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Abstract: In the paper, the indirect presentation of the convex covers of two 
arbitrary nonintercepted and compact sets in the multidimensional Hough space is 
examined. The basic purpose of this study is the analysis of the connection between 
the extremum sets of the images of these covers and the hyperplanes classifying 
these two compact sets.  

Two basic cases for the compact sets are examined: linearly separable and 
linearly unseparable sets. In both cases it is proved that the points of the extremum 
sets in the Hough space synonymously correspond by the reverse image, to the 
optimum classifying hyperplanes in the object space. In the second case it is proved 
that the extremum point corresponding to the classifying hyperplane which is the 
the best approximation hyperplane by Chebishev for the optimum hypersurface 
separating these two compact sets, in the sense of its definition. 

Keywords: Classification, theory of sets, Hough transform, Chebishev 
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1. Introdiction 

The multidimensional Hough transform enables the compact presentation of 
different groups of hyperplains as sets of points in the n-dimensional space, defined 
by this transform (Hough space). 

                                                 
1 This research is supported by the Institute of Information Technologies, BAS, Project No 010085, 
“Neuroinformation systems for classification and identification”. 
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The analysis in the paper illustrates that if we have two non-intersecting sets  
S1  and S2 in the space En, which have to be classified, and if a set of hyperplanes is 
defined, which separate S1  and S2 (strictly or non-strictly) in some way, then the 
image of this set in the Hough-space will carry information for the mutual 
disposition of S1  and S2 and for the manner of their separation. 

All hyperplanes in En can be divide into three groups which form three basic 
sets, namely:  

1) hyperplain sets, which intercept the inside of the sets S1 and (or) S2: Int(S1), 
Int(S2);  

2) hyperplane sets which are supporting to S1 and (or) S2; 
3) hyperplain sets which have not common points with S1 and (or) S2.  
By means of these sets we can present indirect S1  and S2 in the Hough space 

Ln  [1].  
Let us consider such a way for presenting in the space Ln of any of this two 

sets, for example, the set S1  (Fig. 1а). For that purpose at first we will set the three 
basic hyperplane sets which will be subsets of the set of all hyperplanes, defined in 
the space En : H = {H : H ⊂ En}. Depending on the location of the hyperplane sets in 
relation to S1, we will have the following conditions for their determination:  

1) Hk = {Hk : Hk  ∩ Int(S1) ≠ ∅} – for example, the hyperplane Hk  on Fig. 1а;  
2) H b =  {Hb : Hb  ∩ Fr(S1)  ≠ ∅ ∧ Hb  ∩ Int(S1) = ∅} – the hyperplanes Ha  and 

Hb; 
3) He = {He : He  ∩ 1S   ≠ ∅} – the hyperplanes  i

abH   and j
abH  on Fig. 1a. In 

this way, the three subsets will be defined by the form and the location of S1  in En, 
which means that they will contain information for the more common 
characteristics of the S1  set. Further we will unify the second and the third subsets 
and will note them by H1: H1 = Hb ∪ He.  

2. Basic properties of the multidimensional Hough transform 

Initially, for the further analysis of this task, we will formulate the following 
theorem  [2]:  

Theorem 1. The set H1  = T(H1) is convex and closed. 
In this case by T(...) is noted the Hough transform: En  →  Ln . According to 

this theorem, the images of the supporting to S1 hyperplanes will be points from the 
bound of the set H1  ⊂ Ln, for example T(Ha) = ha ∈ Fr(H1)  and T(Hb) = hb ∈ 
Fr(H1), and the hyperplane images which do not intersect the set 1S  will be points 
which belong to the inside of H1 set, for example: T( i

abH ) = i
abh ∈ Int(H1)  and 

T( j
abH ) = j

abh ∈ Int(H1). Accordingly, the hyperplanes which intersect  the set S1, 
i. e. which belong to the set Hk, will be represented in the space Ln as points 
outside H1 : T(Hk) = hk ∉ H1, where H1  is a closed set H1 = 1H  (Fig. 1b).  
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In the same manner we can represent in the space Ln the three sets 

“interacting” with the set S2  ⊂ En. For the set H2 we will have H2 = 
2
bH  ∪ 

2
eH  

and its image in Ln will be T(H2) = H2, where H2  = 2H  is convex and closed 
set. In this case: 

2
bH  = { 2

bH  : 2
bH  ∩ Fr(S1)  ≠ ∅ ∧ 2

bH  ∩ Int(S1) = ∅} and 
2
eH  = { 2

eH : 2
eH  

∩ 1S  ≠ ∅}.  With the help of transforms T(H1) and T(H2) we can represent 
(indirectly) in the space Ln  simultaneously the two sets S1 and S2 and to analyze 
the common properties of their images, which will be made in Section 3 of this 
paper. The receiving results will be used in Section 4 and Section 5 by image 
analysis of the classifying hyperplanes by linearly separable and linearly 
unseparable sets accordingly. 

 

 

Fig. 1. The envelope co S1 of  the set S1 and its supporting, not intersect and intersect the set S1  
hyperplanes (a).  The images of these hyperplanes in the space Ln(b) 

This analysis will allow to determine the characteristic features of the 
classifying hyperplanes, whose images in the space Ln belong to an extreme set of 
points, defining further in this paper. 

3. Representing of two compact sets in the Hough space 

Let two unintersected sets S1 and S2 be given, for which we suggest they are 
strongly linear separable: S12  = coS1  ∩ coS2 = ∅ and let us consider the set of 
hyperplanes  H1 ∪ H2 (Fig. 2a), where coS1  and coS2  are the envelope of the sets 
S1  and S2 (the sets coS1  and coS2 are always convex).  
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Then according to Theorem 1, the hyperplanes Ha and Hb, which are 
simultaneously supporting to the sets co S1 and coS2 in the space En  (Fig. 2а), will 
represent as the points ha and hb in Ln, which will belong as well to the boundary 
Fr(H1) of the set H1, as to the boundary of the set H2: Fr(H2), i. e. ha ∈ Fr(H1) 
∩ Fr(H2) and hb ∈ Fr(H1) ∩ Fr(H2) (Fig. 2b).  

 

 
 
 
Fig. 2.  Two unintersected sets coS1, coS2 and their set of  hyperplanes 1 ∪ 2  (a); the images of  the 

hyperplanes of  the set  1 ∪ 2  in the space Ln  (b) 

According to the same theorem, hyperplanes i
abH  and j

abH , which strongly 

separate the two sets coS1 and coS2 and obviously fulfill the conditions i
abH  ∩ coS1 

= ∅ ∧ i
abH  ∩ coS2  = ∅ and j

abH  ∩ coS1   = ∅ ∧ j
abH  ∩ coS2 = ∅, will be 

represented as inside points simultaneously of the two sets H1 and H2  in Ln:  
i

abh ∈ Int(H1) ∧ i
abh ∈ Int(H2)  and j

abh ∈ Int(H1) ∧ j
abh ∈ Int(H2) (Fig. 2b). 

From this immediately follows:  
i

abh , j
abh  ∈ Int(H1) ∩ Int(H2) ⇒ Int(H1) ∩ Int(H2) ≠ ∅. 

These theoretical conclusions allow us to formulate the following statement, which 
proof in details is given in [2]:   

Statement 1. If in the space En the compact sets co S1 and co S2 are strongly 
linearly separable i. e. they do not intercept each other, then in the space Ln the 
inside sets of the sets H1 and  H2  will intercept each other:  

Int(H1) ∩ Int(H2) ≠ ∅. 
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Fig. 3. Two intersected sets coS1, coS2 and their supporting hyperplanes 1H a , 2H a  and 1
bH ,  2

bH  
together the hyperplane Hk, which intersect the set S12 (a). The images of these hyperplanes in the 

space Ln  (b) 

Let us examine the second case where we will have two intersected sets S12 = 
coS1 ∩ coS2 ≠ ∅ (Fig. 3а). If we take in the space En the points a and b, defined 
from the condition a ∈ Fr(coS1) ∩ Fr(coS2) and b ∈ Fr(coS1) ∩ Fr(coS2), then each 
of these points we can examine as a point, lying on the axis of the corresponding 
bunch of hyperplanes Ha and Hb.  

The bunch Ha will be limited from the supporting, respectively to co S1  and 
coS2, hyperplanes 1

aH  and 2
aH , where 1

aH , 2
aH  ⊂ Ha and the bunch Hb  will be 

limited from the hyperplanes 1
bH , 2

bH  ⊂  Hb, supporting as well (respectively) to 
coS1  and  coS2   Then, according to the Theorem 1, the hyperplanes 1

aH   and 2
aH  

will be represented in the space Ln  as bounding points respectively of the sets H1  

and  H2: T( 1
aH )  = 1

ah  ∈ Fr(H1) and  T( 2
aH )  = 2

ah  ∈ Fr(H2)  – on Fig. 3b.  
By analogy, the supporting hyperplanes 1

bH  and 2
bH  will be represented as 

bounding points, accordingly: T( 1
bH ) = 1

bh  ∈ Fr(H1) and T( 2
bH ) = 2

bh  ∈ Fr(H2) 
(Fig. 3b). Hyperplanes Ha and Hb, which are inside elements accordingly to the 
bunch Ha: Ha ⊂ Ha  and to the bunch Hb: Hb ⊂ Hb, will intercept the sets coS1 and 
coS2, i. e. they will satisfy the conditions: Ha ∩ (coS1 ∩ coS2)  ≠ ∅ and Hb ∩ (coS1 ∩ 
coS2) ≠ ∅ (Fig. 3а). As follows from Theorem 1, these hyperplanes will be 
represented as points outside the sets  H1  and  H2  in the space Ln, for example 
hyperplane Hk, where Hk  ∩ (coS1 ∩ coS2)  ≠ ∅ will be represented as the point        
hk = T(Hk) in Ln and will execute the condition: hk ∈ (Ln \  H1 ) ∪ (Ln \  H2 )     
(Fig. 3b). That means if we have a hyperplane bunch Hz with a centre in the point z, 
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belonging to the inside of the set coS1 ∩ coS2, then for the image T(Hz) = Hz, which 

will be a hyperplane in Ln we will have Hz  ∩ H1 = ∅ and Hz  ∩ H2 = ∅, i. e. 
this hyperplane will divide strongly the sets H1  and  H2  [3]. It is clear that if the 
closed, convex and infinite sets H1 and  H2 can be strongly separated by the 
hyperplane (in this case the hyperplane Hz ), then for these sets will be executed the 
condition: H1  ∩ H2  = ∅. From here we can formulate the following statement: 

Statement 2. If in the space En  the compact sets coS1  and  coS2 are such that  
Int(coS1) ∩ Int(coS2) ≠ ∅, then the sets H1  and H2  (in the space Ln) will execute 
the condition: H1  ∩ H2  = ∅, i.e. they will be strongly separable.   

4. Representation of the classification hyperplanes for linear separable 
sets in the Hough space 

Let for the compact sets coS1  and coS2 hold the condition coS1  ∩ coS2 = ∅. Then 
according to Statement 1, in the space Ln will be valid the condition                    
H12 = Int(H1) ∩ Int(H2) ≠ ∅. This means that every inside point hi ∈ Int(H12) 
will be an image in the space Ln  of strongly separating the sets S1  and S2  

hyperplane Hi = T–1(hi), defined in the object space En, where: Hi  ∩ 1S  = ∅ ∧ Hi  ∩ 

2S  = ∅   and 1S  ⊂ [Hi], 2S  ⊂ [ -
iH ] or 1S  ⊂ [ -

iH ], 2S  ⊂ [Hi]. The sets S1 = 1S  

and S2 = 2S  are closed and [Hi], [ -
iH ] are accordingly the positive and the 

negative half-spaces of the hyperplane Hi. Since the set H12 is closed (because it is 
an intersection of two closed sets H1 and H2, according to the Theorem 1), then ∀ 
hi ∈ Int(H12) will be limited simultaneously from below – by Fr(H1) and from 
above – by Fr(H2)  (Fig. 2b).  

Let us specify the functions f1(c) and f2(c), describing analytically the set 
boundaries of H1  and  H2  and let us determine the area Ω ⊂ Cn–1 in the subspace 
of the arguments {c} = C n–1  by means of the condition  cΩ = {c ∈ Ω: f1(c) ≤ f2(c)}, 

where  Cn–1 × 1L  = Ln.  Then in the area Ω  for the  function: 

(1)              fr(c) = f1(c) – f2(c)  we will have   fr(c) ≤ 0. 

Since the set H12 is convex, then for any pair of points hi(ci, Li) ∈ Int(H12) and 
hj(cj, Lj) ∈ Int(H12), where ci = cj, ci, cj ∈ Ω, will be valid the inequality |Li – Lj| ≤  
fr(ci), because for the points 1

ih [ci,  f1(ci)] and 2
ih [ci,  f2(ci)] we have: 1

ih ∈ Fr(H1)  
and  2

ih ∈ Fr(H2).  
Let us analyze in more details the function fr(c) from condition (1). For its 

extremum we will have: min
c

fr(c) < 0, from where for the extremum point (or 
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points) cе will be valid the condition: |f1(cе) – f2(cе)| = max
c

| f1(c) – f2(c)|, for c ∈ Ω. 

The reverse image of the extremum of fr(c) will have specific properties in 
comparison with the reverse image of any other point of this function, i. e. at            
c ∉ {cе}. This fact is illustrated by means of theorem: 

Theorem 2. If cе ∈ Cn–1 is extremum point of the function fr(c), for which  
fr(cе) = min

c
 fr(c)  in the space Ln, then in the space En,  the vector cе will coincide 

in direction with the normal vector of the pair parallel hyperplanes 1
eH  and 2

eH , 
separating unstrictly the sets S1 , S2  and executing the conditions: | 1

ey  – 2
ey | = 

max
c

| 1
py  – 2

py |, where: 1
ey  = T

ec x – Le1, 2
ey  = T

ec x – Le2  and 1
py  =  T

pc x – Lp1,    

2
py  =  T

pc x – Lp2,   x  = (x1, x2, …, xn–1) ∈ Xn–1. 
P r o o f:  Let us examine anyone pair of parallel hyperplanes 1

pH  and 2
pH , 

separating unstrictly the two sets S1, S2 and defining by the equations 1
py  =  T

pc x – 

Lp1, 2
py  =  T

pc x – Lp2.  The distance between the two hyperplanes (along the axis Y) 
will be 

(2) | 1
py  – 2

py | = |Lp1 – Lp2| = | T
pc x0 – y01 – 

T
pc x0 + y02| = |y01 – y02|, 

where for the points 1
0x (x0, y01)  and 2

0x (x0, y02) in the object space En we will 

have: 1
0x ∈ 1

pH   and  2
0x  ∈ 2

pH . Since by condition the hyperplanes 1
pH   and 2

pH  
divide unstrictly the sets S1 and S2 accordingly, then 1

pH  will be a supporting 
hyperplane to S1, and 2

pH  will be a supporting hyperplane to S2 . Then, according to 
the Theorem 1, for the images of these hyperplanes in the space Ln, we will have: 

T( 1
pH ) = 1

ph (cp, Lp1) ∈ Fr(H1) and T( 2
pH ) = 2

ph (cp, Lp2) ∈ Fr(H2), where the 
boundaries Fr(H1) and Fr(H2) are described analytically by the functions  f1(c) 

and  f2(c). That means that each of the points 1
ph  and 2

ph  can be also specified in 

the following way: 1
ph  = [cp, f1(cp)] and 2

ph  = [cp, f2(cp)], from where the equalities:  
f1(cp) = Lp1  and f2(cp) = Lp2    follow.  

For each hyperplane 1
pH   and 2

pH , unstrongly separating the sets S1  and S2, 

we will have two cases: 1) 1
pH  ∩ 2S  = ∅ and 2

pH  ∩ 1S  = ∅, where 1S  = S1  and  

2S  = S2   are closed sets, and  2) 1
pH  and (or) 2

pH  are supporting to the  coS1   and  
coS2   simultaneously.  

Let us examine the first case, for which according to the Theorem 1 we will 

have T( 1
pH ) = 1

ph  ∈ Int(H2), where  H2  = 2H . Along with this, obviously    
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1
ph  ∈ H12 (because 1

ph  ∈ Fr(H1)), where H12  = 12H  is closed set. By 

analogy, for T( 2
pH ) = 2

ph  ∈ Int(H1), we will receive 2
ph  ∈ H12 . 

For the second case we will have  
1
ph ∈ Fr( H1) ∧ 1

ph ∈ Fr(H2) ⇒ 1
ph  ∈ Fr(H1) ∩ Fr(H2) 

if 1
pH  executes the condition of case 2) and respectively 2

ph  ∈ Fr(H1) ∩ Fr(H2) 
if 2

pH  executes the same condition.  
Let us analyze in more detail the first case. Since H2 is a convex set, and the 

function f2(c), which analytically describes the bounding of this set is concave       
[2, Property 1.3], then H2  will be hypograph of the function f2(c): hypf2(c) and will 

be determined by the condition {h2(c, L): c ∈ Cn–1, L ∈ 1L , L  ≤ f2(c)} = H2. Then 

as soon as the point 1
ph  = [cp, f1(cp)] is such that 1

ph  ∈ Int(H2), we will receive the 
conditions  Lp1 < f2(cp) ⇒ f1(cp)  < f2(cp),  in view of the equality Lp1 = f1(cp). 

For the second case from the condition 1
ph  ∈ Fr(H1) ∩ Fr(H2) follows    

f1(cp) = f2(cp). And the same equality will be valid for 2
ph : 2

ph  ∈ Fr(H1) ∩ Fr(H2), 

from where immediately follows:  fr(cp) = 0. Let us examine all the points 1
ph , 2

ph  
∈ Fr(H1) ∩ Fr(H2). They will belong to the intersection of the function fr(cp) with 
the subspace Cn–1, by that for the convex function  fr(c), which is difference 
between convex and concave function, we will have  fr(cg) > 0 for cg ∉ ji c c , 

where the end points will execute the condition ci, cj ∈ { o
Ωc : fr(  o

Ωc ) = 0}. It is 

clearly that for the last set we will have { o
Ωc : fr( o

Ωc ) = 0} = Fr(Ω), that means all 

the points 1
ph  and 2

ph  will be projected on the boundary of the set  Ω:  Fr(Ω). Since 

for all points 1
ph , 2

ph  ∈ H12 is executed the condition  fr(cp)  ≤  0, then it follows 

the set H12  is projected completely on the set Ω  ⊂ Cn–1, where Ω = Ω  is a closed 
set. 

By condition the set H12  contains the images of all the hyperplanes which 
separate strictly or unstrictly S1 and S2, because of that we will analyze only this set. 
Since for the function fr(c) we have fr(c) ≤ 0, ∀c ∈ Ω, where h1[c, f1(c)] ∈ Fr(H1) ⊂  
H12  and h2[c, f2(c)] ∈ Fr(H2) ⊂ H12, then min

c
fr(c) < 0,  for c ∈ Ω. 

If we have in mind the equation  fr(c) = f1(c) – f2(c), we will receive fr(cе) = 
min

c
fr(c) = min

L
(Le1 – Le2) < 0 for cе ∈ Ω, from where for |Le1 – Le2| in the area Ω , 

for the points 1
eh (cе, Le1) and 2

eh (cе, Le2) we will have |Le1 – Le2| = max
L

|L1 – L2|, cе∈ 
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Ω. The last equation defines in the space En the condition: | 1
ey – 2

ey | = max
y

| 1
py –

2
py |  for the dividing S1  and S2  mutually parallel hyperplanes 1

pH  and 2
pH , in 

accordance with the equation (2): | 1
ey  – 2

ey | = |Le1 – Le2| By this the Theorem 2 is 
proved completely    

By means of  this theorem we can determine the correspondence  between the 
extremum point cе  of the function fr(c) in the space Ln and the orientation of the 
best separating the sets S1  and  S2, mutually parallel hyperplanes in the object space 
En. 

5. Representation of the classification hyperplanes for non-linear 
separable sets in the Hough space 

If the compact sets S1 and S2 defined in the object space En are such that S1 ∩ S2 = ∅ 
but for their covers coS1 and coS2 the condition Int(coS1) ∩ Int(coS2) ≠ ∅ is 
examined, then, according to the Statement 2, for the sets H1 and H2  (in the 
space Ln) the condition 

H1  ∩ H2   = ∅  will be valid, where H1  =  T(H1)  and  H2  = T(H2). 

For the functions  f1(c) and f2(c) we will have the inequalities f1(c) > Li > f2(c) 
⇒ f1(c) > f2(c), where hi(c, Li) ∈ Hi, and Hi is any hyperplane strongly divided the 
sets H1 and H2. From these inequalities follows the condition fr(c) = f1(c)–f2(c)>0, 
where fr(c) is a convex function in the space Ln. That means for the extremum of 
this function (in this case-minimum) we will have: fr(cе) = min

c
fr(c)>0. The reverse 

image of the minimum point r
eh [cе, fr(cе)] of the function fr(c) will represent  the 

hyperplane Hr, which will intercept the set  S12  in the space En, where S12  = coS1  ∩ 
coS2 ≠ ∅.  

Before to analyze the properties of this characteristic hyperplane, which 
classifies (although badly) the two sets S1 and S2 in the space En, we will define the 
concept for the best dividing S1 and S2 hypersurface among the family P  of all 
dividing hypersurfaces. 

Definition 1. We shall call Po, Po ⊂ , a hypersurface which divides the sets 
S1  and S2  in En, in the best way if for its function Po(x) is examined the condition: 

V[Po(x), ω] ≤ V[Pi(x), ω], ∀ω ⊂ Ω  = X12,  x ∈ ω, where: 

X12 = Ω = PrX(S12) – the project of the set S12 in to the subspace  Xn–1 ⊂ En; 
{ω} – subsets of  Ω , 
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V(Pi, ω) is the (n –1)-th variation of the function Pi(x), defining by the similar 
way as in [4]; V(Pi, ω) = (1/K) ∫

B
V1(Pi, I) dµB; I = ω ∩ β1; β1 – in this case 

straight line, 

∫
B

V1(…)dµB – Lebegue integral  [5], 

B = {β1: β1 ⊂ Xn–1} – the space of all lines in the subspace  Xn–1 ⊂ En, 
V1(Pi, I) – the first variation of the function  Pi(x) for x ∈ I, which as is known 

from [6], for the one-dimensional area I is equal to the variation of one-dimensional 
cross-section of this function (Banach theorem [6]); µB  – Lebegue measure (in this 
case linear) of the set ω  in the space B, 

K = ∫
B

V0(I)dµB – the first variation of the set ω. 

V0(I) – zero-variation of the set ω ∩ β1  – ( component number in I). 
We will formulate three important properties of this hypersurface, which are 

examined and proved in detail in [7], and which we will use further in the proof of 
the Theorem 3. 

Property 1. F2(x) ≤ Po(x) ≤ F1(x), x ∈ X12; where: F1(x) and F2(x) are the 
functions describing the hypersurface Fr(coS1) and Fr(coS2) accordingly, in the area 
X12. 

Property 2.  If we define the sets  s1 = {si1: si1 ⊂ Fr(S1) ∩ Fr(coS1) ∩ coS2} and 
s2 = {sj2: sj2 ⊂ Fr(S2) ∩ Fr(coS2) ∩ coS1}, where 

1j

U si1 = Fr(S1) ∩ Fr(coS1) ∩ coS2 

and 
2j

U sj2 = Fr(S2) ∩ Fr(coS2) ∩ coS1, then for these sets will be valid the 

conditions: s1 ⊂ Po and s2 ⊂ Po. 
Property 3. Every supporting to the set S12 = coS1 ∩ coS2  hyperplane H, will 

be simultaneously supporting to the separating, the two sets S1 and  S2, hypersurface 
Po, where PrX (Po) ⊂ X12. 

From Property 3 immediately follows a corollary important from a theoretical 
point of view [7]: 

Corollary 3.1. Every supporting to the set S12 hyperplane H, will be tangential 
to the function Po(x), which defines analytically the hypersurface Po in the area X12. 

Theorem 3. If cm ⊂ C n–1 is such argument of the function  fr(c) that fr(cm) = 
minc fr(c) in Ln, than in the space En the vector cm  will coincide by direction with 
the normal vector of the hyperplane  Ho of the best approximation by Chebishev for 
the function Po(x) in En , i. e.  

max|Po(x) – Ho(x)| = minH [maxx|Po(x) – H(x)|], for  x ∈ X12, 

where Ho(x) and H(x) are denoted the equations of the appropriate hyperplanes. 
P r o o f:  Let us first examine the set Fr(coS1) ∩ coS2 and respectively – the 

set s1. From Property 2 and Property 3 it is clear that the set s1 contains all 
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extremum points of the set Fr(coS1) ∩ coS2. Then each supporting to this set 
hyperplane H1t will contain obligatory at least one point s1 ∈ s1, i. e. ∀H1t ∩ s1  ≠ ∅ 
and will be supporting also to Po (Property 3). Along with this, from the execution 
of the condition s1 ⊂ Po(x), according to Corollary 3.1, every such hyperplane will 
be supporting to the function Po(x), describing the hypersurface Po. For the function 
Po(x), according to Property 1 we have the inequality Pо(x) ≤ F1(x). For the function 
F1(x), describing this part from the boundary of the set coS1, which is projected on 
the area X12 , i. e. the hypersurface Fr(coS1) ∩ coS2, we will have the inequality: 
F1(x) ≤ F1(x)  ⇒ Pо(x) ≤ F1(x), according to the basic properties of the concave 
cover of the sets. 

Then from the conditions H1t ∩ s1 ≠ ∅, ∀H1t and  s1  ⊂ Po(x), we can conclude 
that ∀H1t which is supporting to Fr(coS1) ∩ coS2, will be simultaneously supporting 
to the hypersurface Po. That means the images T(H1t) of the supporting hyperplanes 
H1t in the space Ln, which are such that: {T(H1t)} ⊂ f1(c), will reflect the basic form 
of F1(x), and to some extent the form of Pо(x), defined in En. The same reasonings 
will be valid for the set s2 with the difference that we will have in En the inequalities 
F2(x) ≤ F2(x) ≤ Po(x) ⇒ F2(x) ≤ Po(x), where the function F2(x) describes the set 
(the surface)  Fr(coS2) ∩ coS1 accordingly. By analogy in the space Ln for the 
images T(H2t) of the supporting hyperplanes H2t will be valid the condition:  
{T(H2t)} ⊂ f2(c).  

Let us examine in detail the functions  f1(c) and  f2(c), and their difference – 
the function  fr(c):  fr(c) = f1(c) – f2(c). In the extremum point  cm, for which  fr(cm) = 
minc  fr(c),  we can define the coordinates  of the corresponding points for every of 
this functions in the following way: h1m[cm, f1(cm)], h2m[cm, f2(cm)] and hrm[cm, fr(cm)], 
from where it is clear that Lrm = L1m – L2m = min. 

Then in the space En, the difference between the equations (in obvious form) 
of the hyperplanes H1m = T –1( h1m )  and  H2m = T–1(h2m) will be  

(3) Yr  =  Y1 – Y2  =  (xTcm + L1m) – (xTcm + L2m) = L1m – L2m = min,  

where x  = (x1, x2, …, xn–1),  cm  = ( c1m, c2m, …, cn–1, m). The linear functions, which 
define the hyperplanes H, contain in their equations the additive constant L, which 
is parameter. In these cases, as it is known [8], the couple parallel hyperplanes  H1m  
and H2m, which are supported accordingly from below and from above to the 
function Po(x) and execute the condition (3), will be the best one-sided 
approximation by Chebishev, accordingly from above  (H1m)  and from below (H2m)  
for the function Po(x). Then the equation of the hyperplane Ho of the best 
approximation by Chebishev for the function Po(x) in En  will differ from the 
equations of hyperplanes H1m  and H2m, only with the additive constant L, i. e. for 
the normal vector cо, defined the orientation of this hyperplane in the space En, we 
will have: cо = cm. By this the Theorem 3 is proved   

From Theorem 3 follows immediately the following statement: 

Statement 3. If the hyperplane Ho ⊂ En, defined with the equation Ho(x) =  
co

T x – Lo = 0, is the hyperplane of the best approximation by Chebishev for the 
function Po(x), then the position of Ho in En will be defined synonymously from the 
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coordinates of the point hm(cm, Lm) in the space Ln: cо = cm, Lo = Lm, where:           
Lm = [f1(cm) – f2(cm)]/2, cm is extremum point of the function fr(c) and                 
fr(cm) = mincfr(c). 

P r o o f. For the couple parallel hyperplanes H1j  and H2j, supported from 
below and from above to the function Po(x), we will have |Po(x) – H1j(x)| = |Po(x) – 
H2j(x)| = supj|Po(x) – Hj(x)|,  for ∀Hj||H1j|| H2, where Hj  ∩ Po ≠ ∅ and with H(x) are 
denoted the equations of the appropriate hyperplanes. As in the concrete case we 
have the equations |Po(x) − H1j(x)| = |Po(x) − H2j(x)| = |H1j(x) − H2j(x)| = L1j – L2j, 
then the minimum difference |H1j(x) − H2j(x)| by j, according to the Theorem 2, will 
be gain by j = m:|H1m(x) − H2m(x)| = L1m − L2m = min. For the hyperplane Ho of the 
best (two-sided) approximation by Chebishev we will have  

|Po(x) – Ho(x)| = mint[maxx|Po(x) – Ht(x)|] = (L1m – L2m)/2 = Lm, 

where Lm  is a constant term in the equation which defines the function Ho(x);         
Ht ∩ Po ≠ ∅. From here if we have in mind the equation f1(cm) – f2(cm) = L1m – L2m  
(used in the proof of the Theorem 2), for the extremum point cm of the function fr(c), 
finally we receive  

Lo = Lm = (L1m – L2m)/2 = [f1(cm) – f2(cm)]/2, 

by which Statement 3 is proved   

6. Conclusion  

The results obtained in this paper could be used for theoretical investigations as 
well as for the creation of practical classification methods. An essential result, 
directly connected with the real classification problems, is the proof of the fact that 
the sign of the function fr(c), defined in the Hough space, is an indicator for the 
linear separability of the two compact sets, defined in the object space. It means that 
for them the function fr(c) is a characteristic function. Besides, if these sets are 
linearly separable, strictly or non strictly, i. e. if  fr(c) ≤ 0, then the extremum point 
cm of the function fr(c) will, in practice, unambiguously define the optimal 
separating hyperplane for the two sets. 

If the sets are linearly inseparable, then the properties of the optimal 
hyperplane which is the best Chebishev approximation of the optimal separating 
hypersurface, could be used mainly for theoretical research. The results of these 
investigations can be applied in the creation of neural networks for classification as 
well as in some methods for multidimensional spline approximation. 
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