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Abstract: Some models of the autonomous spacecraft computer systems are 
discussed in the paper. The ways to reach the autonomy are described – high 
reliability and adaptability of the system, reached by application of Artificial 
Intelligence elements, formal structural models (specification, verification and real 
time control) and dynamic reconfiguration [1, 2, 4, 9, 10, 11]. 

A method using trace models in real time for testing of system operations is 
described. The method is suitable for systems specified by process algebras (CSP – 
Communicating Sequential Processes [3], Timed CSP [6], and ASM – Abstract 
State Machine [5], and TAM – Temporal Agent Model [7]), where process traces 
are used. The computing processes and these in the hardware are observed. 

Special control processes (tracers) are specified. They allow to control in real 
time the correspondence of the real system traces and preliminary computed traces 
(the formal specification) and send messages to the other subsystems when no 
correspondence (e.g. to specification and dynamic reconfiguration subsystems). 

The method allows finding in real time the software and hardware incorrectly 
functioning (disparity of the traces) based on rigorous mathematical specification.  

In the paper are described: an autonomous control system structural model, 
an algorithm for real time traces control, possibilities for implementation, using 
OCCAM or PC libraries  – CPPCSP – C++ Communicating Sequential Processes 
library [8], JCSP. 

The application of trace models in real time allows to find any system 
incorrectly operating and this is one of the ways for increasing the onboard 
computer systems’ reliability and to achieve full operation autonomy. 
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I. Introduction 

The autonomy of the onboard computer control and information systems becomes 
more and more important with the deep space unmanned flights. It means higher 
reliability of the system and possibility to change system configuration in real-time 
depending of the system and environment state. How to reach this? 

A new generation of spacecrafts with a new generation of control systems is 
needed for these missions. Their most important specialty is the possibility for long 
autonomous operation and others: 

– minimal dependence from the ground systems; 
– operation by general commands; 
– planning and scheduling; 
– high reliability of the system hardware and software; 
– system dynamic recovering and reconfiguration. 
These principles are most fully realized in the Remote Agent (RA) model 

based system [4]. 
The Aerospace Control Systems (ACS) for aircraft or spacecraft navigation are 

complex multiprocessor systems. They include many hardware and software objects 
that are communicating in a real-time mode. The standard stabilization and 
navigation systems are not fault resistant and they have static configurations and 
insufficient reliability. The most important characteristic of these systems is their 
reliability. As NASA reports many crashes were not due to hardware but software 
failure [9]. To increase the ACS software reliability formal methods are used in 
recent years [10, 11]. 

Usually formal methods implementation consists of two steps: specification 
and verification. The particularity of the approach described in the paper is that it 
includes in addition a real-time trace control which allows relatively easy computer 
realization of software specification and verification. The approach also includes 
method for dynamic reconfiguration of ACS structure in accordance with the 
developed formal model. 

This paper presents the author’s approach for creating of autonomous control 
and modeling system called ACS (Autonomous Control System). The approach is 
characterized by: 

Using of formal models and methods at all the system operating cycle; 
The system is presented as a set of objects freely configurable and connectible 

by channels [2]; 
Artificial Intelligence (AI) is used in the stage of system reconfiguration or as 

a part of the control process. 
The main differences of ACS from RA are: 
ACS executes control and development functions – in real time it makes 

dynamic reconfiguration (analysis, synthesis, etc.) of the execution control system; 
AI functions are used in the control process if it is necessary and in the system 

development. 
Formal models and methods are used repeatedly – to create and verify formal 

specification and to control the traces of the system processes, all in real time. 
The structure of the ACS system is shown in Fig. 1. 
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Fig.1. The conception of ACS as set of objects and subsystems 

II. ACS description 

The approach includes: 
1. Software formal models (specifications). The software formal models are a 

process models type (a sequential process, that can be executed parallel), where the 
processes are communicating (and are synchronized) by a message exchange.  

2. Software system verification, using Hoare’s (CSP) specifications and laws. 
With the CSP theory the software properties can be specified and verified. 

3. System operations control, using Hoare’s trace models. The traces describe 
all events that have place, or can have place in the computing process, and can be 
used for run-time control. 

4. System structure and parameters run-time determining on the base of 
information about control system object and background states. This is a separate 
subsystem of the computer control system. All algorithms may be used here. 

5. Dynamic reconfiguration: on the base of the specification, the system 
structure and parameters are implemented in the general software model frame. 

Corresponding to this approach the ACS is treated like a set of software and 
hardware objects that can be configured to exchange information and to 
synchronize and get access to common system resources. 

The CSP models describe the functions and structure of the system by a set of 
communicating sequential processes, that can be executed parallel. The models 
include CSP-description, alphabet, trace and specification. The interactions are 
synchronous by one-direction channels.  

The models described below represent a RTS system that consists of four main 
processes: 

 Base of Objects Configuration 
Subsystem 

Configuration Determination  
Subsystem 

Tracer 
Process 

Control System 

Environment Controlled Object 
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(CONTROL, MEASUREMENT, SIMULATION, MODEL): 
MODELING = CONTROL || MEASUREMENT || SIMULATION || MODEL,  

where the symbol ||  indicates parallel processes. 
The alphabet of the processes determines a set of events, logically possible for 

the parallel system: 

α(CONTROL || MEASUREMENT || SIMULATION ||  MODEL) = αCONTROL 
∪ αMEASUREMENT ∪ αSIMULATION ∪ αMODEL, 

where α is process alphabet. 
The traces of the parallel processes are determined by: 

trace(CONTROL || MEASUREMENT || SIMULATION || MODEL)={t | (t ↑ 
αCONTROL) ∈ trace(CONTROL) & (t ↑ αMEASUREMENT) ∈ 
trace(MEASUREMENT) & (t ↑ αSIMULATION) ∈ trace(SIMULATION) &  
(t ↑ αMODEL) ∈ trace(MODEL) & t ∈  (αCONTROL ∪ αMEASUREMENT ∪ 
αSIMULATION ∪ αMODEL)},  

where trace is a process protocol, describing the events, which the process has gone 
to this moment. The symbol  ↑  indicates shrink of the trace on the some set, such 
as the alphabet. 

Loop process, describing the system functions by separate loops: 
LPi–= {PR, CH, PAR, ARG}, where: PR – procedure, implementing the 

process functions; CH – set of information channels; AGR – set of aggregates;  
PAR – parameters. 

CSP model is: 

LoopProcess = c[0]?x → AgregatesList; c[n]!y → ENDprocess;  ModelProcesses,   

where: c[i] indicate channels with numbers; AgregatesList – linear aggregates list;  
?x – CSP procedure to receive a value from channel c and assumes it to the x 

variable;  
!y – CSP procedure to transmit the value of y variable to the channel; 
ModelProcesses – modeling processes. 
The traces are: 

LoopProcess=P;Q;ModelProcesses;  
P=c[0]?x→AgregatesLIst; Q=c [n]!y→ENDprocess; 
trace(P) = {t|t=<>V(t0=c[0]?x & t’∈ trace(AgregatesList))} = {<>} U {<c[0]?x>∧t|t 
∈ trace(AgregatesList)}; 
trace(Q)={t|t=<> V (t0 = c[n]!z & t’∈ trace(ENDprocess))} = {<>} U {<c[n]!z>∧t|t 
∈ trace(ENDprocess)};  

trace(LoopProcess)= {s;t|s ∈ trace(P)& t ∈ trace(Q); r|s ∈ trace(P)& t ∈ 
trace(Q)& r ∈ trace(ModelProcesses)}. 

The symbol ^ indicate after (between traces); t0 – beginning of the trace;  
t’ – end of the trace;  <> – empty trace. 
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A list of aggregates CSP model is: 

AgregatesList = (c[i]?z → AGREGATE[i]; AgregatesList | c[i]!z → 
AGREGATE[i]; AgregatesList) | (next → AGREGATE[i]; AgregatesList) | 
(end_list → ENDprocess), 

where END process is a special process, the alphabet of which has only one event, 
that indicate successful end. 

AGREGATE=input(x) → AgrTransferFunction(x:y); output(y) →  ENDprocess; 
AgrTransferFunction = (f1→ENDprocess) | (f2→ENDprocess) |...| 
(fn→ENDprocess); 

where f1,...,fn – functions, doing the transformation x→y. 
There are two traces: 

AgregatesList  

(c[i]?z → AGREGATE[i]) = P1; (c[i]!z → AGREGATE[i]) = P2 ; 
(next → AGREGATE[i] = P3;(end_list→ENDprocess) = P4 ; 

trace(P1)={<>} U {<c[i]?z>∧t|t ∈ trace(AGREGATE[i])}; 
trace(P1;AgregatesList)={s;t|s ∈ trace(P1) &t ∈ trace(AgregatesLIst)}; 

trace(P2)={<>} U {<c[i]!z>∧t|t ∈ trace(AGREGATE[i])}; 
trace(P2;AgregatesList)={s;t|s ∈ trace(P2) &t ∈ trace(AgregatesLIst)}; 
trace(P3)={<>} U {<next>^t|t ∈ trace(AGREGATE[i])}; 
trace(P3;AgregatesList)={s;t|s ∈ trace(P3) & t ∈ trace(AgregatesLIst)}; 
trace(P4)={<>} U {<end_list>^t|t ∈ trace(ENDprocess)}; 
trace(P4;AgregatesList)={s;t|s ∈ trace(P4)&t ∈ trace(AgregatesLIst)}; 
trace(AgregatesList)= {t|t=<> V (t0 ∈ B & t’ ∈ trace(P(t0)} , 

where B = {c[i]?z,c[i]!z,next,end_list}; P(t0)= (P1|P2|P3|P4). 

– AGREGATE 
P = (input(x)→ AgrTransferFunction);  
Q = (output(y)→ENDprocess); AGREGATE=(P;Q);  
trace(P)={<>} U {<input(x)>^t|t ∈ trace(AgrTransferFunction)};  
trace(Q)={<>} U {<output(y)>^t|t ∈ trace(ENDprocess)};  
trace(AGREGATE)= {s;t|s ∈ trace(P) & t ∈ trace(Q)}. 

– AgrTransferFunction 
trace(AgrTransferFunction)= {t|t=<> V (t0 ∈ B & t’∈ trace(P(t0)}, 

where B = {f1,f2,.., fn} alternative 
P(t0)=f1→ENDprocess|f2→ENDprocess|...| fn→ENDrocess); 
In a similar way the other system objects are defined. 
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III. System operations control method based on the CSP trace models 

The CSP theory [3] proposes appropriate means for preliminary specification of the 
system functions and structure, and for the following operation control. These 
means are: specifications, alphabets and traces of the processes. 

The general algorithm of the control method (Fig. 2) includes: 
the software specification is defined, including the set of system objects; 
the program system implementation and verification (CSP specifications 

verification method [1, 2] – function Sat (P, S)); 
all possible traces computing for the specified system (procedure trace (P)); 
the system start; 
the special process (tracer) observes and registers the system traces and 

determines if they are valid – function IsTrace(s, P); 
When invalid trace is registered – emergency situation and message to the 

configuration subsystem. 

The function SatP,S) that decides whether the system implementation  satysfies the 
system specification: 

Sat(P,S(np)) =  
if P = STOP then if np = <> then return TRUE;  
else  
     return FALSE; end; 
   elsif P sat S(np) & (c ∏ P) then  
      if (np = <> V (np0 = c & S(np’))) then return TRUE;   
        else return FALSE; end; 
   elsif P sat S(np) & (c  ∏ d ∏ P) then     
     if (np ≤ <c,d> V (np ≥ <c,d> & S(np”)))  
        then return TRUE; else return FALSE; 
elsif P sat S(np) & Q sat T(np) & (c∏P|d∏Q)  
   then    
   if (np = <> V (np0 = c & S(np’)) V (np0 = d & T(np’)) /*S(np’) & T(np’) are the 
specifications of the chosen alternative */  
then return TRUE;  
else return FALSE; 
elsif ∇ x ∈ B.(P(x) sat S(np,x)) & (x:B ∏ P(x)) then  
if (np = <> V (np0 ∈ B & S(np’,np0)))  
then return TRUE; (*a process with choice from a set*) 
else return FALSE; 
elsif P sat S(np) & Q sat T(np) & P || Q then if (P||Q) sat (S(np |‘ ∝P) & T(np |‘ 
∝Q)) then return TRUE; (* parallel processes *)  
else return FALSE; 
———  other standard structures ——- 
else return FALSE; End; 
———  other standard structures ——                                      
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else return FALSE;  
End; 
 

The function trace(P) that computes the system traces: 

 
trace(P)= (µR)* & 
 if P = (STOPP) then trace(P)= \<>\; 
 elsif P = (c→ P) then trace(P)= \<> U \<c> ∧ t|t ∈ trace(P)\; 
 elsif P = (c → P | d → Q)then trace(P)= \t|t = <> V (t0 = c & t’∈ trace(P)V 
(t0 = d & t’∈ trace(Q))\; 
 elsif P = (x:B → P(x)) = \t|t = <> V (t0 ∈ B & t’∈ trace(P(t0)))\ 
 elsif P = (mX : A.F(x))) = U trace(Fn(STOPA)); 
 elsif P = (P || Q)then trace(P)= trace(P)Ç trace(Q); 
  else t = trace(P||Q) then 
trace(P||Q)=\t|(t |`µR) ∈ trace(P)& (t |`µQ) ∈ trace(Q)& t ∈ (aR U aQ)*\ 
...........-- nsgdq rsqtbstqdr--..................... 
 else 
end. 

The function IsTrace(s,p) that decide whether the trace s is valid for the 
process P: 

START

Specification of the system 

Implementation of the system 

Verification of the system – function (P sat S)? 

Computing of the system traces – function Trace(P) 

Control of the system traces – function IsTrace(S, P) 

S(P) – Trace of P? 

Yes 

No 

Message to the configuration subsystem 

Fig. 2. The Method for Control of the System Traces 
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IsTrace(s,P)= 
 if s = NIL then TRUE; 
  elsif P(s0) = “BLEEP then FALSE; 
  else IsTrace(s’, P(s0)); 
end. 

IV. Configuration subsystem 

It implements system configuration in real-time (dynamic reconfiguration) by:  
1) creating instances (objects) of system classes in the system memory; 
2) connecting objects by determining channel numbers. 

V. Implementation 

These models can be implemented in several ways: 
In a transputer environment, using OCCAM 
In standard PC and similar environments, using Java (JCSP library) or C++ 

(C++CSP library) [8].   

VI. Conclusion 
This is an integrated approach for the design and study of aerospace control systems 
based on CSP models. This approach is implemented by the methods for 
specification, verification and trace control. The models describe in general the 
functions of the system by using a rigorous mathematical theory.  

The control and verification methods allow the creation of high-reliability 
systems by preliminary verification and run-time system observation. The control 
method, based on a trace model, is new in this type of systems. The main advantage 
of the approach is the completeness and the possibility to achieve a certain degree 
of assurance in the system quality. 

Dynamic reconfiguration method allows the system to be implemented in 
multi- or single processor environments. 
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