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Abstract: In this paper the notion subnorm on arbitrary additive Abelian group is
introduced. And with its help the corresponding d-FS and d-IFS are obtained for
the case when the Abelian group coincides with each one of the infinitely many fields
generated by Q

2. In the paper is shown that this subnorm is an appropriate non-
Archimedean field norm over these fields.
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Used denotations: Q – the field of all rational numbers; Q
2 – the Cartesian product

Q × Q, a ≡ b (modc) – means that c divides a − b; ordpx, x integer – denotes the
greatest integer γ such that pγ divides x; ordpz, z ∈ Q – denotes ordpa − ordpb where
z = a

b
, a, b integers , R

+ – the set of all positive real numbers; iff = if and only if.

1. Introduction

Let us remind some definitions and notions.
Let E be the universe set and I be the unit interval. Following Z a d e h [1], we

call the ordered couple x with the mapping µ : E → I Fuzzy Set (FS). For x ∈ E the
number µ(x) is called degree of membership of x to the fuzzy set.

Further, we understand FS as the set:

(1) {< x, µ(x) > |x ∈ E}.
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If ν : E → I is the mapping given by

ν(x) = 1− µ(x), x ∈ E,

then we call the number ν(x) degree of non-membership of x to the fuzzy set (1).
Therefore, FS admits the following representation

(2) {< x, µ(x), ν(x) > |x ∈ E},

where

(3) ∀x ∈ E (µ(x) + ν(x) = 1) .

Atanassov [2] considered the sets (2) with the condition

∀x ∈ E (µ(x) + ν(x) ≤ 1)

instead of condition (3). He called these sets Intuitionistic Fuzzy Sets (IFS).
A wider point of view on the Fuzzy Sets and Intuitionistic Fuzzy Sets depending

on an arbitrary metric on R2 was proposed in [3] and [4], where FS and IFS are
generated by a particular metric on R2.

Namely, let d : R2 ×R2 → [0,+∞) be an arbitrary metric on R2 and µ : E → I ,
ν : E → I be arbitrary mappings.

The set

(4) {< x, µ(x), ν(x) > |x ∈ E}

is said to be d-fuzzy set or d-FS, if it is fulfilled

∀x ∈ E (d((µ(x), ν(x)), (0, 0)) = 1) .

The set (4) is said to be d-Intuitionistic Fuzzy Set or d-IFS, if it is fulfilled:

∀x ∈ E (d((µ(x), ν(x)), (0, 0)) ≤ 1)

Remark 1. If we choose d = d1 to be the Hamming’s metric on R2, i.e.

d1((µ, ν), 0) = |µ|+ |ν|

then d1-FS is the usual FS, and d1-IFS is the usual IFS.

A modification of the concepts for d-FS and d-IFS was proposed in [5] and [6].
There for the universe set E is chosen Q and for µ and ν are used arbitrary mappings
of the form:

(5) µ : Q→ Q ∩ I; ν : Q→ Q ∩ I.

Also, there d is a metric on Q
2 (but not necessarily on R

2).

Further we agree that d is a metric on Q
2 only and we shall consider only the

mappings µ and ν of the form (5).

31



If F is a number field with operations: ⊕ – addition; � – multiplication and with
zero element 0F , then ϕ is said to be field norm on F if it is fulfilled:

1) ∀x ∈ F (ϕ(x) ≥ 0 )

and

ϕ(x) = 0 iff x = 0F ;

2) ∀x, y ∈ F (ϕ(x� y) = ϕ(x).ϕ(y) )

Also ϕ is said to be non-Archimedean norm on F if it is fulfilled

3) ϕ(x⊕ y) ≤ max(ϕ(x), ϕ(y)).

Let us remind that in Q, considered as a field, there are infinitely many different
non-equivalent non-Archimedean field norms (so-called p-adic norms). Each one of
them with precision up to equivalence, according to Ostrowski’s theorem (see [7]), is
generated by a suitable prime p by the formula:

(6) ϕp(x) =

{

(1
p)

ordpx, x 6= 0;
0, x = 0.

We shall use the fact that Q
2 may be transformed into a field in infinitely many

ways (as has been shown in [6]) to prove that any of these fields admits inifinitely
many non-Archimedean field norms, depending on an inifinite class of distinct prime
numbers.

Also the notion subnorm on additive Abelian group will be introduced in order to
extend the class of metrics generated by field norms.

2. Transforming Q2 into a field with non-Archimedean field norms

In Q
2 we introduce two operations. The first of them is additive (which we will

call addition). For (a1, b1) and (a2, b2) ∈ Q
2 it is given by

(7) (a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2).

The second of them is multiplicative (which we will call multiplication). It is given
by

(8) (a1, b1)� (a2, b2) = (a1a2 + Db1b2, a1b2 + a2b1)

where D 6= 1 is a non-zero rational number and
√

|D| is an irrational number if
D 6= −1.

It is easy to see that if D 6= −1 then Q
2 with operations (7) and (8) is a field that

is isomorphic to the well-known field Q(
√

D). When D = −1, Q
2 with operations

(7) and (8) is isomorphic to the field whose elements are x+ i.y, where x, y ∈ Q and
i =
√
−1.

Further the above mentioned fields are denoted by Q
2(D).
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In [6] was shown that if ϕ is a field norm on Q, then

Φ(a, b) =
√

ϕ(a2 −Db2)

is a field norm on Q
2(D).

Let q be arbitrary fixed prime number and ϕp is taken from (6). In [6] are estab-
lished the following important results:

Theorem 1. Let p be a prime number such that q is not a quadratic residue mod p.
If Φp is given by the formula

Φp(a, b) =
√

ϕp(a2 − qb2)

for all (a, b) ∈ Q
2, then Φp is a non-Archimedean field norm on Q

2(q).
Theorem 2. Let p be a prime number such that −q is a quadratic nonresidue

mod p. If Φ∗
p is given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + qb2)

for all (a, b) ∈ Q
2, then Φ∗

p is a non-Archimedean field norm on Q
2(−q).

Theorem 3. Let p be a prime number such that −1 is a quadratic nonresidue
mod p. If Φ∗

p is given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + b2)

for all (a, b) ∈ Q
2, then Φ∗

p is a non-Archimedean field norm on Q
2(−1).

3. An infinite class of primes generating non-Archimedean norms
on Q2(D)

Let A 6= 0, B 6= 0 be relative prime integers. Then a well-known Dirichlet’s theo-
rem (see [8]) states that the infinite arithmetic progression A+ k.B, k = 0, 1, 2, . . . ,
contains infinitely many primes.

Further for brevity we will cite this theorem as Dirichlet’s theorem.

Let p and q be odd primes and
(

q
p

)

is the Legendre symbol. Then we remind the

Gauss quadratic reciprocity law:

(

q

p

)

= (−1)
p−1

2

q−1

2

(

p

q

)

.

Also the facts:
(−1

p

)

= (−1)
p−1

2 ,

(

2

p

)

= (−1)
p
2
−1

8
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are well known [9].
Using the above and the basic properties of Legendre symbol as well as the fact

that a is a quadratic residue (mod p) iff
(

a
p

)

= 1 and a is quadratic nonresidue

(mod p) iff
(

a
p

)

= −1, we may easily verify that the following assertions are true:

Lemma 1. Let q ≡ 3(mod 8) be a prime number. If p is a prime number that
belongs to either of the infinite arithmetic progressions:

2q + 1 + k.(4q), k = 0, 1, 2, . . . ,

q + 2 + k.(4q), k = 0, 1, 2, . . . ,

then q is a quadratic nonresidue (mod p).
Lemma 2. Let q ≡ 5(mod 8) be a prime number. If p is a prime number that

belongs to the inifinite arithmetic progression:

q + 2 + k.(2q), k = 0, 1, 2, . . . ,

then q is a quadratic nonresidue (mod p).
Lemma 3. Let q ≡ 7(mod 8) be a prime number. If p is a prime number that

belongs to the inifinite arithmetic progression:

2q + 1 + k.(4q), k = 0, 1, 2, . . . ,

then q is a quadratic nonresidue (mod p).
Open Problem 1. Let q ≡ 1(mod 8) be a prime number. Find an infinite arith-

metic progression containing infinitely many primes p such that q is a quadratic non-
residue (mod p).

Lemma 4. Let q ≡ 1(mod 8) be a prime number. If p is a prime number belonging
to the infinite arithmetic progression 2q + 1 + k.(4q), k = 0, 1, 2, . . . , then −q is a
quadratic nonresidue (mod p).

Lemma 5. Let q ≡ 3(mod 8) be a prime number. If p is a prime number belonging
to the infinite arithmetic progression q + 2 + k.(4q), k = 0, 1, 2, . . . , then −q is a
quadratic nonresidue (mod p).

Lemma 6. Let q ≡ 5(mod 8) be a prime number. If p is a prime number belonging
to the infinite arithmetic progression 2q + 1 + k.(4q), k = 0, 1, 2, . . . , then −q is a
quadratic nonresidue (mod p).

Lemma 7. Let q ≡ 7(mod 8) be a prime number. If p is a prime number belonging
to the infinite arithmetic progression 2q − 1 + k.(4q), k = 0, 1, 2, . . . , then −q is a
quadratic nonresidue (mod p).

Lemma 8. Let p be a prime number. Then−1 is a a quadratic nonresidue (mod p)
iff p belongs to the infinite arithmetic progression 3 + k.4, k = 0, 1, 2, . . .

As corollaries from the Dirichlet’s theorem and the above lemmas we obtain the
following:

Theorem 4. Let p ≡ 3(mod 4) be a prime number. Then Φ∗
p given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + b2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(−1).
Remark 2. According to Dirichlet theorem there are inifinitely many such primes

p.
Theorem 5. Let q ≡ 3(mod 8) be a prime number and p is a prime number that

belongs to either of the infinite arithmetic progressions:

34



2q + 1 + k.(4q), k = 0, 1, 2, . . . ,

q + 2 + k.(4q), k = 0, 1, 2, . . .

Then Φp given by

Φp(a, b) =
√

ϕp(a2 − qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(q).
Remark 3. According to Dirichlet theorem there are inifinitely many such primes

p.
Theorem 6. Let q ≡ 5(mod 8) be a prime number and p is a prime number that

belongs to the infinite arithmetic progression:

q + 2 + k.(2q), k = 0, 1, 2, . . .

Then Φp given by

Φp(a, b) =
√

ϕp(a2 − qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(q).
Remark 4. According to Dirichlet theorem there are inifinitely many such primes

p.
Theorem 7. Let q ≡ 7(mod 8) be a prime number and p is a prime number that

belongs to the infinite arithmetic progression:

2q + 1 + k.(4q), k = 0, 1, 2, . . .

Then Φp given by

Φp(a, b) =
√

ϕp(a2 − qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(q).
Remark 5. According to Dirichlet theorem there are inifinitely many such primes

p.
Open Problem 2. Let q ≡ 1(mod 8) be a prime number. Find infinitely many

primes p such that Φp given by

Φp(a, b) =
√

ϕp(a2 − qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(q).
Theorem 8. Let q ≡ 1(mod 8) be a prime number and p is a prime number that

belongs to the infinite arithmetic progression:

2q + 1 + k.(4q), k = 0, 1, 2, . . .

Then Φ∗
p given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(−q).
Remark 6. According to Dirichlet’s theorem there are inifinitely many such

primes p.
Theorem 9. Let q ≡ 3(mod 8) be a prime number and p is a prime number that

belongs to the infinite arithmetic progression:
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q + 2 + k.(4q), k = 0, 1, 2, . . .

Then Φ∗
p given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(−q).
Remark 7. According to Dirichlet theorem there are inifinitely many such primes

p.
Theorem 10. Let q ≡ 5(mod 8) be a prime number and p is a prime number that

belongs to the infinite arithmetic progression:

2q + 1 + k.(4q), k = 0, 1, 2, . . .

Then Φ∗
p given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(−q).
Remark 8. According to Dirichlet theorem there are inifinitely many such primes

p.
Theorem 11. Let q ≡ 7(mod 8) be a prime number and p is a prime number that

belongs to the infinite arithmetic progression:

2q − 1 + k.(2q), k = 0, 1, 2, . . .

Then Φ∗
p given by the formula

Φ∗
p(a, b) =

√

ϕp(a2 + qb2)

for all (a, b) ∈ Q
2, is a non-Archimedean field norm on Q

2(−q).
Remark 9. According to Dirichlet theorem there are inifinitely many such primes

p.

4. Subnorms on Abelian additive groups

It is possible to provide a general approach ensuring a wide selection of d-FS and
d-IFS. This approach is the following.

Let G be an additive Abelian group with group operation⊕ and ϕ : G→ R+∪{0}
be a map.

Definition. We call ϕ a subnorm on G if the following properties are satisfied:

1) ϕ(g) ≥ 0 if g 6= 0̂ and g(0̂) = 0,

where 0̂ is the zero of G.

2) ϕ(g) = ϕ(−g),

where −g is the inverese element of g in G.
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3) ϕ(g1 ⊕ g2) ≤ ϕ(g1) + ϕ(g2).

Every subnorm ϕ on G introduces a metric d on G which is given by:

d(g1, g2) = ϕ(g1 ⊕ (−g2)).

Indeed the following properties of d:

I) d(g1, g2) = 0 iff g1 = g2 and d(g1, g2) > 0 for g1 6= g2,

II) d(g1, g2) = d(g2, g1),

III) d(g1, g2) + d(g2, g3) ≥ d(g1, g3)

are obvious and guarantee that d is a metric on G.
If G is an arbitrary field, then G is an addditive Abelian group with respect to

the operation addition in the field. Therefore, subnorm on G is every field norm on
G satisfying property 3) (also every norm on a vector space over the field of real
(complex) numbers is a subnorm on the same vector space).

In particular, if G is a field and ϕ is a non-Archimedean field norm on G, then
ϕ satisifes 3) and hence ϕ is a subnorm on G. Therefore, every non-Archimedean
field norm ϕ on G generates a metric d mentioned above (when we consider ϕ as a
subnorm on the additive Abelian group G) and the corresponding d-FS and d-IFS.

In conclusion, we note that in Section 3 from the present paper were described
infinitely many examples of non-Archimedean field norms on the following fields:
Q

2(−1); Q
2(q); Q

2(−q), with q a fixed prime number. Considering all these fields
as additive Abelian groups and their non-Arcimedean field norms as subnorms, we
can introduce the corresponding metrics and their d-FS and d-IFS and study them.
This general scheme is very potent but the question about the corresponding modal
operators depending on the described above non-Archimedean field norms remains
still open.
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