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Abstract: This paper presents a hybrid direct search – quasi-Newton method for the 
inverse nonlinear problem of Electrical Impedance Tomography (EIT) in 2D 
domain. It belongs to the interior path methods. The Finite Element Method (FEM) 
is used to solve the forward EIT problem regarding the nodal scalar potentials and 
current density values. The variational approach is applied to solve the inverse 
problem.  The preliminary knowledge about the inhomogenities in the domain is 
used.  
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1. Introduction 

The Electrical Impedance Tomography (EIT) is an image reconstruction technique. 
It is designed to get an image of the electric field inside a studied object. In this way 
EIT makes non-destructive testing of materials, geophysical explorations such as 
core sample analysis and investigations of the Earth contamination, as well as 
biomedical diagnoses like diagnosis of breast cancer, investigation of chest organs 
and cerebral haemorrhaging (brain stroke). There are different algorithms for 
detection of flaws in materials. Some of them are presented in [11, 12, 13, 20, 21]. 
The system, proposed in [13, 21] permits geographically distributed research with 
remote measurement and data acquisition for eddy current test signals. In EIT 
technique low-frequency voltages, obtained as a result of injected currents in an 
inhomogeneous object, are measured by means of electrodes on the boundary of the 
studied object. Then two joined problems have to be solved: the forward and the 
inverse problem.  
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The forward problem is to calculate the scalar potentials (voltages), as well as 
the current density values inside the object, given an approximate conductivity 
distribution, boundary voltages and currents for known boundary geometry of the 
studied object. 

The inverse problem is to receive an adequate estimation of the interior 
conductivity distribution, based on the calculated (known) scalar potentials and 
current density values.  

At the end EIT gets an image of the electric field inside the object, based on 
the conductivity distribution in it.  

To solve the forward problem the Finite Element Method (FEM) is used (see 
[23, 26]). The inverse problem – the conductivity recovering – is very complicated, 
since it involves the inversion of the nonlinear and compact operator (see [27]), 
mapping the conductivity σ of the studied specimen into the Dirichlet-to-Neumann 
map. It is known, that the inversion of a compact operator is an ill-posed problem, 
i.e. it either does not admit a unique solution or its solution does not depend 
continuously upon the data. Even an operator is invertible, the inverse of a compact 
operator defined onto an infinite-dimensional space is not continuous. One way to 
overcome this critical feature is to use a regularization method (see [5, 6]). This is a 
method for receiving a stable solution for the ill-posed problem, which is obligatory 
for developing reliable reconstruction algorithms. The regularization scheme uses a 
family of continuous operators approximating the inverse of the operator, which is 
to be inverted. Another way to overcome the lack of continuous dependence of the 
solution upon the data is to use the quasi-solution, obtained by minimization of the 
error functional Ψ(σ), depending on the measured data. The introduction of the error 
functional Ψ(σ) arises naturally, because usually there is available a contamination 
of the data by noise. The problem of computing the quasi-solution is well posed 
under suitable conditions, but the minimization of  Ψ(σ) is difficult, because there 
are local minima of Ψ(σ) as a result of the nonlinearity of the compact operator and 
because of valleys or plateaus (regions, where the error functional is almost flat), 
resulting from the ill-posed start of the original problem. In this study the second 
way is chosen and the inverse EIT problem is converted to an optimization 
problem. 

The computational complexity of the exact optimization methods for such ill-
posed problems grows exponentially with the number of the unknown parameters 
and it depends on that, how much detailed mesh in FEM is chosen. Here it must be 
taken into account, that the purpose of EIT methods requires the use of finer mesh, 
in order to achieve a better quality of the reconstructed image. On the one hand the 
calculation of the first and the second order derivatives of the objective function is a 
slow procedure for such large size problems. On the other hand the noise in the data 
and the availability of plateaus of objective function values leads to very slow 
convergence to the optimal solution. To overcome these shortcomings many hybrid 
algorithms are proposed (see [1, 2, 7, 15, 16, 19, 22, 25]). Usually they apply a 
technique, which does not require local gradient information (like genetic 
algorithms) and hybridize it with a gradient-type method.  To solve the inverse EIT 
problem for biomedical purposes, a new hybrid direct search method is proposed in 
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this study. It minimizes an error functional and its performance is enhanced 
alternating direct search and quasi-Newton steps.  

The paper is organized as follows: A brief formulation of the problem is 
presented in Section 2. Section 3 states the mentioned hybrid direct search – quasi-
Newton method. Some conclusions are drawn in section 4 and directions for further 
research are outlined. 

2. The problem formulation 

A. Experimental setup of the problem in 2D case 

                                   i4, v4   i5, v5     i6, v6 
                           i3, 0                             i7, v7 
                       i2, v2                                   i8, v8 
                                              

                      i1, v1                Ω                i9, v9 
                     i16, v16                               i10, v10 
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Fig. 1. Experimental setup for the EIT problem 

The illustration of the experimental setup for the EIT problem is presented on      
Fig. 1. To perform measurements on the boundary of the studied 2D object, 16 
electrodes are used. The object is considered as inhomogeneous, conducting body 
having a known overall shape Ω. For simplicity here the domain Ω is chosen to be a 
circle. It is divided by a uniform triangularization into 256 triangles. This mesh is 
assumed to be fine enough, so that the FEM numerical calculations are sufficiently 
accurate. Direct currents i1 (input current) and i2 (output current) are applied to the 
body. The injected current between these two electrodes has a value of 10 mA. The 
potentials (voltages) are measured between pairs of the other electrodes, where one 
of the electrodes in each pair is the grounded electrode. Usually the voltage at the 
injection electrodes cannot be measured reliably and for this reason it is not 
included in the data set. The measured voltages have values about 1 V. Each 
electrode can be held to be equi-potential and the contact impedance is neglected. In 
this case the current field J(x) and the electric field E(x) are constrained by the 
Kirchhoff’s laws: 
(1)               ∇⋅ J (x)   =  0, 
(2)               ∇ × E(x) =  0 
and by the Ohm’s law 
(3)    J(x)  =  σ(x)E(x), 
where σ(x) is the conductivity and J(x) is the current density. The body is assumed 
to be locally isotropic, so that σ(x) is a positive real number. It is assumed that  
σ = 1 S in all triangle elements, except in several chosen neighboring elements, 
where inhomogenity is simulated, and where σ = 2 S. 

Since ∇ × E =  0,  E has the form  
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(4)                        E(x)  =  –∇Φ(x), 

where  Φ(x) is the scalar potential (the voltage). The equations (1)-(4) are 
equivalent to the single elliptic equation for  Φ(x): 
(5)                 ∇⋅ (σ(x)∇Φ(x) ) = 0 in Ω. 

B. Boundary data and feasibility constraints 

The experimental setup consists in injecting a measured current between two 
electrodes and measurement of the voltage between pairs of other electrodes located 
on the boundary of the body. This procedure is repeated N times (N is the number of 
electrodes) clockwise, injecting current between all possible adjacent pairs of 
electrodes. For the setup in Fig. 1 we have N = 16. In case σ(x) is known, Φ(x) and 
J(x) are completely determined either by the boundary voltage Φ |∂Ω , or by the 
boundary current flux J.n |∂Ω, where n(x) is the unit outward normal to the boundary 
of the body ∂Ω.  

For the conductivity problem there are two distinct variational principles (see 
for example [3, 14]): the Dirichlet’s principle: 

(6)                min ∫Ω Φ∇ dxxx 2|)(|)(σ  ≥ P,  

where P is the power dissipated into heat (the measured power) in the true 
conductivity medium Ω, and its dual – the Thompson’s variational principle, which 
takes the form 

(7)                       ∫Ω
− dxxJx 21 |)(|)(σ  ≥ P. 

These two constraints allow us to obtain upper and lower bounds on the 
feasible domain of the space that contains the solution to the inverse problem (for 
details see [3, 4]). 

C. Formulation of the direct problem 

The direct EIT problem is decomposed as two quadratic optimization problems: 
The first one has the form:  

(8)                       min ∫Ω Φ∇ dxxx 2|)(|)(σ ,  

subject to:  
(9)                      Φ(x) = V(x)  for  x ∈ ∂Ω, 
where V(x), x ∈ ∂Ω, are the measured potentials on the boundary of the body.  

The second optimization problem has the form: 

(10)                          min ∫Ω dxxJ
x

2|)(|
)(

1
σ , 

subject to:  
(11)                    –J(x).n(x) = I(x) for x ∈ ∂Ω,  

(12)                                  ∫ Ω∂
dxxI )( = 0,  
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(13)                          ∇⋅ J(x) =  0  for  x ∈ Ω, 

where I(x) are the currents on the boundary ∂Ω and n(x) is the unit outward normal 
to the boundary ∂Ω.  

The power dissipated into heat in Ω is 

(14)                          P = ∫ Ω∂
dxxVxI )()( .  

The current density J(x) can be expressed by means of the electric vector 
potential T(x) (see [27]):  
(15)                         J(x) =  ∇ × T(x).  

Hence the second optimization problem can be written in the form : 

(16)                        min ∫Ω ×∇ dxxT
x

2|)(|
)(

1
σ ,  

subject to:  
(17)                 –(∇ × T (x)).n(x) = I(x) for x ∈ ∂Ω,  

(18)                                  ∫ Ω∂
dxxI )( = 0. 

Starting with initial approximate values for σ(x), x ∈ Ω, we solve the 
optimization problems (8)-(9) and (16)-(18) by means of the FEM (see for example 
[23, 26]) and calculate Φ(x), T(x) and J(x), x ∈ Ω.  

D. Formulation of the inverse problem. A variational approach  

The variational approach described in [17, 18] has been adopted here. Using data 
from N different measurements each time with different current injection pair of 
electrodes we solve N times the quadratic optimization problems (8)-(9) and (16)-
(18). The essence of variational approach is to consider the linear equations (1) and 
(4) as constraints and to minimize the violation of nonlinear equation (3).  So we 
solve the inverse EIT problem with unknowns σ(x), x ∈ Ω, minimizing the error 
functional: 

(19)               F = ∑ ∫
=

−

Ω
+Φ∇

N

i

dxxJxx ii

1

22/12/1 |)()()(|
2
1 σσ , 

subject to: 
(20)                 Φi(x) = Vi(x),  –Ji(x) n(x) = Ii(x),  ∇⋅ Ji(x) = 0,  i=1,…, N.  

After expanding the square in (19) we have 

(21)                        F = ∑ ∫
=

Ω
Φ∇

N

i

dxxx i

1

2|)(|)(
2
1[ σ + ∫Ω dxxJi

x
2|)(|

)(
1

2
1

σ
 +  

+ ])().(∫Ω Φ∇ dxxxJ ii . 

The last term in (21) is irrelevant to the minimization of F seeking σ(x), 
because it is entirely determined by the boundary data. Minimization of the first 
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term in (21) corresponds to the Dirichlet’s variational principle and the 
minimization of the second term corresponds to the Thompson’s variational 
principle. The expression for �(x), which minimizes F in (21) has the form 

(22)   σ (x) = 
2/1

1

2|)(|
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑
=

N

i

xJi  
1/2

2

1
| ( ) | .i

i

N
x

−

=
∇Φ

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

3.  A hybrid direct search – quasi-Newton method 

From the point of view of mathematical programming (either linear or nonlinear) 
the optimization methods are divided into interior and exterior methods, depending 
on whether the iterative steps of the correspondent method are made inside or 
outside the feasible domain (see [8]). For example the least square method (see 
[28]) is an exterior method, whereas the Kohn and Vogelius method ([18]) is an 
interior method. Solving the EIT inverse problem both types of methods attempt to 
converge to a solution on the boundary of the feasible domain, but the exterior 
methods converge from outside the feasible domain, while the interior methods 
converge from inside the feasible domain. In [3] it is pointed out that the exterior 
methods can achieve convergence quickly for data without errors, but the interior 
methods have the advantage to be insensitive to data errors and perform stable. The 
disadvantage of interior methods is that they are often slowly converging.  

The hybrid direct search algorithm, proposed here belongs to the interior 
algorithms. To reconstruct the electrical field image we solve the problem: 

(23)    min G=∑ ∫
=

Ω
Φ∇

N

i

dxxx i

1

2|)(|)([ σ + ]
)(

1 2|)(|∫Ω dxxJi
xσ

 

subject to the constraints (20).  
The constraints σ(x) ≥ 0, (6) and (7) are used to reduce the step length if it is 

necessary. 
To solve the inverse EIT problem ADI method (see [17]) performs iteratively 

the following procedure: 
1) Using the last computed σ(x) and the measured voltages, minimize (8) and 

(10) over Φi(x) and Ji(x) for  i = 1,…, N. 
2) Using the obtained Φi(x) and Ji(x) minimize G from (23) over σ(x), and 

update σ(x) according to (22). 
The authors pointed out that ADI method performs stable but very slow. More 

rapid convergence is achieved by means of a Modified Newton (MN) method (see 
[17]). 

Several successful attempts are known, applying a genetic (see [7, 10]) or an 
evolutionary hybrid algorithm to solve this ill-posed problem (see for example [1, 2, 
7, 15, 16, 20, 22, 25]). In [15] a genetic algorithm is combined with the Davidon-
Fletcher-Powell method (see [9]) and with Pareto-optimization. The Powell method 
is used to enhance a genetic algorithm in [1, 2]. In [16] a genetic algorithm is 
coupled with Newton-Raphson method and mesh-grouping. In [22] a genetic 
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algorithm is used, alternating its generations by quasi-Newton steps. An 
evolutionary algorithm for such problem has been studied in [7]. In all these cases 
very encouraging results are obtained. 

To solve the inverse EIT problem (23), (20) we also propose a hybrid 
optimization method in order to overcome the slow converging of the interior 
methods and the instability of the exterior methods when the signal/noise ratio is 
greater than 1%. 

The method, proposed here to solve the EIT inverse problem is based on the 
Nelder and Mead’s method [11], known as the most efficient among the direct 
search methods. In contrast to the above listed hybrid algorithms, where the number 
of genetic generations is reduced through a combination with another search 
method, the proposed method is a direct search method and is fast enough, i. e. 
comparatively small number of evaluations of the error functional G from (23) are 
necessary. Here an alternating direct search steps and quasi-Newton steps approach 
is proposed in order to evaluate and to use the curvature of G during the search 
process, when the direct search has no more success, or near the optimum.  

A. Calculation of the Quasi-Newton steps 

As pointed out in [17] the classic Newton’s method performs well as long as the 
Hessian of the objective is positive definite. In our case the Hessian of G may not 
be positive due to the data noise and taking into account the ill-posedness of the 
problem. For this reason a quasi-Newton approximation B of the Hessian of G is 
calculated by means of Broyden-Fletcher-Goldfarb-Shanno (BFGS) – formula (see 
for example [9]): 

(24)              Bk+1 =  Bk + 
T T

TT
,k kk k k k

kk kk k

y y B s s B
s B sy s

−  

where sk = σ(x)k+1 − σ(x)k, and yk = g(x)k+1 – g(x)k is the increase of the gradient g(x) 
of G at the k-th iteration. The gradient g(x) is evaluated by means of finite 
differences. The step sk is calculated, solving the system: 

(25)                               Bk.sk = – g(x)k . 

After a given number of direct search iterations the proposed algorithm 
performs k consecutive quasi-Newton steps, where k∈(3, 5). The initial B is 
assumed to be identity matrix, i.e. B1= I. Each new series of quasi-Newton iterations 
starts using as initial B the last found approximation of B at the previous series of 
quasi-Newton steps. 

B. The new hybrid direct search – quasi-Newton method 

The basic idea of the proposed new hybrid direct search method is to use the 
preliminary knowledge about the inhomogenities in the human body. Hence starting 
with a given conductivity σ(x)0, we can perform consecutive search for optimal 
conductivity of different small regions of the feasible domain, reducing in this 
manner the number of unknown parameters and solving smaller equation systems. 
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Let us assume, that there are t sub-domains or small regions having an 
inhomogenity inside them. In case the i-th sub-domain contains M unknown 
conductivity parameters, the direct search calculations are organized as follows. 

Initially a regular simplex in the reduced M-dimensional search space is 
constructed. The simplex has M + 1 vertices. Starting from a known vertex z(0), the 
other M initial simplex vertices are calculated by means of: 

  ⎧ zj
(0) + δ1  if  j ≠ i, 

(26)   z(i) =     ⎨   for i, j = 1, 2,..., M. 
  ⎩ zj

(0) + δ2  if  j = i, 

(27)             δ1 = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −++

2
1)1( 2/1

M
MM α , 

(28)    δ2 = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+

2
1)1( 2/1

M
M α , 

where α is a small positive number.  
Find the weight center of the M best simplex vertices: 

(29)                                 C = ∑
=

M

i

i
zM 1

)(1 . 

Calculate a new simplex vertex reflecting the worst vertex z(worst) towards C: 
(30)                      z(new) = C + λ( C – xz(worst)), 
where λ = 2.  In case the step is successful a new attempt may be done by λ = 3. In 
case the step is not successful two new attempts will be done by  λ = 1.25 and  
λ = 0.75, contracting the simplex. 

“Pseudo-code” form of the direct search – quasi-Newton method: 

BEGIN 
Initialize σ(x)0, the number of sub-domains (regions) t containing inhomogenities,  
as well as the iteration limits itlim1 and itlim2. 

For  ireg = 1, t; do 
Set the initial Hessian approximation B1 = I. 
While no stopping criteria are met do 

For  icount1 = 1, itlim1; do 
Create a regular simplex corresponding  
to the current number  
of unknown parameters Mt.  
Perform direct search steps. 
Check the stopping criteria. 
EndFor 
For  icount2 = 1, itlim2; do 
Evaluate the current gradient g(x) of G by means of finite 

differences. 
Perform quasi-Newton steps. 
Check the stopping criteria. 



 48 

EndFor 

EndWhile 

EndFor 
END 

The direct search stops if the contracting of the simplex cannot lead to further 
improvement of the obtained solutions or when the iteration limit itlim1 is reached. 

The quasi-Newton search stops when the error functional value G cannot be 
further minimized or when the iteration limit itlim2 is reached. 

The calculation procedure stops when the error functional value G becomes 
smaller than the prescribed value ε or when the global iteration limit itlim is 
reached. 

4. Conclusions and future investigations 

From the results presented for the Nelder and Mead’s method and for the quasi-
Newton method it can be concluded that the proposed new hybrid direct search – 
quasi-Newton method will be able to perform stable and will find the global optimal 
solution to the EIT inverse optimization problem comparatively quickly. The new 
hybrid method has the following good features and advantages: 

• Performing an exploration of sub-domains the number of unknown 
conductivity parameters is drastically reduced and smaller equation systems are 
solved. Also the gradient evaluation by means of finite differences is facilitated, 
because the dimensionality of the search space is smaller. In this way the high 
efficiency of the method is guaranteed. 

• The new method performs search in all preliminary known sub-domains, 
containing inhomogenities. In this manner the method guarantees an exploration of 
the whole feasible domain and obtaining the global optimal solution. 

• The new method combines the high efficiency of Nelder and Mead’s 
method and the good convergence properties of BFGS-method. Making quasi-
Newton steps guarantees that the curvature of the error functional G will be taken 
into account and the search process will be directed to the global optimum. 

The new hybrid method will be tested on a set of test examples with different 
levels of data noise by means of a MATLAB computational program. The obtained 
results will be compared with those by other genetic and hybrid evolutionary 
algorithms solving the inverse EIT problem. The analysis of the results may lead to 
further refinement of the proposed hybrid method. 
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