
BULGARIAN ACADEMY OF SCIENCES

———————

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 9, No 2

Sofia • 2009

Observables on Intuitionistic Fuzzy Sets: An Elementary
Approach
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Abstract: In preceding paper [6] we have presented an elementary approach to the
notion of the probability on intuitionistic fuzzy events (IF-events). In the present paper
we present a similar approach to the notion of an observable what is an analogue of
the notion of random variable in the classical Kolmogorov theory.
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1. Introduction

An IF-set is a mapping A = (µA, νA) : Ω → [0, 1] such that µA + νA ≤ 1. The
function µA is called the membership function, νA the non - membership function. If
νA = 1− µA, we obtain simply a fuzzy set µA : Ω→ [0, 1].

Let us recall basic definitions of the Kolmogorov probability theory. The basic
notion of the probability theory is the notion of a σ-algebra S , i.e. a family of subsets
of Ω satisfying the following properties:

(i) Ω ∈ S,
(ii) A ∈ S ⇒ Ω− A ∈ S,
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(iii) An ∈ S (n = 1, 2, 3...)⇒
∞
⋃

n=1
An ∈ S.

The set belonging to S are called events.

Example 1.1. Consider S = {∅,Ω}. Evidently S is a σ-algebra. It presents an ex-
treme situation, the smallest possible σ-algebra of subsets of Ω: the only measurable
sets are the empty set ∅ and the whole space Ω.

Example 1.2. Let S consists of all subsets of Ω (S = P(Ω)). It presents the
second extreme situation: every subsets of Ω is measurable.

Example 1.3. Let Ω = R, J be the family of all closed bounded intervals [a, b].
They do not form a σ-algebra, but the convenient σ-algebra is the σ-algebra B(R),
the smallest σ-algebra containing J . The sets belonging to B(R) are called Borel
sets.

Recall a possible (equivalent) definition of a probability P defined on a σ-algebra
S:

(i) P (Ω) = 1,
(ii) P (A ∪ B) + P (A ∩B) = P (A) + P (B) for any A,B ∈ S,

(iii) An ↘ ∅ (i.e. An ⊃ An+1(n = 1, 2, ...),
∞
⋂

n=1

An = ∅)⇒ P (An)↘ 0.

A similar notion is the notion of a random variable η : Ω → R what is a measur-
able function, i.e.

ξ−1(I) ∈ S
for any interval I ⊂ R. This mapping is theoretically described by the distribution
function F : R→ [0, 1] defined by the equality

F (t) = P (ξ−1((−∞, t))).

In IF-probability theory we shall work with IF-events. An IF-set A = (µA, νA) is
called an IF-event, if µA, νA : Ω→ [0, 1] are S−measurable, i.e.

µ−1
A (I) ∈ S, ν−1

A (I) ∈ S
for any interval I ⊂ R.

If A = (µA, νA), B = (µB, νB) are events, then we define

A⊕B = (µA ⊕ µB, µA � µB),

A�B = (µA � µB, µA ⊕ µB),

¬A = (1− µA, 1− νA),

where a⊕ b = min(a + b, 1), a� b = max(a + b− 1, 0).
Further

A ≤ B ⇔ µA ≤ µB, νA ≥ νB.

It is easy to see, that

An ↗ A⇔ µAn
↗ µA, νAn

↘ νA.
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Recall that the operations⊕,�,¬ play an important role in the multivalued logic.
Namely, f ⊕ g corresponds to the disjunction, f � g to the conjunction and ¬f to the
negation. Also in the set theory they have a similar meaning: if f = χA, g = χB ,
then

χA ⊕ χB = χA∪B, χA � χB = χA∩B ,¬χA = χA′ .

2. IF-observables

Instead of probability or random variable respectively we shall define in our IF
theory a notion of a state corresponding to probability and a notion of an observable
corresponding to notion of a random variable. Denote by F the family of all IF-
events. The paper contains an elementary approach to the theory of IF-observables.
If somebody wants to use the theory, he need not known profound mathematical back-
grounds, since they are translated to a simpler language.

Definition 2.1. An IF state is a mapping m : F → [0, 1] satisfying the following
conditions:

(i) m((1, 0)) = 1,m((0, 1)) = 0,
(ii) m(A⊕B) + m(A� B) = m(A) + m(B), whenever A,B ∈ F ,
(iii) An ↗ A⇒ m(An)↗ m(A), where An ∈ F ,
(iv) An ∈ F(n = 1, 2, ...), An ↘ (0, 1)⇒ m(An)↘ 0.

Definition 2.2. Let C be the family of all intervals of the form (−∞, t), t ∈ R.
An IF-observable is a mapping x : C → F satisfying the following conditions:

(i) A ⊂ B ⇒ x(A) ≤ x(B),
(ii) An ↗ R⇒ x(An)↗ (1Ω, 0Ω),
(iii) An ↗ A⇒ x(An)↗ x(A),
(iv) An ↘ ∅ ⇒ x(An)↘ (0Ω, 1Ω)

Theorem 2.3. Let x : C → F be an IF-observable, m : F → [0, 1] be an IF-state.
Then the function F : R→ [0, 1] defined by

F (t) = m(x((−∞, t)))

is a distribution function.

P r o o f: By (iii) of Definition 2.1 and (i) of Definition 2.2 we obtain that F is non
decreasing. The properties (ii),(iii) of Definition 2.1 and (ii) of Definition 2.2 imply
lim

n→∞
F (n) = 1, the properties (iv) imply lim

n→−∞
F (n) = 0. Finally (iii) of Definitions

2.1 and 2.2 imply also that F is left continuous in every point t ∈ R �.

3. Joint IF-observable

Definition 3.1. Let D = {(−∞, u) × (−∞, v);u, v ∈ R}, x, y : C → F be
IF-observables. The joint IF-observable of x, y is a mapping h : D → F satisfying

(i) A ⊂ B ⇒ h(A) ≤ h(B),
(ii) An ↗ R2 ⇒ h(An)↗ (1Ω, 0Ω),
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(iii) An ↗ A⇒ h(An)↗ h(A),
(iv) An ↘ ∅ ⇒ h(An)↘ (0Ω, 1Ω)
(v) un ↗∞, vn ↗∞⇒

h((−∞, u)× (−∞, vn))↗ x((−∞, u)), h((−∞, un)× (−∞, v))↗ y((−∞, v)).

Theorem 3.2. Define F : R2 → [0, 1]F (u, v) = m(h((−∞, u) × (−∞, v))).
Then F : R2 → [0, 1] is a distribution function F (u,∞) = F1(u), F (−∞, v) =
F2(v), where F1 is the distribution function of x, F2 is distribution function of y.

P r o o f: It was proved in [4] and [8] that to any observables x, y : C → F there
exists mappings

x̂, ŷ : B(R)→ F
such that

x̂|C = x, ŷ|C = y

and x̂, ŷ have all properties of observables. Also it was proved that there is
̂h : B(R2)→ F having all the properties of observables and such that

̂h(C ×D) = x̂(C).ŷ(D)

(here the product A.B is defined by the equality
A.B = (µA.µB , 1− (1− νA)(1− νB))). Put

h = ̂h|D.

Then
h((−∞, u)× (−∞, v)) = x((−∞, u).y(−∞, v))

hence
F (u, v) = m(x((−∞, u)).y((−∞, v))), u, v ∈ R.

Therefore

lim
v→∞

F (u, v) = lim
n→∞

m(x((−∞, u)).y((−∞, n))) =

= m(
∞
∨

n=1

x((−∞, u)).y((−∞, n))) =

= m(x((−∞, u)).
∞
∨

n=1

y((−∞, n))) =

= m(x((−∞, u)).(1Ω, 0Ω)) =

= m(x((−∞, u))) = F1(u).

�

4. Conclusion
There is very well organized probability theory on IF-events (with respect to the
Łukasiewicz operations) or more generally in MV-algebras. Of course, in the the-
ory some notions and proofs are quite complicated. Therefore, we have presented in
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the paper some simple formulations describing some important results without men-
tioned difficulties.
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