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1. Introduction 

Consider a graph G = {N, U} with n nodes and m arcs. With each arc xi∈U are 
associated two numbers ci and bi  which practical means may be different – a cost 
and travel time for example.  

The problem for minimal circulation x = {xi,, xi∈U} with one side constraint 
(Cosc) may be defined as follows: 
MC:    min

i

i i
x U

cx c x
∈

= ∑  
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We denote: by A(i) and B(i) the sets of forward and backward arcs incident to 

the node i,  by X  – the set of circulations x which satisfy the constraints (1) and (3).  
The optimal solution of the problem MC is denoted by copt= cxopt  and by b* 

and B are denoted the minimum and the maximum of bx on X . 
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The defined problem is a generalization of the ordinary problem for minimal 
circulation on network which generalization is caused by theoretical and practical 
necessities. The problem arise defining scalarization problems of the BiCriteria 
network Flow (BCF). It is proved in [1, 2] that each efficient solution of BCF may 
be represented like a sum of an nondominated flow and an nondominated 
circulation in the incremental graph. 

The problem MC is a linear programming problem, but the researcher is 
provoked to exploit the unimodulare structure of the matrix of the constraints (1) 
and (3). Many adapted versions of linear programming algorithms are proposed. 
But usually these are not polynomial and do not ensure the integrality of the optimal 
solution when the input data is integral. The optimal solution of the problem being 
investigated may be received by a specialization of the simplex algorithm, which 
exploits the embedded network (unimodular) structure in the constraint matrix. In 
[7] it is proven, that the basic solution of this problem has a structure that 
corresponds to a spanning tree with one additional arc in the graph G. In [8] three 
different methods (primal, dual and Lagrangean) are described and their 
computational efficiency is compared. These methods handle the side constraint 
within the framework of a network code. But none of them is polynomial. 

In the present paper are proposed primal algorithms for solving the defined 
problem, which logic is based on the idea to improve the value of the objective, 
searching a feasible improving direction, solving appropriately defined 
subproblems. Such type of algorithms are used for solving polynomialy the min-
cost flow problem[3], the problem for optimal submodular flow [4], the problem for 
minimum cost generalized flow [5],  linear programs [6], certain classes of integer 
programs [7].  

2. The continuous problem  

Let y be a circulation in G. We denote by G(y) = {N, Uy} the incremental graph for 
y and by c, b, u – the corresponding parameters of the arcs. It is is constructed in the 
following way:  

– for each arc  i∈U  an arc  j∈ U(y)  exists if  yi < ui  and  cj := ci, bj := bi, 
uj := ui – yi; 

– for each arc i∈U  an arc  j ∈U(y) exists if  yi > 0  and  cj := – ci, bj := – bi,       
uj := yi.  

For each set I of arcs we denote by b(x) or by bx the sum ∑ bi(xi) of b-costs on                                         
                    i∈I 
these arcs, multiplied by the flow x on them, and by b – the sum of the b-costs.  

For each sum b of  b-costs on some arcs we denote its positive part by b
+
 and 

by b
–
 – its negative part. The respective sums of the costs on these arcs are denoted 

by c,  c
+
 and c

–
. 

A circulation x in the residual network G(y) is feasible if satisfies the 
conditions: 



 15 

(4)                  0
i y

i i
x U

b x
∈

=∑ ,  

(5)                 0 ≤ xi≤ ui,  xi∈Uy. 
Note that if x is a feasible circulation in the incremental graph G(y), then the 

circulation  z = y + x,  is a feasible circulation in the graph G. 
The problem for optimal circulation in G(y) is denoted by IMC: 
IMC:   min

i y

i i
x U

cx c x
∈

= ∑  

subject to (1), (4) and (5). 
Lemma 1. The circulation y in G is optimal if and only if there is not a 

feasible negative cost circulation in the network G(y). 
P r o o f: If there is in G another circulation z with a lower cost, then the flow    

z – y is a feasible one in the residual network and vise versa. 
Lemma 2. If x is a circulation, then it is accomplished cx=∑c

+
(y1

i) +∑ c
–
(y2

i)  
and bx =∑b

+
(y1

i)+ ∑b
–
(y2

i), where y1
i and y2

i are flows on cycles with positive and 
negative b-costs respectively.  

P r o o f: Each circulation may be decomposed in cycles.  
Let us define the problem IP on the incremental graph G(y): 
IP:     min cx/bx 

subject to x∈X. 
The problem IP is named “min-ratio circulation”. We shell prove that the 

solution of IP if exists, is an improving direction for the flow y.  
We will propose two algorithms, where in each iteration of whom, the gap 

between the cost of the flow on optimal circulation and the cost of the flow on the 
current circulation decreases until it becomes small enough. The integrality of the 
flow is not guaranteed. 

Algorithm 1 

Step 1. Let x1 be an initial solution of the problem. x:= x1. 
Step 2. Define G(x). Formulate the problem IP. 
Step 3. Find an optimal solution z of IP. 
a) If  bz > 0  and there is not a negative part in that sum, end. The flow x is 

optimal.  
b) If  bz < 0  and there is not a positive part in that sum, end. The flow x is 

optimal. 
c) bz = b

+
(z1) +b

–
(z2). If bz=0, z2:= pz2, 0 ≤ p < 1. Determine numbers λ1 and 

λ2  such that  
λ1b

+
(z1) + λ2  b

–
(z2) = b

+
(λ1z1) +   b

–(λ2  z2) = 0. 
Set z := (λ1z1,λ2 z2); x:=x+z; go to Step 2. 
Theorem 1. The Algorithm 1 finds an optimal solution of the problem MC. 
P r o o f: Let z is an optimal solution of the problem IP defined in the Step 2. 

The circulation xopt – x is an feasible solution of the problem IP and because      
bxopt≥0,  it is accomplished bz ≥0.  Let  bz = b

+
(z1) +b

–
(z2), i.e. b

+
(z1) ≥ – b

–
(z2).  



 16 

For λ1b
+
(z1) + λ2  b

–
(z2) = 0 it is accomplished λ1 ≤λ2 or λ2 /λ1≥ 1. Then: 

1 – 2 1 – 2 1 – 2 opt
1 2 2 1

1 – 2 1 – 2 1 – 2 opt
1

( ) ( ) ( ) / ( ) ( ) ( )
.

( ( ) ( )) ( ) ( ) ( ) ( )
c z c z c z c z c z c z c cx

b z b z b z b z b z b z bx
λ λ λ λ
λ

+ + +

+ + +

+ + + −
= ≤ ≤

+ + +
 

The last inequality is true when x+z is not an optimal solution for MC. 
λ1 (b

+
(z1) +b

–
(z2))= λ1 (b

+
(z1) –λ1 /λ2 b

+
(z1))= λ1(1–λ1 /λ2)b

+
(z1) 

The last is an feasible solution because λ1(1–λ1 /λ2) ≤ 1. Then: 
opt 1 opt

1 1 21 – 2
1 2 opt

( ) (1 / ) ( ) ( ) *
( ) ( ) .

c cx b z c cx b
c z c z

Bbx
λ λ λ

λ λ
+

+ − − −
+ ≤ ≤  

The last inequality implies that the flow on the current circulation                       
z = (λ1z1, λ2z2) improve the objective in every step with a fraction b*/B from the best 
possible improvement. 

The problem IP can be solved applying fractional programming binary search 
method for the parametric problem  IPP: 

IPP:   min cx – µbx 
subject to x∈X. 

The problem IPP is a minimal cost flow problem for fixed µ and may be 
solved effectively. 

Algorithm 2 
Step 1. Let x1 be an initial solution of the problem; x:= x1. 
Step 2. Define G(x). Formulate the problem IP. 
Step 3. Find two cycles σ1 and σ2  with costs (c1

+
, b1

+
)  and (c2

+
, b2

+
) 

respectively, such that:  
    

1
      

1

i

i

c c
b b

− −

+ +≤ , i∈ Φ1  ( it is denoted by Φ1 the set of all cycles in G(x) with 

positive b-cost). The cycle σ1  is a minimum mean cycle on Φ1. 
    

2
      

2

i

i

c c
b b

− −

− −≤
− −

, i∈ Φ2  ( it is denoted by Φ2  the set of all cycles in G(x) with 

negative b-cost). The cycle σ1  is a maximum mean cycle on Φ2. 
Step 4. Solve on the  set of arcs defined by cycles σ1 and σ2 

min (c1
+
(y)+ c2

–
(y)),   

s.t.  c
+
(y)+ c2

–
(y)<0, (1) and (3) 

a) If there is not a solution, end. The flow x is optimal.  
Step 5.  bz =b1

+
(y1)+ b2

–
(y2) where y1and y2 are flows on these cycles 

determined in Step 4. 
Determine numbers µ1 and µ2  such  that: 

µ1b1
+
(y1) + µ2 b2

–
(y2) = b1

+ 
(µ1y1) +  b2

–
(µ2 z2) = 0  

Set z := (µ1y1, µ2 y2); x:=x+z; go to Step 2. 
 
Theorem 2. The Algorithm 2 finds an optimal solution of the problem MC. 
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P r o o f: Let cycles in G(x) σ1 and σ2  are found in the Step 3. Let y is an 
optimal circulation  for the problem IP. The circulation xopt–x is an feasible solution 
of the problem IP. It is accomplished:  

opt

opt

( )
.

( )
c y c cx
b y bx

−
≤  

Because bxopt satisfies (2), it follows b(y)≥0, i. e. b
+
(y) ≥ –b

–
(y). 

The flow y can be decomposed in flows on cycles.  Let the flows y1
i, i∈Ik, are 

the flows on cycles with positive b-costs and the flows y2
i, i∈Il, are the flows on 

cycles with negative b-costs. Let y1 and y2 are the flows determined in Step 5 of the 
Algorithm 2 on the cycle σ1 – the minimum mean cycle on Φ1 and on the cycle σ2 – 

the maximum mean cycle on Φ2, such that b1
+
(y1)+ b2

–
(y2) ≥ 0 and z1=µ1y1, z2= µ2y2. 

(The case b1
+
(y1)+ b2

–
(y2)≤0 is analogous). The parameters µ1 and µ2  are defined 

from equality µ1b1
+
(y1)+ µ2 b2

–
(y2) = 0, µ 2 ≥µ1. It is clear that c2

–
(y)≤ 0, in the opposite 

case c1
+
(y) would be less than c1

+
(y)+ c2

–
(y).  We define he numbers λ1 and λ2  such 

that 
λ1b

+
(y) + λ2 b

–
(y)=0, λ2 ≥λ1. 

We choose a parameter p, 0 < p ≤1, such that λ1b1
+
(z1)+λ2b2

-
(pz2)=0, i.e. 

p=λ1/λ2. Than it is accomplished : 
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The inequality (7) is due to the fact that [10]: 
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1   1   

1   1   

    

min min
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And from (6) it is follows: 

(9)                   

1 2 1 2
1 2 1 2

opt 1 *2
opt2 1 1

opt 2

min( ( ) ( ))  ( ) ( z )

( )( / 1) ( ) ( )

c z c z c z c p

c cx b z bc cx
bx B
λ λ

+ − + −

+

+ ≤ + ≤

− −
≤ ≤ −

 

because  –b
–
(y) ≤ b

+
(y) ≤ B and  

 
(λ2 /λ1 – 1)b1

+ 
(z1)=(( b

+
(y)/( – b

–
(y)) – 1)b1

+  
(z1)= b

 
(y)b1

+  
(z1)/( –b

–
(y)) ≥ b*2/B. 

This implies that the flow on the current two cycles z = (λ1z1, λ2z2) improves 
the objective in every step with a fraction b*2/B2 from the best possible 
improvement. 

3. The integer problem  

Investigating this problem we solve the problem 
MI:    min

i

i i
x U

cx c x
∈

= ∑  

subject to (1), (3) and 
(10)                  0 ;

i

i i
x U

bx b x b
∈

= ≤∑  

                       x – integer, 
∆bx = b0 – bx. 

 
We propose the Algorithm 3 for solving MI. 
Algorithm 3 
Step 1. Let x1 be an initial solution of the problem; x:= x1. 
Step 2. Define G(x). Formulate the problem IP. 
Step 3. Find two cycles σ1 and σ2  with costs (c1

+
, b1

+
)  and (c2

+
, b2

+
) 

respectively, such that:  
    

1
      

1

i

i

c c
b b

− −

+ +≤ , i∈ Φ1  ( it is denoted by Φ1 the set of all cycles in G(x) with 

positive b-cost). The cycle σ1  is a minimum mean cycle on Φ1. 
    

2
      

2

i

i

c c
b b

− −

− −≤
− −

, i∈ Φ2  ( it is denoted by Φ2  the set of all cycles in G(x) with 

negative b-cost). The cycle σ1  is a maximum mean cycle on Φ2. 
Step 4. Solve the defined bellow problem, on the  set of arcs determined by 

cycles σ1 and σ2 
min (c1

+
(y)+ c2

–
(y)),  

s.t.  c1
+
(y)+ c2

-
(y) < 0,  –bx ≤ b1

+
(y)+ b2

–
(y) ≤ ∆bx,  (1), (4) and (5) 
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a) If there is not a solution, end. The flow x is optimal.  
Step 5.  bz = b1

+
(y1)+ b2

–
(y2) where y1and y2 are flows on these cycles 

determined in Step 4. 
Set z:= (y1, y2); x: = x+z;  bx: = bx+bz; go to Step 2. 

Theorem 3. The Algoritm 3 finds an optimal solution of the problem MI. 
P r o o f: It is similar to the proof or Theorem 2. 
We note a fact that in (9) for p ≤ 1: 
a) if c1

+
(z1)<0 and 

  
c2

–
(z2)<0, then (c1

+
(z1)+

  
c2

–  
(z2)) ≤ c1

+
(z1)+

  
c2

–
(pz2); 

b) if:  c1
+
(z1)<0 and 

  
c2

–
(z2)>0, then c1

+
(z1) ≤ c1

+
(z1)+ c2

–
(pz2); 

         or c1
+
(z1)>0 and 

  
c2

–
(z2)<0, then c1

+
(z2) ≤ c1

+
(pz1)+ c2

–
(z2). 

There is a flow only on one of the cycles σ1 and σ2. 

4. Conclusion 

The cycles σ1 and σ2 may be determined using algorithms for min cost to time ratio 
cycle in the graphs with costs of arcs c and b-costs b and –b respectively. 

The number of iterations of the Algorithm 1 is O(B/b*logd) and of 
Algorithms 2 and 3 is O(B2/b*2logd), where d is a bound of the length of cxopt. 
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