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Abstract: An adaptive wavelet sliding mode control algorithm is proposed for a 
class of continuous time unknown nonlinear systems. In contrast to the existing 
sliding mode control (SMC) design, where the presence of hitting control may 
introduce problems to controlled systems, the proposed adaptive wavelet controller 
takes advantages of SMC control. The chattering action is attenuated and robust 
performance can be ensured. The stability analysis for the proposed control 
algorithm is provided. Nonlinear system simulation example is presented to verify 
the effectiveness of the proposed method. 
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1. Introduction 

Recently, the subject of wavelet analysis has attracted much attention from both 
mathematicians and engineers alike. Wavelets have been applied successfully to 
multiscale analysis and synthesis, time-frequency signal analysis in signal 
processing, function approximation, approximation in solving partial differential 
equations, and so on [1-4]. Wavelets are well suited to depicting functions with 
local nonlinearities and fast variations because of their intrinsic properties of finite 
support and self-similarity. As a result, wavelet theory has useful applications in 
nonlinear control system design. 

Feedback linearization techniques for nonlinear control system design have 
been developed in the last two decades [5, 6]. However, these techniques can only 
be applied to nonlinear systems whose parameters are known exactly. If the 
nonlinear system contains unknown or uncertain parameters then the feedback 
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linearization is no longer utilizable. In this situation, the adaptive strategies are used 
to simplify the problem and to allow a suitable solution. At present, a number of 
adaptive control design techniques for nonlinear systems based on the feedback 
linearization can be found in literature [7, 8]. 

It is well known that the sliding mode control (SMC) method provides a robust 
controller for nonlinear dynamic systems [9, 10]. However, it inherits a 
discontinuous control action and hence chattering phenomena will take place when 
the system operates near the sliding surface. One of the common solutions for 
eliminating this chattering effect is to introduce a boundary layer neighboring the 
sliding surface [10, 11]. This method can lead to stable closed loop system without 
the chattering problem, but there exists a finite steady state error due to the finite 
steady state gain of the control algorithm. 

As the sliding mode control law can separated into two parts i.e. the equivalent 
control and the switching control [12]. The role of the controller is to schedule these 
two components under different operating conditions. In order to improve the 
steady state performance of the adaptive wavelet sliding mode controller, an 
adaptive wavelet network controller combining the SMC is considered in this paper. 
The proposed control scheme provides good transient and robust performance. In 
this paper, it is proved that the closed-loop system is globally stable in the 
Lyapunov sense and the system output asymptotically with modeling uncertainties 
and disturbances. 

This work is involved by combining the characteristics of wavelet, the 
technique of feedback linearizations, the adaptive control scheme and the sliding 
mode control to solve the tracking control design problem for nonlinear systems 
with bounded unknown or uncertain parameters and external disturbances. 

This paper is organized as follows. First, the problem formulation is presented 
in Section 2. A brief description of wavelet system is included in Section 3. In 
Section 4, the adaptive wavelet sliding control is proposed. Simulation results for 
the proposed control concept are shown in Section 5. Finally, the paper is concluded 
in Section 6. 

2. The principle of conventional sliding mode control 

Consider a general class of SISO n-th order nonlinear systems as follow form [9] 

(1)    
( ) ( , ) ( , ) ( ) ( ),

,

nx f x t g x t u t d t
y x

= + +
=

 

where f and g are unknown functions, nx R∈  is the state vector of the system which 
is assumed to be available for measurement, u R∈  and y R∈  are the input and 
output of the system, respectively, and ( )d t  is the unknown external disturbance. It 
is assumed that ( )d t D≤ . It is required that ( , ) 0g x t ≠ , without loss of generality 
we assume that ( , ) 0g x t > . In the same spirit as with nonlinear control literature 
[1], these systems are in normal form and have a relative degree equal to n. The 

4 



 50 

control objective is to obtain the state x  for tracking a desired state 
( 1)( , , , )n

d d d dx x x x −= & L  in the presence of model uncertainties and unknown 
disturbances. 

Define a sliding surface in the space of the error state as 
(2)   ( ) ( 2) ( 1)

1 2 1, n n
ns x t k e k e k e e ke− −
−= + + + + = −& L ,  

where ( 1) T( , , , )n n
de x x e e e R−= − = ∈& L  is the tracking error vector and the 

coeficients 1 2 1, , , nk k k −L  are the coeficients of the Hurwitzian polynomial 
( ) 1 2

1 1
n n

nh k kλ λ λ− −
−= + + +L . 

By means of sliding mode condition ( , ) ( , )s x t s x t sη⋅ ≤ −& , 0η > , a sliding 
mode control law can be derived as 

(3)   ( ) ( ) ( )
1

( ) ( )

1

1 , sgn( ) ,
,

n
i n

i d
i

u t k e f x t x s
g x t

η
−

∆
=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑  

where 0η η∆ ≥ > . 
Due to the fact that system functions f, g and disturbance d are unknown in 

practical systems, the control law (3) is usually difficult to be obtained. 
In the next section we will use wavelet systems to approximate ( ),f x t , 

( ),g x t  and switching-type control law ( )sgn sη∆ , respectively. Moreover an 
adaptive adjusting law for parameters will be designed. 

3. A review of wavelet networks 

In this section a brief introduction to wavelet networks is given. We will begin by 
discussing basic wavelet analysis theory. Consider the closed space iU  i Z∀ ∈  with 
following properties 
(4)          iU  1 0 1U U U−⊂ ⊂ ⊂L L , 
(5)                 { }0i Z iU∈∩ = , 
(6)          1i i iU U W+ = ⊕  i Z∀ ∈ , 
(7)           ( ) ( ) 12i if x U f x U +∈ ⇔ ∈  i Z∀ ∈ , 
where Z is the set of all integers, ∩  is the intersection operator and ⊕  is the direct 
sum, respectively. It is seen that the decomposition of the whole space S can be 
rewritten as follows: 
(8)            1 0 1i i iS U W W W W+= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕L L   
for some i Z∈ . Let ( )x Sφ ∈  be a basic scaling function such that 

( ){ }spani ijU xφ=  with ( ) ( )22 2
i

i
ij x x jφ φ= − , for all ,i j Z∈ ; then, there exists a 

basic function ( )x Sψ ∈  such that ( ){ }spani ijW xψ=  with ( ) ( )22 2
i

i
ij x x jψ ψ= − , 
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for all ,i j Z∈ . With these descriptions, a function ( )x Sψ ∈  is called an ortogonal 

wavelet if the family { }ijψ , defined as above, is an orthonormal basis of S; that is 

[13] 
(9)    ,ij kl ik jlψ ψ δ δ= , ∀ , , ,i j k l Z∈ .  

Several kinds of wavelet bases have been successfully developed and widely 
applied in many different areas, such as time-frequency signal analysis in signal 
processing, function approximation, approximation in solving partial differential 
equations and so on. Further development of new families of wavelet bases 
continues to receive considerable attention from researches. 

Now, consider a function ( )f x  is S. It is obvious that ( )f x  can be rewritten 
as [13, 14] 
(10)            ( ) ( )ij ij

i j

f x xθ ψ=∑∑  

where 

(11)               ( ) ( )ij ijf x x dxθ ψ
∞

−∞

= ∫  

for all ,i j Z∈ . The above expression of ( )f x  is called a wavelet series expansion 
of the function ( )f x . 

Based on the wavelet series expansion, a wavelet network of the form 

(12)                ( ) ( ) ( )
2 2

1 1

T,
M N

ij ij
i M j N

f x x W xθ θ ψ θ
= =

= =∑ ∑
)

 

can be constructed to approximate a nonlinear function ( )f x  in S, for some 
integers 1M , 2M , 1N  and 2N  where 

(13)    
1 1 1 2 2 1 2 2

T

M N M N M N M Nθ θ θ θ θ⎡ ⎤= ⎣ ⎦L L L  

and 

(14)   ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 1 2 2

T

M N M N M N M NW x x x x xψ ψ ψ ψ⎡ ⎤= ⎣ ⎦K K K . 

This wavelet network represents an alternative to a neural network 
approximation. 

If ( ) ( ) ( )1 2 1 2є , , , ,M M N N f x f x θ= −
)

 is the approximation error, then it is 
easy to show that for arbitrary constant 0ε ≥  there exist some constants 

1 2 1 2, , ,M M N N Z∈  such that ( )1 2 1 2 2
є , , ,M M N N ε≤ , for all c in compact set 

X R⊂ . This means that the wavelet network ( ),f x θ
)

 can approximate ( )f x  to 
any desired accurancy. 

In the case of a function ( )f x  defined on nX R⊂  with T
1 2[ , , , ]nx x x x= L , 

the proposed wavelet network ( ),f x θ
)

 can not be applied directly because ( ),f x θ
)

 
is defined on X R⊂ , not on nX R⊂ . We must first make a minor modification by 
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replacing the wavelet bases in (12) by ( )T

1
,

n

ij ij i i
i

c x c xψ ψ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  with some 

weighting constants ic . 
Then the modified wavelet network becomes 

(15)            ( ) ( ) ( )
2 2

1 1

T T T, ,
M N

ij ij
i M j N

f x c x W c xθ θ ψ θ
= =

= =∑ ∑
)

 

where 
(16)    

1 1 1 2 2 1 2 2

T

M N M N M N M Nθ θ θ θ θ⎡ ⎤= ⎣ ⎦L L L  

and 

(17)       ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 2 2

TT T T T T
M N M N M N M NW c x c x c x c x c xψ ψ ψ ψ⎡ ⎤= ⎣ ⎦L L L .  

Note that this modified wavelet network is composed of four layers. The first 
layer is the input layer with available input vector T

1 2[ , , , ]nx x x x= L . A weighting 
summer Tc x  is given in the second layer. The third layer is composed of the 
wavelet bases. The output layer is a weighted combination ot the wavelets. 

Remark 1. Making an appropriate choice of wavelet basis is an important task 
in constructing wavelet networks. Many wavelet functions have been reported in 
the literatures. This simplest one is the Haar function. The best one may be the 
Daubechies function. Which one is the most suitable basis in practical applications 
depends on the design specifications. 

Remark 2. The constants 1M , 2M , 1N  and 2N  in wavelet networks are 
closely related to the approximation error ( )1 2 1 2є , , ,M M N N . Although, the 
wavelet network has been shown to be one of the universal approximators, the 
question of how to decide  1M , 2M , 1N  and 2N  for a given accurancy ε  is still 
unanswered. In general, the selection of  1M , 2M , 1N  and 2N  may be made by 
taking advantage of an expert’s or operator’s knowledge and experience. 

4. Design of an indirect adaptive wavelet sliding mode control 

First, we consider the control of nonlinear system (1). In order to derive the sliding 
mode control law (3), we use wavelet system ( )| ff x θ

)
 to approximate system 

( ),f x t , wavelet system ( )| gg x θ)  to approximate system ( ),g x t  as well as the 

switching control term ( )sgn sη∆ . 
Thus the resulting control law will be 

(18)   ( ) ( ) ( ) ( ) ( ) ( )
1

1

1 , ,
,

n
n

i d
i

u t f x t k e i x h s
g x t

−

=

⎡ ⎤
= − + + −⎢ ⎥

⎣ ⎦
∑

) )
)  

(19)    ( ) ( )T T| ,f f fff x W c xθ θ=
)
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(20)    ( ) ( )T T| ,g g ggg x W c xθ θ=)  

(21)    ( ) ( )T T| h h hhh s W c sθ θ=
)

 

set ( ) max| hh s Dθ η ω∆= + +
)

 when s ≥ Φ  in the adaptation process. The scheme is 

similar to boundary layer when  s ≥ Φ  and the control is replaced by wavelet 
switching when s < Φ . 

Here the parameters in ( )T
ffW c x , ( )T

ggW c x  and ( )T
hhW c s  are supposed to be 

fixed, while the parameters T
fθ , T

gθ  and T
hθ  are free to be designed by adaptive law. 

Theorem 1. Consider the control problem of the nonlinear system (1). If 
control (18) is applied, f

)
, g)  and h

)
 are given by (19)-(21) and the parameters 

vector fθ , gθ  and hθ  are adjusted by the following adaptive law (22)-(24). Then 
the closed-loop system signals will be bounded and the tracking error will converge 
to zero asymptotically. 

(22)             ( )T
1f ffsW c xθ γ=& , 

(23)             ( )T
2g ggsW c xθ γ=& , 

(24)               ( )3h s sθ γ φ=& . 

P r o o f. Define the optimal parameters of wavelet systems 

(25)         ( ) ( )arg min sup | , ,
nff

f f
x R

f x f x t
θ

θ θ∗

∈Ω ∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

)
 

(26)         ( ) ( )arg min sup | , ,
ngg

g g
x R

g x g x t
θ

θ θ∗

∈Ω ∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

)  

(27)            ( )arg min sup | ,
nhh

h h sw
s R

h s u
θ

θ θ∗

∈Ω ∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠

)
 

where fΩ , gΩ  and hΩ  are constraint sets for fθ , gθ  and hθ , respectively. 
Meanwhile, define the minimum approximation error as 

(28)   ( ) ( ) ( ) ( )( ), | , |f gf x t f x g x t g x uω θ θ∗ ∗= − + −
) ) . 

Then we have 



 54 

(29)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1
( ) ( ) ( )

1
1

( ) ( )

1

1
( )

1

1
( ) ( ) ( )

1

* *

* *

, ,

, , , ,

|

| | | |

| | |

n
i n n

i d
i

n
i n

i d
i

n
i

f gi
i

n
i n n

hi d d
i

f f g g

h h h

s k e x x

k e f x t g x t u t d t x

k e f x t f x g x t g x u

k e x h s d t x

f x f x g x g x u

h s h s d t h s

θ θ

θ

θ θ θ θ

θ θ ω θ

−

=

−

=

−

=

−

=

= + − =

= + + + − =

= + − + − −

− + + − =

= − + − +

+ − + + − =

∑

∑

∑

∑

&

) )

)

) ) )

) ) )

( ) ( ) ( ) ( ) ( )T T T T *| ,f g hf gf g h
W c x W c x s d t h sϕ ϕ ϕ φ ω θ= + + + + −

)

 

where f ff
ϕ θ θ ∗= − , g gg

ϕ θ θ ∗= −  and h hh
ϕ θ θ ∗= − . 

Now we consider the Lyapunov candidate 

(30)   T T T2

1 2 3

1 1 1 1 ,
2 2 2 2f f g g h h

V s ϕ ϕ ϕ ϕ ϕ ϕ
γ γ γ

= + + +  

where 1γ , 2γ  and 3γ  are positive constants. 
The time derivation of V  along the error trajectory (30) is 

(31)

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

T T T

1 2 3

T T T T T T

T T T

1 2 3

T T T T T T T T T

1 2 3

1 1 1

|

1 1 1

1 1 1

|

f f g g h h

f g h hf g hf g h

f f g g h h

f g hf g hf f f g g g h h h

h

f

V ss

s W c x u W c x W c s d t h s

s W c x us W c s s W c s

sh s s sd t

s

ϕ ϕ ϕ ϕ ϕ ϕ
γ γ γ

ϕ ϕ ϕ ω θ

ϕ ϕ ϕ ϕ ϕ ϕ
γ γ γ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
γ γ γ

θ ω

ϕ

∗

∗

= + + + =

= + + + + − +

+ + + =

= + + + + + −

− + + ≤

≤

& & & &&

)

& & &

& & &

)

( ) ( ) ( )
( ) ( )

( )( ) ( )( ) ( )( )

T T T T T T T T

1 2 3

T T T T T T
1 2 3

1 2 3

1 1 1

sgn( )
1 1 1

,

f g hf g hf f g g g h h

f g hf g hf f g g h h

W c x su W c s sW c s

s D s sd t s

sW c x u sW c x sW c s

s s

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
γ γ γ

η ω

ϕ γ ϕ ϕ γ ϕ ϕ γ ϕ
γ γ γ
η ω

∆

∆

+ + + + + −

− + + + <

< + + + + + −

− +

& & &

& & &

 

where ff
ϕ θ= − && , gg

ϕ θ= − &&  and hh
ϕ θ= − && . Substitute (22)-(24) into (31), then we 

have 
(32)     V s sω η∆< −&  
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since ω  is the minimum aproximation error, (32) is the best we can obtain. 
Therefore, all signals in the system are bounded. Obviously, if ( )0e  is bounded, 
then ( )e t  is also bounded fo all t. Since the reference signal dx  is bounded, then 
the system states ( )x t  is bounded as well. To complete the proof and establish 
asymptotic convergence of the tracking error, we need proving that 0s →  as 
t →∞ . Assume that s η≤ , then equation (32) can be rewritten as 
(33)          sV s s sω η η ω η≤ − ≤ −& . 

From the universal approximation theorem, it can be expect that the term sω  
should be very small if not equal to zero in the adaptive wavelet system. So we have 
(34)             0V ≤& . 

Integrating both sides of (33), we have 

(35)           ( ) ( )( )
0 0

1 0
t t

ss d V V t dη
τ ω τ

η η∆ ∆

≤ + +∫ ∫ . 

If 1Lω∈  then from (32) we have 1s L∈ . From (32), we know that s is 
bounded, so we have s L∞∈ . Because we have proved that all the variables on the 
right-hand side of (31) are bounded, we have s L∞∈& . Using the Corollary of 
Barbalat’s lemma [15], we have ( )lim 0

t
s t

→∞
= . 

Therefore ( )lim 0
t

e t
→∞

= . 

5. Simulation example 

5.1. Example 1 
The above described adaptive wavelet control algorithm will now be evaluated 
using the inverted pendulum system depicted in Fig. 1. 

l 

1x=θ

 
Fig. 1. The inverted pendulum system 

Let 1x θ=  and 2x θ= & . The dynamic equation of the inverted pendulum is 
given by [16]: 
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(36)    

( ) ( )

( )

( )

( )

1 2
2
2 1 1

1

2 2
1

1

2
1

1

,

cos sin
sin

cos4
3

cos

,
cos4

3

,

c

c

c
c

c

x x

mlx x x
g x

m mx
m x

l
m m

x
m m u d
m x

l
m m

y x

=

−
+

= +
⎛ ⎞

−⎜ ⎟⎜ ⎟+⎝ ⎠

+
+ +

⎛ ⎞
−⎜ ⎟⎜ ⎟+⎝ ⎠

=

&

&

 

where g is the acceleration due to gravity, cm  denotes the mass of the cart, m is the 
mass of the pole, l is the half-length of the pole, the force cu  represents the control 
signal and d is the external disturbance. In simulations following parameter values 
are used: 1 kgcm = , 0.1 kgm =  and 0.5 ml = . The reference signal is assumed to 
be ( ) ( ) ( )/ 30 sinry t tπ=  and an external disturbance ( ) ( )0.1sind t t= . 

If we require 

(37)     
6

x π
≤ , 180u ≤  

and substitute the functions sin(.) and cos(.) by their bounds, we can determine the 
bounds 
(38)    ( ) 2

1 2 2, 15.78 0.366Mf x x x= + , 
(39)    ( )1 2, 1.46Mg x x = , ( )1 2, 1.12mg x x = , 

1 2k = , 2 1k =  and ( )diag 10,10Q =  are set. Then the algebraic Riccati equation 

solution is 
15 5
5 5

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and ( )min 2.93Pλ = . To satisfy the constraint related to x  

we choose 16fM = , 1.6gM = , 1.6pM =  and 0.48ε = . 
Using the method of trial and errors 50fγ =  and 1gγ =  are chosen. The 

MATLAB command “ode45” is used to simulate the overall control system. The 
pendulum initial position is chosen as far as possible ( )( )10 20xθ π= =  to 
emphasize the efficiency of our algorithm. 

The Haar wavelets are chosen to be the basis of the wavelet network. The 
vectors fc  and gc  are both chosen as T

f g [1 1]c c c= = = , and the size of our 
network is chosen as 1 2M = − , 2 2M = , 1 1N = −  and 2 1N = . In this example, the 
wavelet bases for ( )f x  and ( )g x  are chosen and are the same. Therefore, 

( ) ( ) ( )T T T
f gf gW c x W c x W c x= = . So we need 15 parameters to estimate the 
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nonlinear functions ( )f x  and ( )g x , respectively. the initial conditions 

( )1 0 0.2x =  and ( )2 0 0.2x =  are selected. 
Choose the sliding surface as 1s e k e= +& , where 1 3k = . 
Obtain the adaptive wavelet network sliding mode control law as 

(40)  
( )

( ) ( ) ( )T T
1 2 1

1 2

1 sin 2 ,
30f pT

g

u W x x t e e e k e
W x x

πθ θ
θ

⎡ ⎤= − + − + + − +⎢ ⎥+ ⎣ ⎦
& &  

(41)         ( ) ( )1 20.1 5 5f e e sW x xθ = + +& & , 

(42)       ( ) ( )1 20.01 5 5g e e sW x x uθ = + +& & , 

(43)         ( ) ( )1 20.1 5 5p e e sW x xθ = + +& & . 
The tracking performance of both cases for a sinusoidal trajectory is illustrated 

in Fig. 2. 

 
Fig. 2. The state 1x  in case 1(dashed line), in case 2 (dotted line) and desired value ( )ry t  (solid line) 

for ( ) ( )T0 12,0x π=  

5.2. Example 2 
In this example, we apply the adaptive wavelet controller to the system 

(44)    '' '1 1.7 0.5 0
0.25

y y y u
y

+ + − =
+

. 

The reference model is assumed to be  

(45)     ( ) 2

1
2 1

M s
s s

=
+ +

 

and the reference signal is the square periodic signal of magnitude 1.5 and 
frequency 0.01 Hz. 

0 5 10 15
-0.25 

-0.2

-0.15 

-0.1

-0.05 

0 

0.05

0.1

0.15[rad]

[s]
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We choose 
50 30
30 20

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1 2k = , 2 1k = , and ( )min 1.52Pλ = . To satisfy the 

constraint related to x  we choose 20fM = , 2.1gM = , 2pM =  and 0.25ε = . 
At 200th second of simulation the system (44) was switched to another system 

(46)   
( )

''' '' '
2

15 1.7 5 0
0.25

y y y y u
y

⎡ ⎤
⎢ ⎥+ + − + − =

+⎢ ⎥⎣ ⎦
. 

All initial states have been set to zero ( ) ( ) ( ) ( )' '' '''0 0 0 0 0y y y y= = = = . 
As it can be seen from Fig. 3, the simulation results confirm good adaptation 

capability of the proposed control system. The system dynamic changes are in 
particular manifested by changes of control input signal (Fig. 4). 

 
Fig. 3. The state 1x (solid line), its desired reference model value ( )my t  (dotted line) and reference 

signal (dashed line) 
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Fig. 4. Control signal 
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6. Conclusions 

In this paper, an adaptive wavelet sliding control algorithm has been proposed for a 
class of unknown nonlinear systems. We introduced the wavelet sliding mode 
control and proposed the robust control using the adaptive control strategy. The 
drawback of chattering in sliding mode control is avoided zero steady tracking error 
can be ensured. The closed loop system is stable in the sense of Lyapunov. Finally, 
the proposed method has been applied to control the inverted pendulum to track a 
reference trajectory. The simulation results show that the adaptive controller can 
achieve desired performance. 
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