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Abstract: The problem of deriving necessary and sufficient conditions for positive 
definiteness of a Homogeneous Matrix Polynomial (HMP) defined on the unit 
simplex is considered. The obtained results clearly indicate the superiority of the 
proposed here solution approach over a classical theorem, which can be viewed as 
a particular case of them. The main results are applicable for the solution of the 
stability analysis problem for a class of uncertain linear systems. It is shown that 
the proved exact conditions generalize and improve (in sense of conservatism 
reduction) two recent results, aimed at solving the same problem. The presented 
approach is illustrated by a comparative numerical example. 
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1. Introduction 

Stability analysis of linear systems subjected to structured real parametric 
uncertainty, belonging to a compact vector set, has been recognised as a key issue 
in the analysis of control systems. Usually, a quadratic in the state candidate for a 
LF is postulated, which is either fixed (quadratic stability), or parameter dependent  
(robust stability). Quadratic stability approaches lead to conservative results, 
especially if the uncertainty is known to be constant. On the other hand, robust 
stability cannot be directly assessed, using convex optimization. In order to reduce 
the gap between quadratic and robust stability, attempts for reducing the 
conservatism of LMI methods have been made for more than a decade. Aimed at 
going beyond parameter-independent LFs, LMI techniques were proposed to derive 



 15 

quadratic in the state candidates for Lyapunov functions, which are affine [6, 7, 14], 
quadratic [1] and recently polynomial [2, 4, 9, 13, 17], in the uncertain parameter. 
Robust stability is verified through convex optimization problems formulated in 
terms of parameterized LMIs, which can be efficiently solved by polynomial-time 
algorithms. An important result, derived in [3], paved the way to necessary robust 
stability conditions via homogeneous matrix polynomials (HMPs). More accurate 
results have been obtained at expense of increased computational effort.  

The stability analysis of uncertain linear systems is based mainly on the 
powerful Lyapunov’s second method. It has been proved in [4], that this problem 
reduces to the determination of non-conservative conditions for positive 
definiteness of a uncertain HMP, in this case.  Therefore, this becomes a problem of 
outstanding importance.   

The objective of this research is to find computable, less conservative, relaxed, 
necessary and sufficient conditions for positive definiteness of a given HMP, in a 
case when the uncertain vector α  belongs to the unit simplex. It is actually 
motivated by several recently obtained results [6, 7, 13, 14], aimed at solving the 
stability analysis problem, which exhibit some common shortcomings (sources of 
conservatism). The main contributions are: (i) a based on the theory of M-matrices, 
new necessary and sufficient condition for positive definiteness of a HMP of degree 
two is obtained (Theorem 3), (ii) aimed at taking some additional advantage from 
the fact that α  is a nonnegative vector, some or all pairwise inequalities between 
its entries are also considered, which results in new alternative necessary and 
sufficient conditions (Theorems 4, 5 and 7) for positive definiteness of a HMP and 
stability of a polytopic system, and (iii) three generalizing  conditions (Lemmas 1 
and 2), proved to be less conservative in comparison with the available ones, are 
obtained. Contrary to the usual practice, the proposed approach takes into account 
the contribution of each term of the HMP to the overall positive definiteness, 
reflecting adequately the various relations between its coefficients.  

2. Preliminaries, previous results, open problems 

The following notations will be used in the sequel. N  is the set of positive integers 
and xN denotes a set of  x positive integers. The i-th eigenvalue of a matrix X 
is )(Xiλ . The notations 0)(≥>A  and a > 0 indicate that A is a positive (semi-) 

definite matrix and a is a positive vector, nijaA R∈= ][  and N
iaa R∈= )(  

denote real n × n matrix and N × 1 vector with entries ija  and ia , respectively. The 

sum of N nonnegative scalars is 
i

α α . Define also the vector sets 

nx ≡ T{ : 1}nx x x∈ =R  and Nω ≡ }1:)({ =∈= ααα N
i R .   

Consider a HMP in 
N

α ∈ω  of an arbitrary integer degree k > 1 

with ( 1)!( )
!( 1)!

k Nk
k N

χ + −
=

−
, 1!0 = , symmetric matrix coefficients given by 
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(1) 1 2

1 2
1 2 ...

( , ) ... .N

N

kk k

N k k k n
k k

k Pα α α α
=

Π = ∈∑ R  

Since 1, 0,1,...d dα = = , then the HMP (1) can be equivalently represented 
as a HMP of degree  d + k   with  ( )k dχ +  symmetric matrix coefficients 

(2) 
1 2

1 2

( )

1 2 ...
1

( , ) ( , ) ( , )

... ,N

N

d

k d
kk k

N k k k l l n
k k d l

k k d k

P
χ

α α α α

α α α α
+

= + =

Π = Π + = Π =

= = Π ∈∑ ∑ R
 

where lα
~  and lΠ , 1,..., ( )l k dχ= + , denote the lexically ordered monomial 

1 2

1 2
... N

kk k

N
α α α   and matrix coefficient 

1 2
...

N
k k k

P , dkk += , respectively. Let  k + d  = 

τ2 , which makes possible to write  
(3) 

( )
, ,

( , ) ( , 2 )
i j ij

i j i j
k

χ τ

α α τ α α
∈ ≤

Π = Π = Π∑
N

, 

where 1 2

1 2
... , , 1, 2,..., ( )N

i N
iττ τα α α α τ τ χ τ= = = , denotes the i-th monomial of 

degree τ , and obviously, lα
~  = jiαα  and lΠ  =  ijΠ , for some subscripts l, i and j.  

Define the real uncertain scalar 
(4) 

( )

T T

, ,

( , , ) ( , ) ( , 2 ) ( ),
i j ij

i j i j
f x x k x x x c x

χ τ

α τ α α τ α α
∈ ≤

= Π = Π = ∑
N

 nx x∈ ,  

where T( )
ij ij

c x x x= Π  and the uncertain vector 

T( )
v i

χ τα α= ∈ ( )R , 1 2

1 2
... , , 1, 2,..., ( )N

i N
iττ τα α α α τ τ χ τ= = = , 

containing all monomials of degree τ . Then, (4) can be rewritten in a quadratic 
(with respect to vα ) compact matrix form as 
(5) ( , , )f xα τ = T ( )

v v
C xα α , )()]([)( τχR∈= xcxC ij , 

⎩
⎨
⎧

≠
=

==
ji
ji

xcxc ijijijij ,5.0
,1

),(~)( ππ , 

where the symmetric matrix )(xC is said to be a Coefficient Matrix (CM) for the 
uncertain Homogeneous Scalar Polynomial (HSP) ( , , )f xα τ . 

It is desired to derive conditions under which the HMP in (3) is positive 
definite on the compact vector set Nω , i.e., ( , )kαΠ  contains only positive definite 
matrices, or equivalently, the  strict scalar inequality  
(6) ( , , )f xα τ  > 0 nN x x∈∀∈∀ ,ωα , 
holds. Next, consider the following important result concerning the analysis of 
symmetric HMPs defined on Nω , obtained in [16]. 
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Theorem 1. Let a given HMP in (1) be positive definite. There exists some 
sufficiently large integer *d , such that for all d *d≥  all ( )k dχ +  matrix 
coefficients of the HMP in (2) are positive definite. 

This result generalizes the famous Polya’s theorem [8] for the case of HMPs. 
It is based on the derived in [12] lower bound for d, which is proven to be tighter 
than all previously obtained ones and representing an asymptotically exact 
condition, it provides a systematic way to decide whether a given HMP is positive 
definite. Unfortunately, this result is a very conservative one with respect to 
sufficiency due to the following reasons. It follows that the above stated problem 
has a solution if and only if for some d all coefficients T( )

ij ij
c x x P x=  of the HSP 

( , , )f xα τ  are positive for all nx x∈ . It is clear that the scalar inequality in (6) 
may hold even if some coefficients are not positive definite.  

This paper is devoted to the problem of deriving relaxed necessary and 
sufficient condition for the validity of (6), and is intended to improve and generalize 
Theorem 1. 

3. Relaxed analysis for HMPS 
 
3.1. Case k  =  2 
 
In this special case, (2) 0.5 ( 1), (1)N N Nχ χ= − = ; the HMP in (1) and the HSP in 
(5)  can be represented respectively for  d  =  0, as follows: 

(7) 
, 1,

( , 2) ( , 2 )
N

i j ij
i j i j

α α τ α α
= ≤

Π = Π = Π∑ , 

(8) ( ,1, )f xα = T ( )C xα α , Nij xcxC R∈= )]([)( .  
Let L denotes the set of real N × N matrices with nonpositive off-diagonal 

entries. The set of M-matrices consists of all matrices ∈M  L, which are positive 
stable and is denoted M. The next theorem presents some of the numerous 
properties of the matrix set M. 

Theorem 2 [10, 11]. A matrix ∈M  M if and only if the following equivalent 
statements hold:  (s1) M has an eigenvector Nω∈α , the corresponding to it 

eigenvalueλ  is real and such that )(Re0 Miλλ ≤< , i = 1,…, N;  (s2) 1−M exists 
and its entries are nonnegative (nonnegative matrix);  (s3) there exists a vector        
β  > 0, such that M β  > 0;  (s4) there exists a positive diagonal matrix D, such that 

T 0.M D DM+ >  
Positive definiteness of the CM C(x) in (5) is only a sufficient condition for 

robust stability. The next result states that under some assumption, it becomes a 
necessary one, as well. 

Theorem 3. Suppose that MC(x)∈L  x∀ , ∈M  M.  The following statements 
are equivalent:  (i) the HMP in (7) is positive definite;  (ii)  for any x, there exists     



 18 

a vector β (x) > 0, such that C(x) β (x) > 0;   (iii) C(x) is a positive definite CM for    
all x. 

P r o o f. Let (i) holds, i.e., ( , 2)αΠ  is positive definite on Nω . In accordance 
with the assumption that MC(x)∈L x∀ , and Theorem 2, (s1), there exists some 
vector ∈)(xα Nω , such that MC(x) )(xα  = )()( xx αλ x∀ . It follows that, 

C(x) )(xα  = )(xλ 1−M )(xα  and T ( )xα C(x) )(xα  = )(xλ T ( )xα 1−M )(xα  > 0, 
where 1−M  is a non-negative matrix (Theorem 2, (s2)). The scalar 

)(xTα 1−M )(xα  is positive, then )(xλ is also positive, by necessity, and 
MC(x)∈M x∀  or equivalently, ( ) ( ) 0MC x xβ >  x∀  for some β (x) > 0    
(Theorem 2, (s3)) and (ii) follows, since 1−M [ ( ) ( )] ( ) ( ) 0MC x x C x xβ β= > .  

If (ii) holds, i.e., 
T T T( ) ( ) ( ) ( ) 0,C x M M x C x M xβ β− = > ( ) 0xβ > x∀ , 

then, T( )C x M ∈M x∀ , since T( )C x M ∈L x∀ . For any diagonal matrix D > 0, 
matrix T 1 T( ) ( )K x D C x M D−= ∈  M. In accordance with Theorem 2, (s4), there 

exist some diagonal matrices 0 and 0)(2 >> DxD , such that 
1 T 1( ) ( ) ( ) ( ) ( ) ( ) 0 ,D x K x D x D x K x D x x− −+ > ∀  i.e., 

T 1 1 1 T

1 1 1

{[ ( ) ( ) ( )][ ( ) ( )]
[ ( ) ( )][ ( ) ( ) ( )]} 0

N

z D x D C x D x D x M DD x
D x DMD x D x C x D D x z z

− − −

− − −

+

+ > ∀ ∈x
 

and T 0M D DM+ > . All eigenvalues of )()()( 111 xDDxCxD −−− are real and let        
z = z(x) be the eigenvector corresponding to the minimal one )(xλ . The above 
scalar inequality becomes: 

T T

min

( ) ( )[ ( )( ) ( )] ( ) 0
( ) [ ( ) ( )] 0, ( ) 0 ,

x z x D x M D DM D x z x
x x C x D x x C x x
λ

λ λ

+ >

∀ ⇒ = > ∀ ⇔ > ∀
 

where 2 1( ) [ ( )]D x DD x −= is a positive diagonal matrix. Finally, (iii) always implies 
(i). ■  

This result shows also that under some assumptions statements (ii) and (iii) are 
equivalent necessary and sufficient conditions for positive definiteness of a HMP of 
degree two. From the theory of positive matrices it is known that (i) and (ii) are 
valid only if C(x)∈L x∀ . Due to Theorem 3, this assumption is not necessarily 
required any more, in order to have statements (ii) and (iii) applicable for the 
analysis of positive definiteness. Although a M-matrix is used for their proof, it is 
not actually present in them.  

Let )(sα  denotes a vector with s 2≥  arbitrarily selected entries fromα . If 
)(sv  is the set of s × 1 vectors with entries representing an arbitrary nondescending 

sequence, then all possible systems of s!0.5s(s–1) pairwise inequalities 
, , ( ),

i j i j
s i jα α α α α≤ ∈ ≠ , are described by the set of ordered vectors 
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∈)(spα )(sv , p = 1,…, s!. For fixed N, the number of all possible distinct and 
compatible monomial inequalities , , ,

i j u v
i j u v ij uvα α α α≤ ≤ ≤ ≠ , is given by 

]))(1()1)(()1([5.0)(
2

0

1

2

1

∑ ∑∑
−

=

−

=

−

=

−+−+−−−+−=
s

i

s

k

s

ki
isisisisNsssµ . 

For any )(spα , the )(sµ  scalar inequalities imply )(sµ  matrix inequalities 

,0)( , ≤− pijuvvuji Xαααα where pijuvX , = 0, ≥puvijX  are arbitrary matrices. 

Consider the associated with ∈)(spα )(sv  HMP 

(9) ,~)()2,(~
,1,

,,
,,1,

,
,1,

∑∑∑
≤=≠≤=≤=

Π==Π
N

jiji
pijjipijuv

N

ijuvvuvu
pijuv

N

jiji
jip X ααµααα  

p = 1,…,s!  
where ,1, =pijuvµ  if ,0≤− vuji αααα ,1, −=pijuvµ  otherwise, and 0, =pijuvµ , if 
the sign of the monomial difference is indefinite, due to s < N. Consider the HMP 

(10) ( , 2) ( , 2) ( , 2)
p p
α α αΠ = Π +Π = pijijpij

N

jiji
pijji ,,

,1,
,

~, Π+Π=ΠΠ∑
≤=

αα , 

           p = 1,…,s!.  
The next theorem provides an alternative necessary and sufficient robust 

stability condition. 

Theorem 4. The HMP in (7) is positive definite on Nω  if and only if for any 
s 2≥  there exist s! )(sµ  parameter matrices in (9), such that all s! HMPs in (10) 
are positive definite on Nω . 

P r o o f. Let ( , 2)αΠ > 0 Nω∈∀α . In accordance with Theorem 1, there 
exists some positive integer d, such that all coefficients of the HMP 

)2,()2,( +Π=Π dd ααα  of degree d + 2 are positive definite. Then, the 
following implication holds: 

( , 2) 0 , ( , 2) ( , 2) ( , 2) 0;

( , 2) 0 , .

d

p p p
p d d

d p

α α α α α α

α α

Π > ∀ ⇔ Π =Π + +Π + >

Π + > ∀
 

For any s 2≥  and p, there always exist some appropriate )(sµ  positive semi-

definite matrices in (9), such that all coefficients of the HMP ( , 2)d

p
α αΠ are 

positive definite matrices, which guarantees that ( , 2) 0 , .
p

pα αΠ > ∀   

Let the converse be true, i.e., ( , 2) 0 , ,
p

pα αΠ > ∀  and consider an arbitrary 

vector α . For any s 2≥ , there exists some vector )(spα , such that the s common 

entries of α  and )(spα represent one and the same nondescending sequence. 
Having in mind (3) and (4), one has  
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( , 2) 0 0 ( , 2) ( , 2)
p p
α α αΠ ≤ ⇒ <Π ≤Π  

for this particular α , but since it has been arbitrarily chosen, it follows 
that ( , 2)αΠ >0 α∀ , and inequality (2) holds. ■ 

In other words, the function ( ,1, )f xα  is a positive if and only if there exist 
s! )(sµ  matrices in (8), such that 

(11) 
T T T T( ,1, ) [ ( , 2)] ( , 2) [ ( ) ( )] ( ) 0

, , ,
p p p p

f x x x x x C x C x C x

x p

α α α α α α α

α

+ Π = Π = + = >

∀
 

where )(~ xC p and )(xC p , p = 1,…, s!, are the CMs for the HMPs in (9) and (10), 

respectively. If  s = 1, then, ≡)1(v Ø, 0)1( =µ and (11) reduces to the trivial 
condition  ( ,1, )f xα  > 0. 

Consider an arbitrary matrix coefficient defined in (10) and denote 

,

,

, , , , ,
1

, ,
1

; 0,

0, , 1,..., !.
ijuv p

ijuv p

ij p ij ij p ij p ij p ijuv p

ij p ijuv p

X

X i j p s

µ

µ

+ − +

=

−

=−

Π = Π +Π +Π Π = ≥

Π = − ≤ ≤ =

∑

∑
 

Remark 1. For any )(spα , one has puvijpijuv ,, µµ −= . This means that all sums 
+Π pij , , ,ji ≤ are composed of distinct matrices (the same refers to all −Π pij , ) since, 

if 1, =pijuvµ , then pijuvX ,  participates only in the sum +Π pij ,  and it appears only 

once more time, but now as pijuvpuvij XX ,, −=− , in the sum −Π puv, . Respective 

conclusions are made when 1, −=pijuvµ . 
Theorems 4 and 5 give rise to the following new robust stability conditions.  

Lemma 1. For an integer s 2≥  and s! )(sµ  parameter matrices in (8) the 
following statements are distinct sufficient conditions for validity of the inequality 
in (11): 

(i) there exist s! M-matrices pM and positive vectors N
pjp R∈= )( ,ββ , such 

that 

(12) 
, ,

1,

( ) , ; ( ) 0, , 1,..., !

( ) 0, 1,..., , 1,..., !;

p p p p

N

j p ij ij p
j j i

M C x x C x x p s

i N p s

β

β π
= ≥

∈ ∀ > ∀ = ⇔

⇔ Π > = =∑

L
 

(ii) there exist s!0.5N(N+1) scalars pijc , , such that 
(13) 

, , ,
( ) , ; [ ] 0, 1,..., !.

ij p ij p p ij p
c x c x i j C c p s≥ ∀ ≤ = > =   

P r o o f. The proof of the first statement follows easily from Theorem 3, (ii), 
and Theorem 4. If (13) holds, then  inequality (5) is valid, since 

T T0 ( ) , , .
p

C C x x pα α α α α< ≤ ∀  ■ 



 21 

As the dimension of the selected vector )(sα  increases, one obtains more and 
more relaxed conditions and the maximal effect is achieved when the whole vector 
α  is selected, i.e., for s = N. The next lemma states a condition, which eliminates 
the awkward dependence of all CMs in (5) on vector x. 

Lemma 2. Let mα  denotes the minimal entry of the p-th ordered 
vector )(Npα , p = 1,…,N!. Consider the )(! NN µ  parameter matrices in (9), 
chosen for any p, as follows: 
(14) 

, , , , ,
,  if   0 ( ) 0, ,

ij p ij ij p ij ij p ij p ij p
c x c i j− + +−Π = Π +Π Π +Π ≥ ⇒ = = <   

(15) 
, , min

( ) 0,  
ij p ij ij p ij ij

Iλ− + +−Π =Π +Π − Π +Π ≥  

min , , , ,
if  ( ) 0 ( ) 0, ,

ij ij p ij p ij p ij p
c c x c i jλ +Π +Π = < ⇒ = < <  

(16) ⇒≥Π+Π−Π+Π=Π− ++− 0)(min,, Iiiiipiiiipii λ  

, min , ,
( ) ( ) .

ii p ii ii p ii p
c x c i mλ += Π +Π = ∀ ≠  

For this choice, (11) holds if and only if ][ , pijp cC =  > 0 p∀ , where 

0.5N(N+1) – 1 of the entries of pC  are defined in (14), (15) and (16) and 

)( ,min,
+Π+Π= pmmmmpmmc λ  p∀ . 

P r o o f. Having in mind Remark 1, all equalities in (14), (15) and (16) are 
possible, since s = N, and =pijuv,µ

,
0

uvij p
pµ− ≠ ∀ . For any p, the entries of the CM 

)(xC p are equal to some scalars pijc , , except for the entry 
T

, ,
( ) ( ) ,

mm p mm mm p
c x x x+= Π +Π  since 

,
1 , ,

mmuv p
u vµ = ∀  i.e., 

,
0 .

mm p
p−Π = ∀  Taking 

pmmc , as above is obligatory, since =)(, xc pmm ,
,

mm p
c p∀  is an admissible case. 

Then, inequality (11) holds if and only if T 0
p

Cα α >  , pα∀ , which is a necessary 

and sufficient condition for positive definiteness of the considered HMP, due to 
Theorem 4. Finally, from Theorem 3, (iii), it follows that this condition is 
equivalent to 0

p
C p> ∀ , since 

p
C p∈ ∀L . ■ 

 
3.2. Positive definite HMP of arbitrary degree k 
 
A monomial lα

~  =  jiαα  of an arbitrary even degree is said to be  even  if ji = , 
otherwise it called an odd one. Consider theµ  even monomials of variable degree 
2 r , given by 

1 2
22 22 2

1 2
... ... ... ; 0,1,..., 1ji N

rr rr r

f i j N
rα α α α α α τ= = − , ∑

−

=

=
1

0

)(
τ

χµ
r

r . 
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Any scalar inequality )(,,, sji jiji ααααα ∈≠≤ , impliesµ monomial 
inequalities of the form 
(17) 1 2

( )
; , , , ,

f i f f i j h g
f g h g hγ γ

χ τ
α α α α α α α α+ = ≤ = ∈ ≠N  

where 2 2 1 1, 3, 5,..., 2 1rγ τ τ= − − = − and , ,
f h g

α α α are some monomials of 

degree .τ   
Any vector )(spα ∈ )(sν  defines sµ = 0.5s(s – 1) pairwise inequalities (17). 

Finally, all s! vectors )(spα determine s! sµ systems of such monomial inequalities, 
which correspond to all possible sets of pairwise inequalities involving the entries 
of vector )(sα . For a given )(spα ∈ )(sν  any odd monomial in (17) serves as an 
upper bound for at least one even monomial, i.e., 
(18) 2

( )
; , 1, ,

gh
f h g gh

f g h
η χ τ

α α α η≤ ∈ ⊂ ≥ ≠N N  

and any even monomial  is a lower bound for at least one odd monomial. 
For a given s, consider the associated with some vector )()( ssp ν∈α  HMP of 

degree 2τ  

(19) 2 2

,
, , ,

( ,2 ) ( ) ; , 1, 2,..., !
p f h g fgh p n f g h

f g h g h
X p s

χ τ

α τ α α α α α α
∈ ≠

Π = − ∈ ≤ =∑
( )

N
R ,  

with sµ arbitrary positive semidefinite matrix coefficients pfghX , . Assume that N 
of the even monomials in (2) are lexically ordered as 
follows: 2 2 , 1, 2,..., .

i i
i Nτα α= =  For τ  > 1, any of the rest ( ) Nχ τ −  even 

monomials can be represented as a product of two distinct monomials of degree ,τ  
i.e., vut ααα =2  ,u v

χ τ
∈

( )
N , which makes possible the definition of the HMP  

(20) 
( )

( )
2

0 ,0
1 , ,

( , 2 ) ( ) 0 , 1, 2,..., !
p t u v tuv p n

t N u v u v
X p s

χ τ

χ τ

α τ α α α α
= + ∈ ≠

Π = − = ∈ ∀ =∑ ∑
N

R ,  

with ( ) Nχ τ − arbitrary symmetric matrix coefficients. Consider the HMP 
(21) ( , 2 )

p
α τΠ =  ( , 2 )α τΠ + ( , 2 )

p
α τΠ  + 

0
( , 2 )

p
α τΠ  =  

=
( )

, ,
, 1, 2,..., !

i j ij
i j i j

p s
χ τ

α α
∈ ≤

Π =∑
N

, 

where ( , 2 )α τΠ  is defined in (3), the associated with it Homogeneous Scalar 
Polynomial (HSP) in α  and x∈ nx  

(22) ( )

T

,
, ,

T

, ,

( , 2 , ) ( , 2 ) ( ),

( ) , 1, 2,..., !,

p p i j ij p
i j i j

ij p ij p

h x x x c x

c x x x p s
χ τ

α τ α τ α α
∈ ≤

= Π =

= Π =

∑
N  

and the HSP in α 
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(23) 
( )

, , ,
, ,

( , 2 ) ; , 1, 2,..., !
p i j ij p ij p ij p

i j i j
h c c I p s

χ τ

α τ α α
∈ ≤

= ≤ Π =∑
N

,  

where pij ,Π denotes the respective symmetric matrix coefficient of the HMP in 

(21), corresponding to the monomial jiαα  and vector )()( ssp ν∈α . Consider the 

quadratic in vα matrix representation of the p-th HSP in (10) 
(24) T T

( )
( , 2 ) , , 1, 2,..., !

p v p v p p
h C C C p s

χ τ
α τ α α= = ∈ =R .  

The entries of the CM pC  are the )(2τχ  scalar valued coefficients of the 
HSP in (23). 

Theorem 5. Consider a given HMP (1) of arbitrary degree. The following 
statements are equivalent: 

(a) there exist scalars d and s, such that 
])([!,1,2 NsNskd s −+≤≤=+ τχµτ  parameter matrices in (19) and (20) 

and )2(! τχs scalars pijc , defined in (23), such that all s! CMs in (24) are positive 
definite; 

(b) ( , )kαΠ  is a positive definite HMP. 
P r o o f. Let assertion (a) holds. Consider an arbitrary given vector Nω∈α . 

For any  s ≥  1,  there exists some subscript p, such that the s common entries of the 
vectors α  and )()( ssp ν∈α represent one and the same sequence of non-
descending scalars. Having in mind  (1), (2), (3) and the HMPs  in (19), (20) and 
(21),  the following matrix and scalar inequalities are valid: 

( , ) ( , 2 ) ( , 2 ) ( , 2 , ) ( , 2 )
p p p

k h x hα α τ α τ α τ α τΠ = Π ≥ Π ⇔ ≥ = T

v p v
Cα α   ∈∀x nx . 

Since all CMs are positive definite by assumption and vector α  has been 
arbitrarily chosen, it follows that (1) is a positive definite HMP. In the special case 
when s = 1, then )1(ν is an empty set, sµ = 0 and 

1
( , ) ( , 2 )kα α τΠ = Π =  

01
( , 2 ) ( , 2 )α τ α τ= Π +Π . Positive definiteness of the single CM 1C is a sufficient 

condition for positive definiteness of the HMP. This proves (a) (b).⇒  
Let (b) be valid. According to Theorem 1, there exists some d, such that 

all )2( τχ  matrix coefficients ijΠ in (3) are positive definite. Let 

,0
0 1, 2,..., !

tuv p
X p s= ∀ = , in this case. It will be shown that (a) holds for arbitrary 

integer s. Let s = 1. Then, there always exist some appropriate scalars 1,ijc in (23), 

such that 1C is a positive definite CM. If s > 1, consider an arbitrary vector 
)()( ssp ν∈α  and the associated with it monomial inequality in (18), which implies 
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2

, , , ,

,

; ,

0, , 1, 2,..., !.
gh gh

f fgh p g h gh p gh p fgh p
f f

fgh p

X X

X g h p s
η η

α α α
∈ ∈

≤ Π Π =

≥ ≠ =

∑ ∑
N N  

Let the coefficient matrices in (19) are chosen, such that ghpgh Π=Π ,
~  for all 

subscript pairs (g, h) in (18). This choice guarantees that 
o
( )sθ (number of distinct 

odd monomials in (17)) matrix coefficients in (21) become 
0~

,, =Π−Π=Π ghpghpgh , and 
e
( )sθ (number of distinct even monomials in (17)) 

matrix coefficients are ffpff Π>Π , . The rest of the )(2τχ –[
o
( )sθ +

e
( )sθ ] matrix 

coefficients are not affected and hence they remain positive definite. For a given s, 
the integers 

o
( )sθ  and 

e
( )sθ  are fixed for all p = 1, 2,…, s!. There always exist 

some appropriate scalars pijc , , such that the respective p-th CM is a positive 

definite one. The vector )(spα has been arbitrarily chosen, which proves that 
(b) (a)⇒  for any s. ■  

Theorem 4 can be viewed as a generalization of Theorem 1, which overcomes 
its most important shortcoming – the unnecessarily hard requirement for positive 
definiteness of all matrix coefficients in (2). At the same time, the equivalence of 
the necessary and sufficient conditions (6) and (11) for positive definiteness of a 
given HMP of arbitrary degree revealed by Theorem 4 makes possible to achieve 
flexibility by means of an appropriate choice for the parameter matrices in (19) and 
(20). Next, it will be shown how these facts become very important for getting 
relaxed exact solution conditions when the discussed below application problem is 
faced. 

4. Application: Exact stability conditions for uncertain systems 

Consider the uncertain linear system  

x& Nni

N

i
i AAxA ω∈∈== ∑

=

αααα ,)(,)(
1

R , 

where all matrices iA  are fixed and Hurwitz (negative stable). The stability analysis 
problem for this class of uncertain systems is: determine necessary and sufficient 
conditions, under which the polytope A :)({ αA= Nω∈α } contains only Hurwitz 
matrices. 

Theorem 6 [15]. The following statements are equivalent: 
(a) A  is a Hurwitz polytope; 
(b) there exists a HMP ( , )

n
sαΠ ∈R  in (1) of degree 1,s s b≤ = +   

b = 0.5n(n – 1) such that  
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(25) T( , ) { ( ) ( , ) ( , ) ( )} 0k A s s Aα α α α αΠ = − Π +Π >  Nω∈∀α . 
The significance of this result, proved by means of the fundamental result 

obtained in [5],  consists in the determination of a tighter, than some previously 
derived, upper  bound for the degree s of the HMP, via which the robust stability of 
a given polytopic system can be analyzed. E.g., this bound was determined as   
=s b + n  in [4] for HMPs and =s 2nN in [9], or  =s b + n –1 in [17] for general 

matrix polynomials. Theorem 6 provides a necessary and sufficient condition for 
stability of a class of uncertain systems, expressed in terms of the positive 
definiteness of a HMP. Theorem 5 proposes a new relaxed asymptotically exact 
condition via which it can be tested. The next theorem summarizes them.  

Theorem 7. The following statements are equivalent: 
(i) assertion (a) of Theorem 5, holds for the HMP  ( , )kαΠ  in (25);  
(ii) A  is a Hurwitz polytope. 
P r o o f. It is entirely based on Theorems 5 and 6 and due to self-evidence is 

omitted. 
Theorem 7 represents a generalization of two recent results presented below. 

Theorem 8 [6, 7]. Let d = 0 and s = 1. A  HMP ( ,1)αΠ of degree one assures 
robust stability of A , i.e., validity of the matrix inequality in (25), if the single 
CM 1C in ( 24) is positive definite. 

Theorem 9 [13]. The polytope A  is Hurwitz stable if and only if there exist a 
HMP ( , )sαΠ  and some sufficiently large integer d, such that all matrix 

coefficients of the HMP 
dα ( , )kαΠ are positive definite, where ( , )kαΠ denotes 

the HMP in (25). 
Although Theorem 7 and Theorem 9 provide distinct, but asymptotically 

equivalent conditions, their sufficiency parts differ substantially. For one and the 
same HMP ( , )sαΠ , via which the robust stability of A  is analyzed, the stated 
conditions are based on Theorems 5 and 1, respectively. Theorem 9 treats the 
problem as the solution of a rather conservative set of, more all less isolated LMIs, 
where only the sign of the coefficient matrices is significant. On the contrary, 
Theorem 7 takes into account their lower bounds and the various relations between 
them put in a Compact Matrix form (CM). It is clear that if robust stability of A   is 
concluded via Theorem 9, the same refers to Theorem 7, but not vice versa, since 
all s! CMs may be positive definite, when some or even all matrix coefficients 

,
ij

i jΠ < , are not positive definite. Theorem 1 is based on the assumption that the 

uncertainty vector is non negative, while Theorem 5 is aimed at taking some 
additional advantage from this fact. Taking into account the presence of monomial 
inequalities makes possible to get some relaxations. E.g., if , ,

ij
i jΠ <  is a positive 

semi-definite matrix, then this fact can be reflected by the choice ijpijX Π=,  for 
the respective parameter matrix in (7), which leads to 

,
0  and

ij p
Π =  
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, ii ii
  

ii p ij
+Π = Π +Π ≥ Π , i.e., this approach reflects the contribution of each positive 

semi-definite term ijji Παα to the overall HMPs positive definiteness. For 

0)(min, ≥−Π= IPX ijijpij λ , an advantage is obtained, even if ijΠ is a sign-
indefinite matrix. 

5. Numerical example 

Example. Consider a polytope A  and a HMP 
3

1
( , 1)

i i
i

α α
=

Π = Π∑ , described by the 

vertices:  

=1A
0.6895 4.137 4.728
9.8500 3.152 0.197

13.1990 13.987 15.169

−
− − −
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

−−−
−−

−

2480.14976.19968.1
2184.05616.00280.2
4836.03432.03276.0

2A ,  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

−−−
−−−

−

168.7232.86000.5
224.0344.18496.4
352.2856.27056.0

3A ; 

=Π1 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

7880.03944.02955.0
3940.05910.01970.0
2955.01970.07880.0

,   
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=Π

0780.00312.00156.0
0312.00624.00312.0
0156.00312.01404.0

2 ,    

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=Π

3360.02240.01120.0
2240.03920.00560.0
1120.00560.03864.0

3 . 

For d = 0 the HMP in (25) is ( , 2)αΠ = ∑
≤=

Π
3

,1, jiji
ijjiαα  and let ijλ  denotes the 

minimal eigenvalue of .ijΠ It is desired to find whether the HMP ( , 2)αΠ  is 
positive definite on the unit simplex.  

The respective eigenvalues of the matrix coefficients are computed as: 
,00172.0,139626.0 2211 == λλ

001998.0,001423.0,02284.0,05448.0 23131233 −=−=== λλλλ , 
i.e., for d = 0, the polytope is not stable by Theorem 9. Consider the case when         
s = 1.  

Since there does not exist a scalar 121,12 λ≤c , such that the single CM 1C is 
positive definite, the considered HMP does not assure robust stability, in 
accordance with Theorem 8. Let s = 2 and T

2 3
(2) ( )α α α= . For the single 

parameter matrix in (19), chosen as IXXX 2323232,231,23 λ−Π=== , one gets 

23,1 23,2 23
,IλΠ = Π =   23331,33 XP +=Π , 23222,22 XP +=Π . 
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Consider the two possible cases: 
p = 1. 331,331,33min32

2
332 0864.0)( λλλααααα >==Π⇒≤⇒≥ , 

p = 2. 222,222,22min32
2
223 08137.0)( λλλααααα >==Π⇒≤⇒≥ . 

Let 122,121,12 0 λ<== cc . The respective CMs 
1 2

 and  C C  are:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1,332313

2322

1311

1

2
20

02
2

λλλ
λλ
λλ

C  > 0 ; 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

332313

232,22

1311

2

2
20

02
2

λλλ
λλ
λλ

C  > 0. 

According to Theorem 7, A  is robustly stable via the considered HMP 
( , 1)αΠ with d = 0. Robust stability by Theorem 9 has been concluded for d = 2. 

This simple example illustrates the advantages of Theorem 7 over Theorems 8     
and 9. 
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