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1. Introduction

The possibility for combination of ideas of Neural Networks (NNs) and Intuitionistic
Fuzzy Logic (IFL) are discussed in [6, 7, 11].

In the present paper we show that the concepts of Feed Forword Neural Networks
(FFNNs) and IFL can also be combined. All these types of NNs have or allow appli-
cations in the area of Artificial Intelligence.

Artificial Neural Network (ANN)[8, 9], often just called a NN is a mathematical
or computational model based on biological neural networks. It consists of an inter-
connected group of artificial neurons and processes information using a connectionist
approach to computation.

The formal description of the ANN is the following:
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where:
T – operation “transposition”;
k – number of layers of neurons;
nk – number of neurons in the layer with number k (n0 is a number of the zero

(input) layer);
p1, p2, ..., pn0

– input values for nodes from layer 1;
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– outputs for the neurons on i-th layer W z
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from the input node x to the neuron numbered with y on layer z;
bi
1, b

i
2, ..., b

i
ni

– bias coefficient for the neurons on i-th layer;
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– transfer function for the neurons on i-th layer.
In the present paper we will define a NN that uses intuitionistic fuzzy information

and by this reason it is called an Intuitionistic Fuzzy Neural Network (IFNN). In the
conclusion we will give a formal definition of an IFNN, which will extend of the
above definition.

IFNN, which architecture is such that the neurons can be divided into layers and
do not have any feedback, is called Intuitionistic Fuzzy Feed Forward Neural Network
(IFFFNN).

A given FFNN can be extended with elements of IFL and in a result we can con-
struct an Intuitionistic Fuzzy FFNN (IFFFNN).

2. Short remark on propositional intuitionistic fuzzy logic

Intuitionistic Fuzzy Logics are defined as extensions of ordinary fuzzy logic. Now
there are propositional IFL, predicative IFL, modal IFL, temporal IFL and others.
Here, following [2] we shall introduce only some definitions from the propositional
IFL that are necessary for research below.

Two real numbers, µ(p) and ν(p), are assigned to the proposition p with the fol-
lowing constraint to hold:

µ(p) + ν(p) ≤ 1.

They correspond to the degrees of truth and falsity of p.
Let this assignment be provided by an evaluation function V , defined over a set of

propositions in such a way that:

V (p) = 〈µ(p), ν(p)〉 .
When values V (p) and V (q) of the proposition forms p and q are known, the

evaluation function V can be extended also for the operations “conjunction” (two
forms: & and ∧), “disjunction” (two forms: ∨ and t) and others, as follows:

V (p)&V (q) = V (p&q) = 〈min(µ(p), µ(q)),max(ν(p), ν(q))〉 ,
V (p) ∧ V (q) = V (p ∧ q) = 〈µ(p).µ(q), ν(p) + ν(q)− ν(p).ν(q)〉 ,
V (p) ∨ V (q) = V (p ∨ q) = 〈max(µ(p), µ(q)),min(ν(p), ν(q))〉 .
V (p) t V (q) = V (p t q) = 〈µ(p) + µ(q)− µ(p).µ(q), ν(p).ν(q)〉 .
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3. Intuitionistic fuzzy feed forward neural network

A single-input neuron is shown on Fig. 1. The input p of an IFFFNN is repre-
sented by ordered pairs of real numbers from set [0, 1]. Intuitionistic Fuzzy Weight
(IFW) w of the neuron (also represented by ordered pairs of real numbers from set
[0, 1]) is multiplied by p to one of the following forms:
• strongly optimistic formula

wp ≡ 〈µP , νP 〉 = 〈µw + µp − µw.µp, νw.νp〉 ;
• optimistic formula

wp ≡ 〈µP , νP 〉 = 〈max(µw, µp),min(νw, νp)〉;
• average formula

wp =

〈

µP + µQ

2
,
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2

〉

;

• pessimistic formula

wp ≡ 〈µQ, νQ〉 = 〈min(µw, µp),max(νw, νp)〉 ;
• strongly pessimistic formula

wp ≡ 〈µQ, νQ〉 = 〈µw.µp, νw + νp − νw.νp〉 .
It is one of the terms that is sent to the summator Σ. The other element that is

passed to the summator, is multiplied by an IFL-bias b represented by an ordered pair
〈µb, νb〉, where µb and νb are real numbers from set [0, 1] and µb + νb ≤ 1.

The summator output n has the form
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〉
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Fig. 1

The summator output n acts as an input for the transfer function F , which produces
the neuron’s output a. The neuron’s output is calculated as

a = F (wp + b).
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In the classical feed forward neural network two types of transferring functions
with the form a = F (n) are used: linear and logical sigmoid.

The output of a linear transfer function is equal to the inputs: a = n. Here, it will
have the form

a = F (n) = 〈µn, νn〉.

The output of a logical sigmoid transfer function is equal to the output in the range
[0, 1] according to the expression:
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.

Now, we construct the couple
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Therefore, Fsigm is an Intuitionistic Fuzzy Couple (IFC), because:
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Let us have a neuron with R inputs. Let them have intuitionistic fuzzy values
〈µp1

, νp1
〉, 〈µp2

, νp2
〉, ..., 〈µpR

, νpR
〉. Let each input p have respective elements

(1) p = 〈〈µp1
, νp1
〉, 〈µp2

, νp2
〉, ..., 〈µpR

, νpR
〉〉.

with weight coefficient from the IFW-matrix w

w = 〈〈µw1,1
, νw1,1

〉, 〈µw1,2
, νw1,2

〉, ..., 〈µw1,R
, νw1,R

〉〉.

Thus, the indices in say that weight 〈µw1,2
, νw1,2

〉 represents the connection to the
first neuron from the second source.

A neuron with R inputs is shown on Fig. 2.
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Fig. 2

In this case

n =
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A single-layer network of S neurons is shown on Fig. 3, but each of its inputs is
connected to each of the neurons.
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Fig. 3

The layer includes the IFW-matrix of the form
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is summed with the IF bias vector

(3) b = 〈〈µb1 , νb1〉, 〈µb2 , νb2〉, ..., 〈µbS
, νbS
〉〉.

In a result, the transfer function obtains the output vector

(4) a = 〈〈µa1
, νa1
〉, 〈µa2

, νa2
〉, ..., 〈µaS

, νaS
〉〉

Each element of the input IF-vector p from (1) is connected to each neuron through
the IFW-matrix (2). Each neuron has a IF-bias from (3), a summator, a transfer
function F and an IF output a from (4).

It is common for the number of inputs to a layer to be different from the number
of neurons (i.e., R 6= S).

4. Conclusion

The so constructed IFFFNNs are extensions of the FANNs and ANNs. In the
notation from first section we can give a formal description of an IFFFNN. It is the
following:

〈〈〈µp1
, νp1
〉, 〈µp2

, νp2
〉...., 〈µpn0

, νpn0
〉〉T, {〈ai

1, a
i
2, ..., a

i
ni
〉T|1 ≤ i ≤ k},

{〈〈µj
w1,1

, νj
w1,1
〉, ..., 〈µj

w1,n0

, νj
w1,n0

〉; 〈µj
w2,1

, νj
w2,1
〉, ..., 〈µj

w2,n1

, νj
w2,n1

〉, ...,

〈µj
wnk−1

,1
, νj

wnk−1
,nk
〉〉|0 ≤ j ≤ k},

{〈〈µi
b1, ν

i
b1〉, 〈µi

bS
, νi

bS
〉〉T|1 ≤ i ≤ k}, {〈F i

1, F
i
2, ..., F

i
ni
〉T|1 ≤ i ≤ k}〉,

where all parameters are described below.
In a next research the authors will construct a generalized net (see [1, 3]) that is

universal for the set of all IFFFNNs. So, we will continue the research from [4, 5, 10,
12-21].
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