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Abstract: A modification of the mean-delta parameter [7], intended for speech 
detection, is proposed in this paper. The effectiveness of this modified parameter 
and three other parameters – basic mean-delta parameter [7], multi-band spectral 
entropy [4] and frequency-filtering parameter [3] is experimentally studied in 
speaker identification task. The employed techniques are: for speech detection – 
each one of the mentioned above parameters as a feature and a single MLP as a 
classifier; for speaker identification − LPC cepstrum as a speaker identification 
feature and a common (for all speakers) MLP for speaker classification procedure. 
The training and testing has been done using noisy telephone speech data from BG-
SrDat corpus [5]. The experiments have shown that the proposed modification of 
the mean-delta parameter improves the speech detection and yields better speaker 
recognition rate. 
 
Keywords: Speech detection, multilayer perceptron, speaker recognition. 

1. Introduction 

The speech detector is one of the key components in speaker recognition systems 
designed to operate in noisy real-world environments. The recognition error in such 
systems is due to many causes, one of which is the inaccurate speech fragments 
detection. The speech fragments usually provide data for speaker model estimation. 
The non-speech ones are discarded or are used for noise parameters estimation with 
the purpose of reducing the noise effect on the recognition performance.  
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Text-independent speaker recognition experiments are carried out in the study. 
During these experiments the speech part of the analyzed signal is separated using a 
speech detection module. This module is a particular two-class classification 
scheme utilizing MultiLayer Perceptron (MLP) as a classifier and selected 
parameters as features. The idea in the paper is to study the effect of the speech 
detection features on the speaker recognition rate. In the work, the raw speech 
detection (without speech enhancement and hangover mechanisms) is under 
analysis.  

The present study is a continuation of the work described in [8] and it is 
focused on a modification of the Mean-Delta (MD) parameter [7]. The aim of the 
modification is to improve the speech detection performance without substantial 
increasing of the computational cost. This improved parameter is named as 
Modified Mean-Delta (MMD) parameter. In the paper the MD parameter described 
in [7] is named as Basic Mean-Delta (BMD) parameter. 

In the study the performance of the MMD is compared with three other speech 
detection parameters – the BMD parameter, the Multi-Band Spectral Entropy 
(MBSE) parameter [4] and the Frequency-Filtering (FF) parameter [3].  

The text-independent speaker recognition (closed set test) is realized using the 
Linear Predictive Coding (LPC) cepstrum as a feature and common (for all 
speakers) MLP as a classifier. The training and testing is carried out using a limited 
amount of noisy telephone speech data from BG-SrDat corpus [5]. 

2. The analyzed parameters 
2.1. The basic mean-delta parameter 

The Mean-Delta (MD) parameter is proposed in [6] as a feature for trajectory-based 
speech detection. Its version intended for pattern recognition-based speech 
detection (i.e. BMD parameter) is described in [7, 8].  

The BMD parameter is estimated using the delta spectral autocorrelation 
function of the power spectrum of speech signal. In order to remove the tilt in the 
spectral autocorrelation function and enhance its peaks, in [6] is proposed a 
parameter obtained in a way similar to the delta cepstrum evaluation. It is named as 
Delta Spectral AutoCorrelation Function (DSACF). This parameter is computed as 
an orthogonal polynomial fit of the first-order derivative (in correlation domain) of 
the spectral autocorrelation function.  

For a particular frame, the DSACF is computed utilizing only the frame’s 
spectral autocorrelation lags. For the n-th frame, the DSACF ( , )
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autocorrelation function defined with the power spectrum [6]. The parameter Q 
determines the window width around the lag l and its effect over the accuracy of the 
approximation. 

The BMD feature vector for n-th frame is formed as 
d d

{ (1), , ( )}m m J… . Its 

components are defined as follows (for simplicity, the frame index is omitted)  

(2)    { } 1

d p
( ) max ( ) j

j

l L

l L
m j R l +

=

=
= ∆  

where 1, ,j J= … , J is the number of lags ranges and 
1 2

{ , }L L  
1

{ , }
j j

L L
+

…  

2 1 2
{ , }

J J
L L

−
…  are pairs of boundary lags for each range.  

The algorithm for the BMD feature vector estimation is summarized as follows 
(for each frame) [7]: 

a) apply Hamming window to the analyzed signal; 
b) compute the power spectrum of the windowed signal via FFT with size K; 
a) compute the non-normalized biased spectral autocorrelation function with 

lags L = K/4; 
d) compute the delta spectral autocorrelation function by equation (1); 
e) take the absolute value of the delta spectral autocorrelation function; 
b) divide the number of lags L into J non-overlapping lags ranges of equal 

size; 
c) find the maximum values of 

P
( )R l∆  in the lags ranges 
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d) take the logarithm of the maximum values and obtain the BMD feature 
vector in the form

d d
{log( (1)), , log( ( ))}m m J… ; 

i) mean normalization − the BMD feature vector for each frame is divided by 
the average BMD feature vector computed over all frames. If the speech data 
consists of different speech records (files), the mean normalization should be 
applied for each file separately. 

2.2. The modified mean-delta parameter 

The Modified Mean-Delta (MMD) parameter is obtained as a result of careful 
experimental research of the characteristics of the BMD parameter. The aim of this 
research is to improve the speech detection performance of the BMD feature 
without significantly increasing the computational cost. 

The algorithm for MMD feature calculation is summarized as follows (for 
each frame). The steps a), b), c) and d) are the same as in the BMD algorithm (see 
2.1): 

a) apply Hamming window to the analyzed signal; 
b) compute the power spectrum of the windowed signal via FFT; 
c) compute the non-normalized biased spectral autocorrelation function with 

lags L = K/4; 
d) compute the delta spectral autocorrelation function by equation (1); 
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e) use a sliding rectangular window across the autocorrelation lags with a 
wide of Y lags and a sliding step of U lags; 

f) the MMD parameter 
d

mm ( )v , where Vv ,...,1= is the number of sliding 

steps across the autocorrelation lags, is defined as 
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g) take the logarithm of 
d

mm ( )v  and obtain the MMD feature vector in the 

form 
d d

{log(mm (1)), , log(mm ( ))}V… ; 

h) mean normalization – the MMD feature vector for each frame is divided by 
the average MMD feature vector computed over all speech frames (over all used 
files). 

In order to be able to compare the BMD and MMD features performance, the 
sliding window wide Y and sliding step U are selected in such a way so the number 
of sliding steps V across the autocorrelations lags to be equal to the number of lags 
regions J (see 2.1).   

2.3. Multi-band spectral entropy [4] 

The spectral entropy for the nth frame is estimated in the following steps [4]. First, 
the Probability Mass Function (PMF) 2( ( , ) )P X n k  for the full-band power 

spectrum 2( , )X n k according to [4] is 
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where 0, ..., / 2k K= , K is the number of DFT-points and 0,..., 1n N= − , N is the 
number of frames. The PMF in (4) is known as the full-band PMF. 

Second, the spectral entropy )(nH  for n-th frame is computed as follows: 
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The entropy in (5) is named as full-band spectral entropy [4]. To capture a 
local variation in the spectrum, the idea of multi-band spectral entropy is introduced 
in [4]. The core of this idea is to divide the full-band PMF into sub-bands and then 
the spectral entropy to be computed for each sub-band using full-band PMF. In this 
case, one entropy value is obtained for each sub-band. 

According to [4] the Multi-Band Spectral Entropy (MBSE) feature vector for 
the n-th frame is formed as 

MBSE MBSE
{ ( ,1), , ( , )}H n H n G…  and its components are 

computed as  
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where 2( ( , ) )P X n k  is the full-band PMF in (5); g = 1, …, G, G is the number of 
sub-bands and 

1 2 1 2 1 2
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g g G G
B B B B B B

+ −
… …  are pairs of boundary spectral 

bins for each sub-band.  

2.4. Frequency-filtering parameter [3] 

If E(ω) is the spectral envelope of analyzed speech signal and S(ω) = log(E(ω)), 
then the derivative of S(ω) according to [3] is 

(7)     1( ) ( )
( )

d dS E
d E d

ω ω
ω ω ω

= . 

When the spectral energies are defined in a discrete frequency scale (e.g., 
obtained by filter banks), the derivative in (7) should be replaced by a difference. If 
the spectral slope is measured as the difference between the two samples 
surrounding the current one, then the log-spectral derivative results in the log-
spectral difference or the Frequency Filtering (FF) parameter. This parameter is 
defined in [3] as follows 
(8)    

FF
( ) ( 1) ( 1)S k S k S k= + − − , 

where k is the frequency sub-band index. 
The FF parameter and linear discriminant analysis are used successfully in [9] 

to obtain robust speech detection. 

3. Speech detection and speaker recognition modules 

In the study two separate modules are designed. The first one is the speech 
detection module. This module is a particular two-class classification scheme 
utilizing MLP as classifier and mentioned above four parameters as features. The 
target sequences are formed using manually segmented speech data. For each one of 
mentioned above features a separate set of segmented speech data is obtained 
during the classification task. These sets are later used in the speaker recognition 
module. The speech detection module works in speaker independent mode.  

The second module is the speaker recognition (i.e. speaker identification) 
module. It uses a MLP as classifiers and LPC-derived cepstral vectors as features. 
The data utilized in this module is segmented in speech and non-speech frames by 
speech detection module in advance. Only speech frames are used for speaker 
recognition.  

3.1. Speech detection module 

In this module a single MLP is used with structure 15-20-1. The network has 20 
neurons in one hidden layer and a single output neuron. The activation functions of 
the neurons are a hyperbolic tangent function (in a hidden layer) and a sigmoidal 
function (in an output layer). The Rprop algorithm with the most typical parameters 
settings is applied according to the recommendation in [10]. The input vector size is 
set to 15. The target levels used are [0.1; 0.9] and the network is trained in a batch 
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mode. In a testing mode, in order to make the speech/non-speech decision, the 
output neuron level is thresholded at the mean of the output neuron values obtained 
over particular tested data (single file), i.e. this is the speech threshold (in [8] this 
threshold is set to 0.5).  

The speech data for speech detection are sampled with a frequency of 8 kHz at 
16 bits, PCM format and mono mode. The analyzed frequency range is up to 4000 
Hz. No additional filtering is applied. The analysis parameters are frame length – 30 
ms. and frame shift – 10 ms. In speech preprocessing Hamming windowing and 
corresponded feature extraction are included – BMD feature, MMD feature, MBSE 
and FF feature. In this module the accepted feature vector size is 15. Therefore the 
number of sub-bands G=15 in the MBSE, the number of lags regions J=15 in the 
BMD, the number of sliding steps V=15 in the MMD, the number of Mel-scale 
triangular filters used to generate the FF parameter is 15 and the parameter Q=15 in 
(1). 

The waveform of the noisy speech fragment with a length of 4 s and the 
corresponding trajectories of the output neuron level for analyzed features are 
shown in Fig. 1. These trajectories are obtained with already trained MLP and they 
are shown for illustrative purposes only. 

 
 

Fig. 1. Speech fragment and the corresponding output neuron level trajectory for analyzed features:         
(a) speech waveform, (b) BMD feature, (c) MMD feature, (d) MBSE feature, (e) FF feature,               

(f) manual segmentation and (g) spectrogram 

3.2. Speaker recognition module 

In this module a single neural network is used to perform the speaker classification 
task. The data in the experiments are selected from a small number of speakers (10) 

Time, s
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and a MLP with structure 14-100-10 is used. The network has 100 neurons in one 
hidden layer and 10 output neurons (number of speakers). The input vector size is 
set to 14. The hyperbolic tangent function is selected as an activation function for 
all neurons. The Rprop algorithm with the most typical parameters settings is 
applied according to the recommendation in [10]. The target levels used are [−0.95; 
0.95] and the network is trained in a batch mode. The structure of MLP is selected 
based on the heuristic considerations and advices given in [1, 2]. 

The speech data for speaker recognition are sampled with a frequency of          
8 kHz at 16 bits, PCM format and a mono mode. The analyzed frequency range is 
up to 4000 Hz. No additional filtering is applied. The analysis parameters are frame 
length − 30 ms. and frame shift − 10 ms. In the speech preprocessing Hamming 
windowing, a 14th order LPC-derived cepstral vector calculation and the cepstral 
mean subtraction technique are included. 

4. Experiments 

In the experiments are utilized speech samples selected from updated version of the 
BG-SrDat corpus [5]. The BG-SrDat is a corpus in Bulgarian language collected 
over noisy analog telephone channels and designed for speaker recognition. The 
selected data comprise telephone speech collected under different noisy 
environments, i.e. the multi-style training is used.  

The speech detection data are separated into three groups − for training, 
validation and testing. Each one of the first two groups includes roughly 40 000 
frames selected from 10 speakers. The testing data are data which are used in a 
speaker recognition module (see in the text below). In further text the term ‘speech 
frames’ means the frames detected as speech by speech detection module.  

The selected data for speaker recognition included speech material from 10 
speakers (male). This data is divided into three groups − for training, testing and 
validation. The data for training and validation is formed by speech data sets. Each 
set consists of 1800 speech frames randomly collected from speech data obtained 
from a single telephone call. The training data for each speaker consists of 2 speech 
data sets (3600 speech frames from 2 different calls). The validation data consists of 
only one set per a speaker. In the testing mode supra segments-based technique is 
used. The length of a supra segment is 200 speech frames and the shift is 100 
speech frames. The speaker identification is performed for each supra segment 
separately. The recognized class is the class with the maximum value in the average 
MLP outputs vector, obtained over frames belonging to the particular supra 
segment. The MLP training is stopped, when based on the validation test a global 
minimum in the output mean square error is found or this error is not changed 
significantly up to the 200th epoch. 

Since the neural network learning algorithms include random number based 
procedures, the speech data in the study are utilized by a MLP classifier in a 
multiple runs scheme [1]. This scheme is valid for both modules. The performed 
runs are 5 and 10, for speech detection and speaker recognition modules, 
respectively. Usually the recommended number of runs is not more than 20 [1]. 
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In Table 1 the identification errors in percentage for each speaker and each 
feature are shown. These errors are calculated by averaging over the errors obtained 
in the 5×10 runs scheme, i.e. each speech detection run provides one set of 
segmented speech data (for each feature) that is later used in 10 speaker recognition 
runs. 
                                          Table 1. Identification errors in percentages 

Features Speaker BMD MMD MBSE FF 
Spk No 1 57.04 22.72 18.08 38.40 
Spk No 2 6.79 5.58 2.51 5.06 
Spk No 3 0 0 0 0 
Spk No 4 61.35 70.59 85.57 75.65 
Spk No 5 16.87 20.17 31.26 41.06 
Spk No 6 1.34 0.36 3.79 1.07 
Spk No 7 3.33 1.36 0.9 0.81 
Spk No 8 49.05 13.36 80.31 95.08 
Spk No 9 55.65 46.68 33.95 21.18 

Spk No 10 0.18 0 0 0.08 
Average 25.16 18.08 25.63 27.83 

5. Discussion and conclusions 

In the experiments with noisy speech data, we study the raw speech detection effect 
on the speaker recognition rate. The raw speech detection does not utilize any 
additional techniques to improve speech/non-speech decision. It is often used for 
development of speech detection algorithms because the lack of improvement 
techniques helps to identify easily which feature is more effective.  

The next two processing steps are important in the proposed modification of 
the MD parameter. First, instead of the non-overlapping lags ranges a sliding 
overlapping window is used. The width of this window is usually more than twice 
of the single lags range width. Thereby the final feature vector is additionally 
smoothed. And second, the mean normalization is done with the mean evaluated 
over all speech frames in a particular data set (typically it comprises a few files). In 
this way more reliable estimation of the mean vector is obtained. In the basic MD 
parameter algorithm the mean is evaluated only over speech frames from a single 
file (the files selected from the speech corpus have approximately the same length).  

The trajectories (the raw speech detection module output, i.e., before using of 
the speech threshold) of all the features obtained on a noisy speech fragment with 
length of 4 s are shown in Fig. 1. It is evident that the noise has more effect on the 
trajectories of the MBSE and FF parameters than on the trajectories of both MD 
parameters – see the non-speech activity fragment in the first two seconds of data in 
Fig. 1 (d), (e) and (b), (c), respectively. Moreover, in the same fragment, the 
trajectory of the MMD parameter possesses less random variations than the BMD 
one (see Fig. 1 (c) and (b)).  

It is worth to note that the noisy speech fragment shown in Fig. 1 is a part of 
the training data for the speaker noted as Spk No 8 in Table 1. The large variations 
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in MBSE and FF parameters trajectories (see Fig. 1 (d) and (e)) cause poor speech 
detection and this results in a very high error rate for that speaker (see Table 1,       
Spk No 8 – for MBSE and FF features). 

Based on the results shown in Table 1 we conclude that the MMD feature 
provides the best speaker recognition rate among all the features. In comparison 
with the basic MD feature the modified MD feature improves the recognition rate 
for 7 of 10 speakers and makes worse for two of them. However for some speakers 
(i. e., see Table 1, Spk No 4 for all features) the error rate remains unacceptably 
high. The additional analysis of speech data for Spk No 4 revealed that the main 
cause for this low recognition rate is the high amount of distortions observed in 
these data.  

Our forthcoming work will include some attempts to utilize the MMD feature 
in detection of the voiced part of noisy speech and to use the obtained detection 
results in speaker recognition tasks.  
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