of the probability of undetected error of C is 
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is the MacWilliams transformation [19, Ch. 2]. When C is linear (3.2) leads to 
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Here {Bi, 0 ≤ i ≤ n} is the weight distribution of the dual code C⊥ . 
Suppose C is a linear code of dimension k. Any k × n matrix, the rows of which 

form a basis in C, is called a generator matrix of C. In error detection with C, one 
standard way to check if the received vector is a codeword or not, is to compute its 
scalar product with a specified generator matrix of C⊥ . This product equals zero if 
and only if the vector is a codeword.  

Remark 3. In recent years the problem of making a fast decision if a vector is 
a codeword or not, has become still more important in connection with large data 
bases encoded and stored in computers. For different reasons we have to make a 
fast decision if the information stored has not been substantially corrupted. To 
check for every single vector if it is a codeword or not, might be expensive. For this 
reason in some situations we are content with answers of the type “75% of the 
information is not destroyed” with sufficiently high probability of being true, if only 
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quick efficient algorithms exist for such answers. These randomized algorithms and 
codes, for which efficient randomized algorithms exist, are called locally testable 
codes. Nowadays just a few codes are known to be locally testable. Among these 
are the shortened first-order Reed-Muller codes and the Reed-Muller codes of 
constant order. 

4. Good and proper codes 

For a channel with symbol error probability ε, the most appropriate for error 
detection would be code C with the smallest possible value of Pue(C, ε). It is 
difficult, however, to find such a code, since no efficient method for such search 
exists. Furthermore, the symbol error probability ε of the channel is often not 
known exactly and a code found to be best for some ε may be completely 
inappropriate for the real channel. It is reasonable in these situations to use codes, 
which are good or proper. C is good for error detection if 

(4.1) 
ue ue

1 1( , ) , ( 1), 0 ,n kq qP C P C q q
q q

ε ε−⎛ ⎞− −
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⎝ ⎠
 

and C is proper if Pue(C, ε) is an increasing function of ε ∈ [0, (q – 1)/q]. Thus a 
good code performs in any channel at least as well as it does in the worst channel 
with ε = (q – 1)/q, and a proper code is just a good code with the advantage that it 
performs better in better channels. In fact, in the first decades of the foundation of 
Coding Theory (4.1) this was believed to be true for any linear code, but examples 
later disproved this. 

W o l f, M i c h e l s o n and L e v e s q u e [20] found the average of Pue(C, ε) over 
all q-ary linear codes of length n and dimension k. The result is an increasing 
function 

Pue(ε) = q–(n–k)[1 – (1 – ε)k]. 
Thus a hypothetical “average” [n, k]q code would be proper, and in this sense a 
proper code just imitates an “average” error detecting code. This is another strong 
reason to prefer a proper error detecting code to a non-proper one in situations, 
where it is impossible to find an optimal code (following the rule to keep to the 
average, if nothing better can be done). 

The concepts of a good and a proper code have been introduced in 1979 [18]. 
After this, until 1995, when the first monograph on error detecting codes appeared 
[17], just a few codes have been studied regarding properness and goodness. 
Among them are the so called Maximum Distance Separable (MDS) codes, shown 
to be proper in 1984 [15]. 

5. Study of block codes with respect to goodness and properness 

To find out if a single code is proper, good, or non-good, we can use computer 
graphs or numerical methods for the study of the polynomial representing the 
undetected error probability. Below the graph of the normed probability of code C 
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is shown, which is dual to [819, 12, 384]2 Delsarte-Goethals cyclic code. The code 
is long and has high dimension, so one can expect nice properties. Indeed, 
considering the picture, this code is proper. However, a proper scaling reveals 
another picture, see Fig. 2. In fact C is a member of a parametric subclass of non-
good Delsarte-Goethals cyclic codes, as shown in [14]: 

1

( , )( , ) .
2 (2 1)n k

P CP C εε −=
−

. 

 
Fig. 4. The normed function P(C, ε) 

It becomes much more complicated when we want to investigate parametric 
families of codes regarding properness and goodness. Below we will present 
sufficient conditions for goodness or properness, which have shown to be efficient 
in the study of parametric families of block codes, together with some applications. 
Some conditions are expressed in terms of basic code parameters and may involve 
the so called extended binomial moments of the code, others are analytic. It should 
be mentioned, however, that so far the analytic study of the undetected error 
probability function for families of codes has shown to be efficient only in a small 
number of cases. 

The extended binomial moments of a linear [n, k, d]q code C are synonymously 
related to its weight distribution {A0, . . . , An} and are defined as [2] 

A0
* = 0, ( )*

1 ( )

,
l

i

l i
i i

l
A A

n=

= ∑   l = 1, 2, …, n, 

where j(i) denotes the i-th factorial moment j(j – 1) … (j – i + 1) of j. In [2, 4, 5], the 
extended binomial moments have been used to study the undetected error 
probability function, in particular, to obtain discrete sufficient conditions for 
properness and goodness. 
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Fig. 5. A scaled picture shows that C is not good 

6. Sufficient conditions for properness and goodness and in terms of 
the weight distribution and basic code parameters 

As mentioned in Section 4, the MDS codes have been shown to be proper in [15]. A 
MDS code is a linear code which is distance optimal, i.e., it has the largest code 
distance among the linear codes with the same length and dimension. Its dual code 
is MDS as well. Moreover, a linear code of length n is MDS, if and only if its code 
distance d and the dual code distance d⊥ satisfy d + d⊥ = n + 2. Also, for any       
non-MDS code, we have d + d⊥ ≤ n. The next two theorems present sufficient 
conditions for properness and goodness of linear non MDS codes [4, 5, 2]. 

Theorem 6.1. Let C be a [n, k, d]q linear code with d + d⊥ ≤ n. Then: 
(i) if the extended binomial moments of C satisfy 

(6.1) A l
 * ≥ qA l

 *
–1, l = d + 1, …, n – d⊥ + 1,  

then C is proper; 
(ii) if the extended binomial moments of the dual code satisfy 

(6.2) Bn
*
–l ≥ qB n

*
–l+1 – qn–k–1(q – 1), l = d + 1, …, n – d⊥ + 1, 

then C is proper. 

The extended binomial moments of a linear code are strictly increasing so that 
(6.1) is just a condition on the rate of increase. Though (6.1) and (6.2) are 
equivalent, (6.2) is more efficient in situations where the dual code distance or the 
number of non-zero weights in the dual code are small. 

Theorem 6.2. Let C be an [n, k, d]q code with d + d⊥ ≤ n. Then: 
(i) if the extended binomial moments of C satisfy 
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(6.3) Al
*q–l ≤ q–n(qk – 1), l = d, …,  n – d⊥, 

then C is good; 
(ii) if the extended binomial moments of the dual code satisfy 

(6.4) q–n+lBn
*
–l ≤ q–k – q–n–k+l, l = d, …,  n – d⊥, 

then C is good. 
As above, the dual conditions in (6.4) are more efficient in situations, where 

the dual code distance or the number of non-zero weights in the dual code are small. 

Applications. The MDS codes are distance optimal and proper. Next in 
optimality are Near MDS (NMDS) codes, then the Maximum Minimum Distance 
(MMD) codes. The dual of an NMDS code is NMDS as well. Many NMDS codes 
turn out to be proper, by Theorem 6.1; some are good − by Theorem 6.2 [3], [8]. 
The MMD codes and their duals turn out to be proper [6], [1]. All unique optimal 
binary linear codes of dimension at most seven and their dual codes are proper [11]. 
Also, many Cyclic Redundancy-Check codes (CRC) are proper or good, by the 
above theorems, but some standardized such codes are non-good [16]. 

7. Sufficient conditions for properness in terms of basic parameters 

Computation of the weight distribution of a liner code is an NP hard problem. As a 
result, relatively few codes are known with their weight distribution. For this 
reason, to have sufficient conditions for properness, not involving the code weight 
distribution, would be very useful. 

Theorem 7.1. Suppose C is a q-ary linear code of length n, code distance d 
and dual code distance d . If 

max(dd⊥) ≥ [n(q – 1) + 1]/q, 

then both C and its dual code are proper [13]. 
Applications. Parametric families of Griesmer codes turn out to satisfy the 

above theorem [12, 13]. A Griesmer code is a linear code which is length optimal, 
i.e., it has the smallest length among the linear codes with the same dimension and 
code distance. 

8. Properness and goodness in intervals 

In our work we have often encountered codes, for which the probability of 
undetected error has extrema in a relatively small interval [0, a], and then becomes 
an increasing function up to the endpoint ε = ( q –  1)/q. We call such a code proper 
in [a, (q – 1)/q]. The following results have been shown in [13]. 

Theorem 8.1. Let C be a q-ary linear code of length n and dual code distance 
d . If 

(8.1) ( 1) 2 ( 1) 1
1

n q n qd
q q

⊥− + − +
≤ ≤

+
, 



 11 

then C is proper in the interval 

(8.2) ( 1) 1 1,
1( 1) 1

1

n q d q q
d qn q d q
q

⊥

⊥
⊥

⎡ ⎤
⎢ ⎥− − + −⎢ ⎥

−⎢ ⎥− − + +⎢ ⎥−⎣ ⎦

. 

Corollary. Suppose the condition of Theorem (8.1) holds. If also 

(8.3) ( 1) 1
1( 1) 1

1

n q d q d
d nn q d q
q

⊥

⊥
⊥

− − +
≤

−
− − + +

−

. 

then C is proper. 
Applications. The above Theorem 8.1 and its Corollary turn out to work well 

for parametric families of Griesmer codes, see [12, 13]. In all examples of interval 
then C is proper in the interval properness considered in these works the codes are 
also asymptotically proper and have small redundancy. Since codes with small 
redundancy are intensely used in error detection, such examples might be of 
practical interest. 

9. Analytic methods 

Unfortunately, at the present time we are not aware of routine analytic methods for 
the study of parametric polynomials representing the undetected error probability of 
parametric families of codes, and development of such methods would of course be 
a challenge. 

Below we present two theorems, which are obtained by analytic study of the 
undetected error probability function. 

Theorem 9.1 [10]. A binary block code of length n and code distance d with 

2
n nd −

≥  and symmetric distance distribution (Ai = An–i) is proper. 

Theorem 9.2 [7]. Let C be a linear [n, k, d]q code and assume that for some           
ε0 ∈ (0, (q – 1)/q) we have 
(9.1)  ( )

ue 0
( , ) .n kP C qε − −≥  

Then C⊥ is not good. 

Applications. Theorem 9.1 was used in [10] and to snow that some Kerdock 
codes and the Preparata codes are proper. These are perhaps the first examples of 
proper non-linear block codes. The Kerdock and the Preparata codes seem to be of a 
permanent theoretical appeal because of their interesting algebraic-combinatorial 
properties. Also, it follows from Theorem 9.1, that binary self-complementary 
block codes, linear and non-linear, which satisfy the so called Grey Rankin bound 
are proper. 
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A code for which (9.1) holds, is called ugly. Obviously, an ugly code is non-
good. According to theorem 9.2 when a code is ugly, its dual is non-good. We made 
use of this result in [7], where a full classification is given with respect to 
properness and goodness of a parametric class of q-ary cyclic codes and their dual 
codes. 

10. List of proper codes 

More details regarding the list below can be found in [9]: 

All Perfect codes over finite fields; 
Some Reed-Muller codes; 
Some BCH codes; 
The MDS codes; 
The MMD codes and their duals; 
Some NMDS codes; 
Some CRC codes; 
Some Griesmer codes; 
The unique optimal binary codes of dimension at most seven and their dual 

codes. 

11. Open problems 

There are many interesting questions related to good and proper codes. We will 
mention two of them. 

Claude Shannon proved that codes exist for reliable transmission of information 
at any rate below the channel capacity, but did not provide a construction of an 
optimal code. Even today, it is not known what an optimal code looks like. Instead, 
the efforts are devoted to the search for codes, for which the performance in error 
control is efficient in one sense or another. As a result, codes may be optimal in 
many different ways. Of greatest interest are the codes, whose parameters are in 
some sense extremal, like the MDS and Griesmer codes. 

Our studies have shown that many linear codes, which are optimal in some 
sense, or close to optimal, are also proper, and most often their dual codes are 
proper, too. It is natural to ask if properness and optimality are closely related 
properties. If so, what kind of relationship would this be? 

Another interesting question is to compare the error detecting performance of a 
proper code with the performance of an “average” code. In the case of binary linear 
codes our experience shows that a proper code is never worse than an “average” 
code. If this was general, it would have a strong impact on the theory and practice 
in communications. 
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