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Abstract: The problem of deriving necessary and sufficient conditions for positive
definiteness of a Homogeneous Matrix Polynomial (HMP) defined on the unit
simplex is considered. The obtained results clearly indicate the superiority of the
proposed here solution approach over a classical theorem, which can be viewed as
a particular case of them. The main results are applicable for the solution of the
stability analysis problem for a class of uncertain linear systems. It is shown that
the proved exact conditions generalize and improve (in sense of conservatism
reduction) two recent results, aimed at solving the same problem. The presented
approach isillustrated by a comparative numerical example.
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1. Introduction

Stability analysis of linear systems subjected to structured real parametric
uncertainty, belonging to a compact vector set, has been recognised as a key issue
in the analysis of control systems. Usually, a quadratic in the state candidate for a
LF is postulated, which is either fixed (quadratic stability), or parameter dependent
(robust stability). Quadratic stability approaches lead to conservative results,
especially if the uncertainty is known to be constant. On the other hand, robust
stability cannot be directly assessed, using convex optimization. In order to reduce
the gap between quadratic and robust stability, attempts for reducing the
conservatism of LMI methods have been made for more than a decade. Aimed at
going beyond parameter-independent LFs, LMI techniques were proposed to derive
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quadratic in the state candidates for Lyapunov functions, which are affine [6, 7, 14],
quadratic [1] and recently polynomial [2, 4, 9, 13, 17], in the uncertain parameter.
Robust stability is verified through convex optimization problems formulated in
terms of parameterized LMlIs, which can be efficiently solved by polynomial-time
algorithms. An important result, derived in [3], paved the way to necessary robust
stability conditions via homogeneous matrix polynomials (HMPs). More accurate
results have been obtained at expense of increased computational effort.

The stability analysis of uncertain linear systems is based mainly on the
powerful Lyapunov’s second method. It has been proved in [4], that this problem
reduces to the determination of non-conservative conditions for positive
definiteness of a uncertain HMP, in this case. Therefore, this becomes a problem of
outstanding importance.

The objective of this research is to find computable, less conservative, relaxed,
necessary and sufficient conditions for positive definiteness of a given HMP, in a
case when the uncertain vector & belongs to the unit simplex. It is actually
motivated by several recently obtained results [6, 7, 13, 14], aimed at solving the
stability analysis problem, which exhibit some common shortcomings (sources of
conservatism). The main contributions are: (i) a based on the theory of M-matrices,
new necessary and sufficient condition for positive definiteness of a HMP of degree
two is obtained (Theorem 3), (ii) aimed at taking some additional advantage from
the fact that ¢ is a nonnegative vector, some or all pairwise inequalities between
its entries are also considered, which results in new alternative necessary and
sufficient conditions (Theorems 4, 5 and 7) for positive definiteness of a HMP and
stability of a polytopic system, and (iii) three generalizing conditions (Lemmas 1
and 2), proved to be less conservative in comparison with the available ones, are
obtained. Contrary to the usual practice, the proposed approach takes into account
the contribution of each term of the HMP to the overall positive definiteness,
reflecting adequately the various relations between its coefficients.

2. Preliminaries, previous results, open problems

The following notations will be used in the sequel. N is the set of positive integers
and N, denotes a set of X positive integers. The i-th eigenvalue of a matrix X

is 4,(X). The notations A> (=)0 and a > 0 indicate that A is a positive (semi-)
definite matrix and a is a positive vector, A=[a;]€eR, and a=(a)e R"
denote real n x n matrix and N x 1 vector with entries &; and &, respectively. The
sum of N nonnegative scalars a is |a|. Define also the vector sets
X, ={xeR": X'x=1} and @\ ={a =() e R" :|o| =1}.

Consider a HMP in « €O of an arbitrary integer degree k > 1

(k+N-D! o

with y(K) = KN D) 1, symmetric matrix coefficients given by
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(1) (e, k)= Zalk‘arz...akNP eR .

st N kK, .k n

Since |05|OI =1, d=0,1,..., then the HMP (1) can be equivalently represented
as a HMP of degree d+k with y(k+d) symmetric matrix coefficients

(e, k)=TI(a, k+d)= |05|d IM(a, k)=

(2) _ 2(ced)
= Z a“a ..o P = Z all eR ,
Wl 2 N KKk ~ n
where 07, and II,, |=1,..,y(k+d), denote the lexically ordered monomial

a]k‘ afz ...a:‘“‘ and matrix coefficient I5kk k| =k +d, respectively. Let k+d =

s
.k
127N

27 , which makes possible to write
(3) H(a, k) =(a,20)= D, aall,

o o ij
<
"JENz(r)’I_]

where o_zi =a:'a;2...a;“, r|=r, i=1,2,..., y(r), denotes the i-th monomial of

degree 7, and obviously, @, = ¢;@; and I1, = TI;;, for some subscripts |, i and j.

ij »
Define the real uncertain scalar
@)  f(a,7,x)=x"TI(a, kK)x=X"TI(a, 27)X = Z 07i07j Cii (X), XeXx,,

. i
"JEsz’I_]

where C (X) = X'TT x and the uncertain vector
ij ij

a = )y eR*), a= aflaf...a;” , |T| =7,i=12,., y(1),
containing all monomials of degree 7. Then, (4) can be rewritten in a quadratic
(with respect to ¢, ) compact matrix form as

(5) f(a,7,X) =(7VTC(X)§V , C(¥) =[c;(¥)]eR

x(7) >
- L i=]
G (X)= 7T, G (%), T = {0‘5’ i £ | )
where the symmetric matrix C(X) is said to be a Coefficient Matrix (CM) for the
uncertain Homogeneous Scalar Polynomial (HSP) f (e, 7, X).

It is desired to derive conditions under which the HMP in (3) is positive
definite on the compact vector set @, i.e., I1(a, K) contains only positive definite
matrices, or equivalently, the strict scalar inequality
(6) f(a,7,X) >0 Va e o, VXeX,,
holds. Next, consider the following important result concerning the analysis of
symmetric HMPs defined on @, obtained in [16].
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Theorem 1. Let a given HMP in (1) be positive definite. There exists some
sufficiently large integer d°, such that for all d>d" all y(k+d) matrix
coefficients of the HMP in (2) are positive definite.

This result generalizes the famous Polya’s theorem [8] for the case of HMPs.
It is based on the derived in [12] lower bound for d, which is proven to be tighter
than all previously obtained ones and representing an asymptotically exact
condition, it provides a systematic way to decide whether a given HMP is positive
definite. Unfortunately, this result is a very conservative one with respect to
sufficiency due to the following reasons. It follows that the above stated problem

has a solution if and only if for some d all coefficients Cij (x)=x" Fi’j X of the HSP

f(a, 7, X) are positive for all Xe X, . It is clear that the scalar inequality in (6)

may hold even if some coefficients are not positive definite.

This paper is devoted to the problem of deriving relaxed necessary and
sufficient condition for the validity of (6), and is intended to improve and generalize
Theorem 1.

3. Relaxed analysis for HMPS
3.1.Case k = 2

In this special case, y(2)=0.5N(N —-1), y(1)= N ; the HMP in (1) and the HSP in
(5) can be represented respectively for d = 0, as follows:
N

7 (e,2)=11(, 27) = aall ,
(7 ) inj'l”
(8) f(a,1,%)=a'C¥a, C(X) =[¢;(X)]eRy.

Let L denotes the set of real N x N matrices with nonpositive off-diagonal
entries. The set of M-matrices consists of all matrices M € L, which are positive

stable and is denoted M. The next theorem presents some of the numerous
properties of the matrix set M.

Theorem 2 [10, 11]. A matrix M € M if and only if the following equivalent
statements hold: (s1) M has an eigenvectorax € W, , the corresponding to it

eigenvalue A is real and such that 0 <A <ReA (M),i=1,...,N; (s2) M ! exists

and its entries are nonnegative (nonnegative matrix); (s3) there exists a vector
S >0, such that M f > 0; (s4) there exists a positive diagonal matrix D, such that

MT™D + DM> 0.

Positive definiteness of the CM C(X) in (5) is only a sufficient condition for
robust stability. The next result states that under some assumption, it becomes a
necessary one, as well.

Theorem 3. Suppose that MC(x)eL VX, M € M. The following statements
are equivalent: (i) the HMP in (7) is positive definite; (ii) for any X, there exists
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a vector £ (X) > 0, such that C(x) £ (x) > 0; (iii) C(X) is a positive definite CM for
all x.

Proof. Let (i) holds, i.e., II(er, 2) is positive definite on W . In accordance
with the assumption that MC(X)e L VX, and Theorem 2, (s1), there exists some
vector a(X) € W, such that MC(X)a(X) = A(X)a(X) VX. It follows that,

Cx)a(X) = AX) M a(X) and a"(x) C(x) a(X) = A(X) a"(x) M ™" a(x) >0,
where M7 is a non-negative matrix (Theorem 2, (s2)). The scalar
a'(X) M a(X) is positive, then A(X)is also positive, by necessity, and
MC(x)eM VX or equivalently, MC(X)f(X)>0 VX for some A(X) > 0
(Theorem 2, (s3)) and (ii) follows, since M ™' [ MC(X)f(X)]=C(X)5(X)>0.
If (ii) holds, i.e.,
COOM™™MTB(x)=C(X)MTB(X) >0, B(X)>0 VX,
then, C(XYM" eM VX, since C(X)M" eL VX. For any diagonal matrix D > 0,
matrix K'(X)=D"'C(Xx)M'D € M. In accordance with Theorem 2, (s4), there
exist ~some  diagonal  matrices D*(X)>0andD >0, such that
D'(X)KT(X)D(x) + D(X)K(Xx)D™'(x) >0 VX, i.e.,
Z {[D (XD 'C(X)D"(X)][D(X)M "DD(X)] +
+[D(X)DMD(X)][D"'(X)C(X)D'D'(x)]}z>0 Vze X

and M'D+DM >0. All eigenvalues of D' (X)C(x)D™'D'(x)are real and let
Z = ZX) be the eigenvector corresponding to the minimal one A(X). The above
scalar inequality becomes:
A(X)Z" (X)[D(X)(M "D + DM )D(x)]2(x) > 0
VX= A(X) = ﬂmm[C(x)f)(x)] >0,Vx < C(X)>0 VX,

where D(x)=[DD?(x)]"is a positive diagonal matrix. Finally, (iii) always implies
(1). m

This result shows also that under some assumptions statements (ii) and (iii) are
equivalent necessary and sufficient conditions for positive definiteness of a HMP of
degree two. From the theory of positive matrices it is known that (i) and (ii) are
valid only if C(X)eL VX. Due to Theorem 3, this assumption is not necessarily
required any more, in order to have statements (ii) and (iii) applicable for the
analysis of positive definiteness. Although a M-matrix is used for their proof, it is
not actually present in them.

Let a(S) denotes a vector with s > 2 arbitrarily selected entries frome . If

V(S) is the set of Sx 1 vectors with entries representing an arbitrary nondescending

sequence, then all possible systems of $!0.55(s-1) pairwise inequalities
a Saj, ai,al_ ea(s),i# ], are described by the set of ordered vectors
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a,(S) € V(S), p = 1,..., sl. For fixed N, the number of all possible distinct and

compatible monomial inequalities @ <a a , i <], ULV, ij #UV, is given by
i u v

u(s) = 0.5[s(s— )N +§(s—i)(s—i —1)+§§(s—i +1)(s=i)].

For any «,(S), the x(S) scalar inequalities imply £:(S) matrix inequalities
(dia; —a,,) Xy, £0, where X, =X
Consider the associated with & ,(S) € v(S) HMP

N N
©) Hp(aaz): zaiaj( Z:uijuv,pxijuv,p): Zaiajnij,pa

i,j=Li<j u,v=1L,U<V,uv#ij i,j=Li<j

iw.p= Xuwij.p =0 are arbitrary matrices.

p=1,...8
where 1, , =1, if ¢a; —a,a, <0, p,, , =—1, otherwise, and 14, , =0, if
the sign of the monomial difference is indefinite, due to S< N. Consider the HMP

N
(10) T (a.2)=T(a.2)+11 (a,2)= Y aa Iy, 1

ii=Li<]

ip = I +115 5,

p=1,...,s.
The next theorem provides an alternative necessary and sufficient robust
stability condition.

Theorem 4. The HMP in (7) is positive definite on W, if and only if for any
S > 2 there exist ! (S) parameter matrices in (9), such that all s! HMPs in (10)
are positive definite on W, .

Proof. Let II(«,2)> 0 Va € ®. In accordance with Theorem 1, there
exists some positive integer d, such that all coefficients of the HMP
|0{|d IM(,2) =TI(a,d +2) of degree d + 2 are positive definite. Then, the
following implication holds:

I (2,2)>0 Va, p<:>|a|de(a, 2)=II(a, d +2)+ﬁp(a, d+2)>0;
IM(a,d+2)>0 Va, p.

For any s > 2 and p, there always exist some appropriate ££(S) positive semi-
definite matrices in (9), such that all coefficients of the HMP|a|de(a, 2) are
positive definite matrices, which guarantees that Hp(a, 2)>0 Va, p.

Let the converse be true, i.e., Hp(a, 2)>0 Va, p, and consider an arbitrary

vector & . For any s > 2, there exists some vector &, (S), such that the S common
entries of « and ap(S) represent one and the same nondescending sequence.
Having in mind (3) and (4), one has
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f[p(a, 2)<0=0<TI (,2)<I(a,2)
for this particular ¢, but since it has been arbitrarily chosen, it follows
that I1(«, 2)>0 V « , and inequality (2) holds. m
In other words, the function f (e, 1, X) is a positive if and only if there exist
s! 1(S) matrices in (8), such that

(an f(a,1,X)+ xT[pr((x, 2)]x= XTHp(a, 2)x=a"[C(X)+ Cp(x)]a = aTCp(X)a >0
va, X, p,

where CNZp(X) andC,(X), p=1,..., 8!, are the CMs for the HMPs in (9) and (10),

respectively. If s =1, then, V(1)=@, p(l)=0and (11) reduces to the trivial
condition f(a,1,Xx) >0.
Consider an arbitrary matrix coefficient defined in (10) and denote
I =0 +IT" +I ;1" = > X >0,
1] 1],p 1,p y ) 1juv, p

.
1I,p 1I,p

ijuw,p

=— > X <0,i<j,p=1l..sl.
| liwp

o

I
ij.p _

ijw,p ™

Remark 1. For any ¢, (S) , one has z4;,, , = —£4,; ,- This means that all sums

I

i.po i < j,are composed of distinct matrices (the same refers to all IT; ;) since,

if g4, , =1, then X;,,  participates only in the sum H;},p and it appears only

once more time, but now as — X -X in the sum II, . Respective

wij,p ijuv,p 2

conclusions are made when £z, , =—1.

Theorems 4 and 5 give rise to the following new robust stability conditions.

Lemma 1. For an integer S > 2 and S! x(S) parameter matrices in (8) the
following statements are distinct sufficient conditions for validity of the inequality
in (11):

. . . . N
(i) there exist s! M-matrices M , and positive vectors B, = (S, ,) €R", such

that
MpCp(x) el, VX Cp(x)ﬂp >0,VX, p=1,...,S! <
(12) N .
S j:lezi 'B,-,p(”ijnu,p) >0,i=1,..,N, p=1,...,sl;
(i1) there exist sl0.5N(N+1) scalars C; |, , such that
(13) c”_,p(x)ZCij,p X, 1< ; Cp =[cij’p]>0, p=1,..,s.

P r o o f. The proof of the first statement follows easily from Theorem 3, (ii),
and Theorem 4. If (13) holds, then inequality (5) is wvalid, since

0< aTCpa <a'C(X)a Va,X p. m
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As the dimension of the selected vector a(S) increases, one obtains more and

more relaxed conditions and the maximal effect is achieved when the whole vector
o 1s selected, i.e., for s= N. The next lemma states a condition, which eliminates
the awkward dependence of all CMs in (5) on vector X.

Lemma 2. Let «, denotes the minimal entry of the p-th ordered
vectora,(N), p = 1,...,N!. Consider the N!z(N) parameter matrices in (9),
chosen for any p, as follows:

(14) ~I1" =I1 +IT" ,if I1_+I1" >0=c (X)=c =0, i<]j,
1I,p ] 1],p ] 1I,p 1,p 1,p
T = + + >
(15) Hij’p H”_ +Hij’p imm(Hij +H”_)I =20,
if /1mm(rlij +Hij,p)=Cij,p <0:>c”_’p(x)=cijﬂp <0, 1<,
(16) =I5, =10 + 1015, = A, (T + 1)1 2 0=

c”p(x)z/i _ (Hii +H;p):ciip Vigm

‘min

For this choice, (11) holds if and only if C =[c; ;] > 0 Vp, where

0.5N(N+1)—1 of the entries of Cp are defined in (14), (15) and (16) and
p =ﬂmin(nmm+n:—rm,p) Vp

P r o o f. Having in mind Remark 1, all equalities in (14), (15) and (16) are
possible, since s= N, and 4, , = - #0 Vp. Forany p, the entries of the CM

uvij, p

Cp(X) are equal to some scalars C except for the entry

ij,p >
_ T + . _ . — _ .
Cmn,p(x)—x (Hnm-l—Hmp)x, since 4 =1Vuyv, ie., Hmp—O Vp. Taking

Com,p @ above is obligatory, since C,,,(X) = C o Vvp, is an admissible case.

Then, inequality (11) holds if and only if aTCpa >0 Va, p, which is a necessary

and sufficient condition for positive definiteness of the considered HMP, due to
Theorem 4. Finally, from Theorem 3, (iii), it follows that this condition is
equivalent to Cp >0 Vp, since Cp eLVp.m

3.2. Positive definite HMP of arbitrary degree k

A monomial @ = @a; of an arbitrary even degree is said to be even if i =],
otherwise it called an odd one. Consider the £ even monomials of variable degree

2|r

, given by

-1
rl=0.Lr =1, => z(r).

[r[=0
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Any scalar inequality; <aj,i# |, ,a; € a(S), implies £ monomial
inequalities of the form

(17) G oM =a'<d aa’ =aa;f,g,heN ,g=h,
fij h g 2(7)

f
where }/=2r—2|r|—1=1, 3,5,..,2r—1and &f, &h, &g are some monomials of

degree 7.
Any vector &,(S) € V(S) defines 4= 0.55(s — 1) pairwise inequalities (17).

Finally, all s! vectors ap(s) determine S! , systems of such monomial inequalities,

which correspond to all possible sets of pairwise inequalities involving the entries
of vector &(S). For a given & ,(S) € V(S) any odd monomial in (17) serves as an

upper bound for at least one even monomial, i.e.,
18 a’<aa;feN <N >1,g=h
(18) g’ 0 o 97N,

r]Q
and any even monomial is a lower bound for at least one odd monomial.
For a given s, consider the associated with some vector & ,(S) € V(S) HMP of

degree 27
y _ =2 = = 2 e —
(19) T (a.27)= > @ -aa)X eR:a'<ad.p=12..s,

f.g,heN h P "
.heN 9=

with g arbitrary positive semidefinite matrix coefficients X Assume that N

fgh,p -
of the even monomials in (2) are lexically ordered as
follows:o_zi2 =ai2T, i=1,2,.,N. For ¢ > 1, any of the rest y(r)—N even

monomials can be represented as a product of two distinct monomials of degree z,
1.e., O_ttz =a,a, u,veN o’ which makes possible the definition of the HMP
x(r

~ 2(z) _ o
(20) I (a.27)= > (atz—auav)th’OszeRn Va,p=1,2,..,5!,

t=N+1 u,veN JU#V
x(7)

with y(7) — N arbitrary symmetric matrix coefficients. Consider the HMP

21) 0 (a,27)= (e, 27) + ﬁp(a, 27) + ﬁOp(“= 27) =
= > @all,p=L2,..,sl,
ijeN <] b

where Il(a,27r) is defined in (3), the associated with it Homogeneous Scalar

Polynomial (HSP) in & and Xe X,
— T _ ==
h (.20, =XT1 (a, 20)x= )3 aac (%,
(22) I,]ENI(T),ISJ
=X = !
cij,p(x) XHi,-,pX’ p=12,..,59!,

and the HSP in
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2 h (a,27)= Zac ;c | < =1,2,..., 8!
(23) (@, 27) i’jENZMaiajc‘”,p, c I<I . p=L2..sl,

2(0)7 "

where I

ij.pdenotes the respective symmetric matrix coefficient of the HMP in

(21), corresponding to the monomial &;&; and vector &,(S) € V(S). Consider the

quadratic in ¢, matrix representation of the p-th HSP in (10)

(24) h(a2r)=a/Ca, C =C'eR p=1,2,..,s.

20
The entries of the CM C are the y(27) scalar valued coefficients of the
HSP in (23).

Theorem 5. Consider a given HMP (1) of arbitrary degree. The following
statements are equivalent:
(a) there exist scalars d and S, such that

d+k=27,1<S<N, Sl[g,+ y(r)— N] parameter matrices in (19) and (20)
and 8l 7(27) scalars C; ,defined in (23), such that all s! CMs in (24) are positive
definite;

(b) TI(a, K) is a positive definite HMP.

Pr oof. Let assertion (a) holds. Consider an arbitrary given vector & € @y .

For any s 2> 1, there exists some subscript p, such that the Scommon entries of the
vectors « and ap(S) e V(S)represent one and the same sequence of non-

descending scalars. Having in mind (1), (2), (3) and the HMPs in (19), (20) and
(21), the following matrix and scalar inequalities are valid:

(e, k) =Tl(a, 27) > Hp(a, 27) & hp(a, 27, X) > hp (a,27) =5VTCP&V VXeX,.
Since all CMs are positive definite by assumption and vector & has been
arbitrarily chosen, it follows that (1) is a positive definite HMP. In the special case
when s = 1, thenv(l)is an empty set, x,= 0 and Il(a,k)= I (a,27)=
=11(e, 2r)+H01(a, 27). Positive definiteness of the single CM C, is a sufficient
condition for positive definiteness of the HMP. This proves (a) = (b).

Let (b) be valid. According to Theorem 1, there exists some d, such that
all y(2r) matrix coefficients II;in (3) are positive definite. Let

=0 Vp=1, 2,...,S!, in this case. It will be shown that (a) holds for arbitrary

tuv,0 p

integer S. Let s= 1. Then, there always exist some appropriate scalars C; , in (23),

such that C,is a positive definite CM. If s > 1, consider an arbitrary vector

a,(S) € V(S) and the associated with it monomial inequality in (18), which implies
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Let the coefficient matrices in (19) are chosen, such that I ohp = 11g, for all
subscript pairs (g, h) in (18). This choice guarantees that € (S) (number of distinct
odd monomials in (17)) matrix coefficients in (21) become
I I

matrix coefficients are [Ty ;> Tl . The rest of the yQ2r)- 00(5) + 06(5) ] matrix

Iy, = 0, and BC(S) (number of distinct even monomials in (17))

gh,p — lghp T

coefficients are not affected and hence they remain positive definite. For a given S,
the integers 6 (S) and 6 (S) are fixed for all p = 1, 2,..., Sl. There always exist

some appropriate scalars C; ,, such that the respective p-th CM is a positive

definite one. The vector ap(S) has been arbitrarily chosen, which proves that
(b)=(a) forany S. m

Theorem 4 can be viewed as a generalization of Theorem 1, which overcomes
its most important shortcoming — the unnecessarily hard requirement for positive
definiteness of all matrix coefficients in (2). At the same time, the equivalence of
the necessary and sufficient conditions (6) and (11) for positive definiteness of a
given HMP of arbitrary degree revealed by Theorem 4 makes possible to achieve
flexibility by means of an appropriate choice for the parameter matrices in (19) and
(20). Next, it will be shown how these facts become very important for getting

relaxed exact solution conditions when the discussed below application problem is
faced.

4. Application: Exact stability conditions for uncertain systems

Consider the uncertain linear system
N
x=Aa)Xx, Ala)= ZaiA eR,, aem,,
i-1

where all matrices A are fixed and Hurwitz (negative stable). The stability analysis

problem for this class of uncertain systems is: determine necessary and sufficient
conditions, under which the polytope A = {A(r): & € ® } contains only Hurwitz

matrices.

Theorem 6 [15]. The following statements are equivalent:
(a) A is a Hurwitz polytope;
(b) there exists a HMP Il(e, S)e Rn in (1) of degree S<S=b+],

b=0.5n(n- 1) such that
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(25) (e, k) =—{A" (0)[1(, 5) + (e, ) A(x)} >0 Vx € ®y.

The significance of this result, proved by means of the fundamental result
obtained in [5], consists in the determination of a tighter, than some previously
derived, upper bound for the degree S of the HMP, via which the robust stability of
a given polytopic system can be analyzed. E.g., this bound was determined as
S=b+n in [4] for HMPs and S=2nNin [9], or S=b+ n-1 in [17] for general
matrix polynomials. Theorem 6 provides a necessary and sufficient condition for
stability of a class of uncertain systems, expressed in terms of the positive
definiteness of a HMP. Theorem 5 proposes a new relaxed asymptotically exact
condition via which it can be tested. The next theorem summarizes them.

Theorem 7. The following statements are equivalent:

(i) assertion (a) of Theorem 5, holds for the HMP Tl(e, k) in (25);

(i) A is a Hurwitz polytope.

P r oof. It is entirely based on Theorems 5 and 6 and due to self-evidence is
omitted.

Theorem 7 represents a generalization of two recent results presented below.

Theorem 8 [6, 7]. Let d=0 and s= 1. A HMP TIl(«, 1) of degree one assures

robust stability of A, i.e., validity of the matrix inequality in (25), if the single
CMC, in ( 24) is positive definite.

Theorem 9 [13]. The polytope A is Hurwitz stable if and only if there exist a
HMP TIl(a,s) and some sufficiently large integer d, such that all matrix

coefficients of the HMP |a'|d IT(a, k) are positive definite, where TI(e, K)denotes

the HMP in (25).

Although Theorem 7 and Theorem 9 provide distinct, but asymptotically
equivalent conditions, their sufficiency parts differ substantially. For one and the
same HMP TlI(«,s), via which the robust stability of A is analyzed, the stated
conditions are based on Theorems 5 and 1, respectively. Theorem 9 treats the
problem as the solution of a rather conservative set of, more all less isolated LMIs,
where only the sign of the coefficient matrices is significant. On the contrary,
Theorem 7 takes into account their lower bounds and the various relations between
them put in a Compact Matrix form (CM). It is clear that if robust stability of A is
concluded via Theorem 9, the same refers to Theorem 7, but not vice versa, since
all sl CMs may be positive definite, when some or even all matrix coefficients
IT , i< j, are not positive definite. Theorem 1 is based on the assumption that the

i

uncertainty vector is non negative, while Theorem 5 is aimed at taking some

additional advantage from this fact. Taking into account the presence of monomial

inequalities makes possible to get some relaxations. E.g., if IT , i< j, is a positive
i

ij.p = I for

the respective parameter matrix in (7), which leads to Hij . =0 and

semi-definite matrix, then this fact can be reflected by the choice X
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Hii .= IT +H; >TI1 , i.e., this approach reflects the contribution of each positive
semi-definite term ;;I1;to the overall HMPs positive definiteness. For
Xijp =

indefinite matrix.

i ~ Amin(P))I 20, an advantage is obtained, even if II;is a sign-

5. Numerical example

3
Example. Consider a polytope A and a HMP I(«, 1) = Z’Jozil'[i , described by the

i=1

vertices:
—-06895 4137 4728 -03276 03432 04836
A =|-980 -312 -0197], A =|-20280 -05616 02184,
—13.1990 —-13.987 -15.169 -1.9968 —-14976 —1.2480
—-0.7056 2.856 2.352
A =| -48496 —1344 -0224|;
-5.6000 -8.232 -—7.168
0.7880 0.1970 02955 0.1404 00312 00156
Hl =1 01970 05910 03940, sz 00312 0.0624 0.0312],
02955 03944 0.7880 00156 0.0312 0.0780

03864  0.0560 0.1120
IT; =| 00560 03920 0.2240].
0.1120 02240  0.3360

3
For d = 0 the HMP in (25) is II(«, 2)= Zaiajl_[ij and let 4; denotes the

ij=Li<j
minimal eigenvalue ofl_Iij.It is desired to find whether the HMP Il(«, 2) is

positive definite on the unit simplex.
The respective eigenvalues of the matrix coefficients are computed as:

A, =0.139626, 4,, =0.00172,
Ay =0.05448, 4, =0.02284, 4, =-0.001423, 1,, =-0.001998,
i.e., for d = 0, the polytope is not stable by Theorem 9. Consider the case when
s=1.
Since there does not exist a scalar C,; < A4,,, such that the single CM C, is
positive definite, the considered HMP does not assure robust stability, in
accordance with Theorem 8. Let S = 2 and «a(2)= (052 aa)T. For the single

parameter matrix in (19), chosen as X,;, = X,;, = X,; =I1,; = 45| , one gets

il 1 =H23 2123| s Ty, =Py + Xy Iy, = Py + X5

23 ,2
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Consider the two possible cases:
p=1 a,>2a, = a; Sa,a; = A, (I1;; ) = 0.0864 = 4;;, > A,;,

P=2. o, 2, = a; S, = A, (11,,,) =0.08137 = 4,,, > 4,,.

Let C,, =C,, =0< A4, . The respective CMs C1 and C2 are:

24, 0 A 24, 0 A
2C =] 0 24y Ay |>0:2C,=| 0 24, Ay |>0.

/113 223 2//{’33,1 /113 223 2/133

According to Theorem 7, A is robustly stable via the considered HMP
[1(e, 1) with d = 0. Robust stability by Theorem 9 has been concluded for d = 2.

This simple example illustrates the advantages of Theorem 7 over Theorems 8
and 9.
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