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1. Introduction and notation 

The matrix equation pXA AX X− = in X, where p is a positive integer and A, X are 
n×n matrices over an algebraically closed field K of characteristic zero, is connected 
with problems in Lie theory [1, 2]. The case when p = 2 arises in studying affine 
structures on solvable Lie algebras and is a special case of the algebraic Riccati 
equation. Further on we assume that K = R or K = C. 

For any given matrix A the equation 2XA AX X− =  always has a solution, 
namely the trivial solution X = 0. If A has multiple eigenvalues then this equation 
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has non-trivial solutions. A special set of solutions is obtained for 
20, 0XA AX X− = = . 

According to [1], for p ≥ 2 every solution X of the equation pXA AX X− =  is 
a nilpotent matrix and if A has no multiple eigenvalues then X = 0 is the only matrix 
solution to pXA AX X− = . Conversely, if A has multiple eigenvalues then there 
exist nontrivial solutions. We also note that adding a scalar matrix to A does not 
change the form of the equation. 

In this paper  local and non-local perturbation bounds for the solution to the 
equation 
(1)    2 , , n nXA AX X A X ×− = ∈K , 
are derived, where n n×K  is the space of n×n matrices over K. 

Throughout the paper the following notations are used: R and C – the sets of 
real and complex numbers, respectively; In – the identity n×n matrix; vec(A) ∈ 2nK  
– the column-wise vector representation of the matrix n nA ×∈K , where Km = 1m×K ; 
Mat(L) ∈ 2 2n n×K  – the matrix representation of the linear matrix operator                
L: n n n n× ×→K K ;  Nm – the m×m nilpotent matrix with elements Nm(k, l) = 1 for        
l = k+1, k = 1, 2,… , m – 1,  and  Nm(k, l) = 0  otherwise; A ⊗ B = [A(k, l)B] – the 
Kronecker product of the matrices A = [A(k, l)] and B; ⋅  – a vector or a matrix 

norm; ⋅ 2 – the Euclidean vector or the spectral matrix norm; ⋅ F – the Frobenius 
norm. 

The notation ‘:=’ stands for ‘equal by definition’. 

2. Statement of the problem 

Equation (1) may be written in the equivalent form 
(2) 2( , ) : 0, , .n nF X A XA AX X A X ×= − − = ∈K  
Denote by n n

AS ×⊂ K   the set of all solutions to equation (2). As mentioned above, 
the set SA is invariant relative to scalar shifts in A, i.e. SA = SA+µIn for all µ ∈ K. 

We shall suppose that the following assumption holds true. 
Assumption A1.  The matrix A has multiple eigenvalues and equation (1) has 

non-trivial solutions, i.e. SA ≠ {0}. 
Since every solution X is a nilpotent matrix [1] we have Xp = 0. So the 

interesting case is p > 2 since for p = 2 the equation reduces to the system 
20, 0XA AX X− = = , considered below. 

Example 1. Let n = 2 and K = C. Since A has a double eigenvalue and the 
matrices A and A + µI2, µ ∈C, produce the same solution set SA, we actually have 
the following two cases. 

1. The first case is A = 0 and the system is reduced to equation X2 = 0. Here 
the solution set S0 is the union of an one-parametric variety {xN2: x ∈C }, and a 
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two-parametric family of solutions X with X(1,1) = x ∈C, X(2, 1) = y ∈C,  y  ≠ 0, 
and X(1, 2)  = –x2/y,  X(2, 2)  = –x. 

2. The second case is A = N2. Here the solution set 
2NS is {xN2 : x ∈C }.        

Let the matrix A be subject to a perturbation E, so that the coefficient matrix 
becomes A + E. We shall consider only  perturbations E from an admissible set 
E n n×⊂K  which satisfies the following  assumptions. 

Assumption A2. The matrix A is non-zero and the norm of the matrices from 
E is small compared to the norm of A. 

Assumption A3. The perturbed equation  
(3)                                       F(Y, A + E) = 0 
if Y has non-trivial solutions for all E ∈ E,  i.e. SA+E  ≠ {0} for E ∈ E. 

Denote any solution Y of (3) as Y = X + Z, where Z is a perturbation (not 
necessarily small) of a fixed solution X0 ∈SA of equation (1). 

We recall that both equations (1) and (3) have multi-parametric families of 
solutions SA and SA+E, respectively. This means that for X0 ∈ SA fixed we shall have 
a family 

Z = Z(A, X0) := {Y – X0 : Y ∈ SA + E} n n×⊂K  
of perturbations Z in X0. 

We stress that the sets SA, SA+E and Z may not be bounded. So we may not 
estimate the norm of any element of Z (by a function of the norm of E). Rather, we 
shall estimate the norm of certain elements Z ∈ Z. In any case our bounds will 
estimate the quantity inf{

F
Z  :  Z ∈ Z} from above. 

Our next assumption concerning the set E of admissible perturbations E in A is 
as follows. 

Assumption A4. For any η > 0 there is δ  = δ(η) > 0 such that there exists       
Z ∈ Z  with Z η<  provided E ∈ E  and E  < δ. 

It is worth mentioning that Assumptions A2, A3 and A4 will be fulfilled for a 
set of small perturbations preserving the Jordan form of A. 

Example 2. Let n = 2, K = C, A = N2 and E 2 2×⊂C  be the set of matrices        
E = x N2 with |x| < 1. Then the perturbations A → A + E preserve the Jordan form 
of A and 
                                         SA = SA+E = Z = {xN2 : :x ∈ C}.  

An important problem in studying perturbed equations of type (3) is to find 
local and non-local bounds for 

F
Z  as functions of the norm 

F
E  of the 

perturbation E in the data matrix A, where Y = X0 + Z and X0 ∈ SA. The local bound 
should be valid for 

F
E  asymptotically small, while the non-local bound will hold 

true for perturbations in the data belonging to a certain finite set containing the 
origin. 

However, this general program may not be fulfilled completely since the 
standard technique of perturbation analysis [3] is not applicable to the problem 
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considered. Rather, we shall obtain local bounds on the norm of certain projections 
of the perturbation Z on subspaces of n n×K  of positive codimension. 

3. Local perturbation analysis 

Consider for simplicity the case K = R. The case K = C  is treated similarly. 
Let X0 ∈ SA. Denote by FU(.) = FU(X0, A)(.) the partial Fréchet derivative of 

the function F(.,.) in the argument U ∈  {X, A} computed at the point (X0, A) and 
define the operators 

L(.) := FX(X0, A)(.),  M(.) := FA(X0, A)(.). 
These are linear operators n n n n× ×→K K such that  

(4)         F(X0 + Z, A + E) = F(X0, A) + L(Z) + M(E) + G(Z, E), 
and their action is given by 
(5)                              L(H) = H(A – X0) – (A + X0)H, 

M(H) = X0 H – H X0,  .n nH ×∈R  
The term  G(Z, E) contains the second order terms in  Z, E, 

G(Z, E)= Z E – E Z – Z2=O(u2),   u → 0, 
where 

u := ε  + 
F

Z ,  ε := 
F

E . 
In what follows it is supposed that the asymptotic estimates of the form O(uk) 

k=1, 2, are valid for u → 0. 
The matrix representations 2 2, n nL M ×∈R  of the operators L, M are 

(6)                        
T

0 0
T

0 0

: ( ) ( ),
: .

n n

n n

L A X I I A X
M I X X I

= − ⊗ − ⊗ +
= ⊗ − ⊗  

If the operator L  is invertible, i.e. if its matrix representation L is non-singular, 
then the perturbed equation (3) may be rewritten as an equivalent matrix equation 
[2, 3, 4], namely Z = П(Z, E). 

The operator L is a special case of a Sylvester operator. It is singular if and 
only if the matrices A – X0 and A + X0 have a common eigenvalue [5]. 

The eigenvalues of L are the eigenvalues of its matrix L and they are equal to  
0 0( ) ( ), , 1, 2,...,i jA X A X i j nλ λ− − + = , where λ1(H), λ2(H), …, λn(H) are the 

eigenvalues of the matrix n nH ×∈R  counted according to their algebraic 
multiplicities. 

Hence the operator L and its matrix L would be invertible if and only if 
0 0( ) ( ), , 1, 2, ...,i jA X A X i j nλ λ− ≠ + = . However, for equation (3) with a matrix A 

having multiple eigenvalues and a solution X0 being a nilpotent matrix, the operator 
L, as defined by (5), is singular. Hence equation (4) may not be written immediately 
as an equivalent operator equation. As a consequence, the standard technique for 
perturbation analysis of matrix equations [3, 4] may not be implemented. 

Rewrite the matrix equation (4) in a vector form applying the vec operation to 
the first order terms O(u) and having in mind that F(X0, A) = 0: 

Lvec(Z) = –Mvec(E) + O(u2). 
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Let the rank of the matrix L be r ≥ 1 and consider the singular value 
decomposition L = U Σ VT of L, where U and V are 22 nn × orthogonal matrices,     
Σ = diag(Σ1, 0), Σ1 = diag(σ1, σ2,…, σr), and σ1 ≥ σ2 ≥ …,  σr > 0  are the positive 
singular values of L. 

Denote 
[ ] [ ]2 2 2

2

2 2 2 2

( )
1 2

1
1 2

2

: 0 , : 0 ,
0: , :0

r n n r n
r n r

n n n n

P I P I
PП П P

× − ×
−

× ×

= ∈ = ∈
⎡ ⎤ ⎡ ⎤= ∈ = ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R

R R
 

and 
2

2

T 1

2

T T1

2

: vec( ) , : ,

: vec( ) , : vec( ), 1, 2.

n
k k

n
k k

zz V Z z P zz
ee U M E e P U M E ke

⎡ ⎤= = ∈ =⎢ ⎥⎣ ⎦
⎡ ⎤= − = ∈ = − =⎢ ⎥⎣ ⎦

R

R
 

Then we obtain 
2

1 1 1
2

2

( ),
0 ( ).

z e O u
e O u

Σ = +
= +  

Hence 
1 2

1 1 1 ( )z e O u−= Σ +  
and 

1 2 1 T 2
1 1 1 1 12 2 2

1 T 2
1 1 22

( ) vec( ) ( )
vec( ) ( ).

z e O u PU M E O u
PU M E O u

− −

−

= Σ + = Σ + ≤
≤ Σ +

 

Hence we have derived the following first order bound for the norm of the 
projection П1VTvec(Z) of the vectorization vec(Z) of the  perturbation Z in the 
solution X0 

(7)                    
T T

1 12 2

21 T
0 1 1 2

vec( ) vec( ) ,

( , ) : ,
r

П V Z PV Z C
M

C C A X PU M

ε

σ
−

= ≤

= = Σ ≤
 

where 
2

vec( ) .
F

E Eε = =  
The local bound (7) is valid only asymptotically, for 0ε → .  This means that 

the perturbation in the data must be small enough to ensure sufficient accuracy of 
the local bound. Unfortunately, it is usually impossible to say, having a small but  
finite perturbation ε, whether the neglected terms are indeed negligible. 

The disadvantages of the local bound may be overcome using the techniques 
of non-local perturbation analysis. 

4. Non-local perturbation analysis 

Equation (3) may be written in the form 
(8)                             L(Z) = –M(E) +  E Z – Z E + Z2. 

The vector representation of this equation is 
L vec(Z) = – Mvec(E) + vec(EZ – ZE + Z2). 
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Using the notations from the previous section we may rewrite the last equation 
as 

1 1 T 2
1 1 1 1 1 1

T 2
2 2

( , ) : vec( ),
0 vec( ),
z Ф z E e PU EZ ZE Z

e PU EZ ZE Z
− −= = Σ + Σ − +

= + − +  

where 
T 11

2
vec( ) , , vec ( ).k k

zz V Z z P z Z Vzz
−⎡ ⎤= = = =⎢ ⎥⎣ ⎦

 

Setting 2 2( ) :Ф z z=  we see that z satisfies the operator equation 

1

2

( , )( , ) : .( )
Ф z Ez Ф z E Ф z

⎡ ⎤= = ⎢ ⎥⎣ ⎦
 

For  fixed numbers ρ > 0 and ν ∈ (0, 1] let 2( ) n
ν ρν ⊂R  be the set of vectors z 

such that ρ≤
2

z  and 1 12 2
z П z νρ= ≤ . This set is closed and convex. 

Next we shall find conditions on the norm 
F

E=ε  which guarantee the 

existence of a quantity 00 >ρ  such that 0 0( ( ), ) ( )Ф Eν νρ ρν ν⊂ . For ( )z ν ρν∈  
we have  

2

1 2

2
( , ) ( , ) :

r r
Ф z E h Cν

ρ ερ
ρ ε ε

σ σ
≤ = + + . 

Suppose that 

(9)                            
2

2
:

( 2 )
r

C C
ν

σ ν
ε ε

ν
≤ =

+ +
. 

Then we may define the quantity 

(10)                0
2

2
( ) :

2 ( 2 ) 4
r

r r r

C
f

C
ν

σ ε
ρ ε

σ ν ε σ ν ε σ ε
= =

− + − −
. 

For 0( )z ν ρν∈  we shall have 00 ),( νρερν =h  and hence the operator Ф(.,E)  
transforms the set 0( )ν ρν  into itself. Then, according to the Schauder fixed point 
principle, the operator Ф(.,E) has a fixed point 0( )z ν ρν∈  for which the estimate 

[ ]1 2
( ), 0, ,z fν νν ε ε ε≤ ∈  

holds. Moreover, in this case we have the following result. 
Theorem 3. Let the quantity (0, ]vν ε∈  be given and let [0, ]νε ε∈ . Then 

there exists a perturbation Z in X0 such that 
(11)                                           

2
( ),

F
Z z fν ε= ≤  

where εν and fν(ε) are determined by relations (9), (10) and (7). 

5. Numerical examples 

In this section we give three numerical examples to illustrate the results from 
Sections 3 and 4. 
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Example 4. Consider the matrix equation 2XAXXA =−  from Example 2.8 
in [1] with a data matrix A and a solution X0 given by 

0

0 0 0 1 0 1
0 0 1 , 1 0 0 .
0 0 0 1 0 1

A X
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

The perturbations E in the data and Z in the solution are taken as  
0 0 0 0 0 0
0 0 , 0 0
0 0 0 0 0 0

E s Z s
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  with  210 ks −=   for k = 1, 2, 3, 4, 5. 

We estimate the Euclidean norm of the projection П1VTvec(Z) of the 
perturbation Z in the solution X0 by the local bound Cε from (7). Then we estimate 
this quantity by the bound ( )fνν ε  using (11). The results obtained for different 
values of k and ν are shown in Table 1.  
 Table 1. Perturbation bounds for z1= P1VT vec(Z) (Example 4) 

k ||z1||2 Cε vfv(ε), 
ν = 0.25 

vfv(ε), 
ν = 0.5 

vfv(ε), 
ν = 0.75 

vfv(ε), 
ν = 1 

1 6.3246×10–3 3.6187×10–2 * 5.0938×10–2 4.1046×10–2 3.8910×10–2 

2 6.3246×10–5 3.6187×10–4 3.6474×10–4 3.6267×10–4 3.6226×10–4 3.6211×10–4 

3 6.3246×10–7 3.6187×10–6 3.6190×10–6 3.6188×10–6 3.6187×10–6 3.6187×10–6 

4 6.3246×10–9 3.6187×10–8 3.6187×10–8 3.6187×10–8 3.6187×10–8 3.6187×10–8 

5 6.3246×10–11 3.6187×10–10 3.6187×10–10 3.6187×10–10 3.6187×10–10 3.6187×10–10 

Next we estimate the Frobenius norm of Z by the non-local bound ( )fν ε  from 
(11). The results are given in Table 2. 

The cases when the non-local  bound is not valid, since the existence condition 
(9) is violated, are denoted by asterisks. 
               Table 2. Perturbation bounds for Z (Example 4) 

k ||Z||F 
fv(ε),  
ν = 0.25 

fv(ε),  
ν = 0.5 

fv(ε), 
ν = 0.75 

fv(ε),  
ν = 1 

1 1.0000×10–2 * 1.0188×10–1 5.4727×10–2 3.8910×10–2 

2 1.0000×10–4 1.4590×10–3 7.2533×10–4 4.8301×10–4 3.6211×10–4 

3 1.0000×10–6 1.4476×10–5 7.2375×10–6 4.8250×10–6 3.6187×10–6 

4 1.0000×10–8 1.4475×10–7 7.2374×10–8 4.8249×10–8 3.6187×10–8 

5 1.0000×10–10 1.4475×10–9 7.2374×10–10 4.8249×10–10 3.6187×10–10 

As it is seen the non-local bound ( )fνν ε  is slightly more pessimistic than the 
local bound Cε . 

Example 5. Consider the matrix equation (1) with matrices  

0

0 0 0 1 0 1
0 0 , 1 0 1
0 0 0 1 0 1

A a X a
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

  with  
1

10
3

ka −= − . 

The perturbations E and Z are taken as in the previous example. 
The estimated Euclidean norm of the projection П1VTvec(Z) of the 

perturbation Z in the solution X0, the local bound Cε, defined by (7), and the non-
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local bound ( )fνν ε  from (11) for k=1, 2, 3, 4, 5 and ν = 0.25, 0.5, 0.75, 1 are 
shown in Table 3. 
    Table 3. Perturbation bounds for z1= P1VT vec(Z) (Example 5) 

k ||z1||2 Cε vfv(ε), 
ν = 0.25 

vfv(ε), 
ν = 0.5 

vfv(ε), 
ν = 0.75 

vfv(ε), 
ν = 1 

1 6.3246×10–3 1.7923×10–1 * * * * 

2 6.3246×10–5 1.2500×10–3 1.3678×10–3 1.2767×10–3 1.2621×10–3 1.2570×10–3 

3 6.3246×10–7 1.2123×10–5 1.2132×10–5 1.2125×10–5 1.2124×10–5 1.2124×10–5 

4 6.3246×10–9 1.2086×10–7 1.2087×10–7 1.2086×10–7 1.2086×10–7 1.2086×10–7 

5 6.3246×10–11 1.2083×10–9 1.2083×10–9 1.2083×10–9 1.2083×10–9 1.2083×10–9 

The results of the estimation of the Frobenius norm of Z by the non-local 
bound fv(ε) from (11) for different values of k and ν are shown in Table 4. 
                Table 4. Perturbation bounds for Z (Example 5) 

k ||Z||F 
fv(ε),  
ν = 0.25 

fv(ε),  
ν = 0.5 

fv(ε),  
ν = 0.75 

fv(ε),  
ν = 1 

1 1.0000×10–2 * * * * 

2 1.0000×10–4 5.4713×10–3 2.5534×10–3 1.6827×10–3 1.2570×10–3 

3 1.0000×10–6 4.8528×10–5 2.4251×10–5 1.6165×10–5 1.2124×10–5 

4 1.0000×10–8 4.8346×10–7 2.4173×10–7 1.6115×10–7 1.2086×10–7 

5 1.0000×10–10 4.8331×10–9 2.4166×10–9 1.6110×10–9 1.2083×10–9 

The cases when the non-local bound is not valid, since the existence condition 
(9) does not hold, are denoted by asterisks. 

Example 6. Consider the matrix equation (1) with matrices 

0

1 0 0 0 0 0
0 1 , 0 0
0 0 1 0 0 0

A a X a
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 with 
1

10
3

ka −= − . 

Suppose that the perturbation E is  
0 0

0
0 0

s
E s s

s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 with 210 ks −= . 

The perturbation Z in the solution X0 is the same as in Examples 4 and 5. 
The results obtained for k = 1, 2, 3, 4, 5 and for ν = 0.25, 0.5, 0.75, 1 for the 

estimated quantity ||z1||2 =|| П1VTvec(Z) ||2  and for the bounds  Cε  from (7),  and 
)(ενf  from (11), are shown in Table 5. 

       Table 5. Perturbation bounds for z1= P1VT vec(Z) (Example 6) 

k ||z1||2 Cε vfv(ε), 
ν = 0.25 

vfv(ε), 
ν = 0.5 

vfv(ε), 
ν = 0.75 

vfv(ε), 
ν = 1 

1 0 1.4142×10–2 * 2.2138×10–2 1.7246×10–2 1.6073×10–2 

2 0 1.4142×10–4 1.4227×10–4 1.4172×10–4 1.4159×10–4 1.4154×10–4 

3 0 1.4142×10–6 1.4143×10–6 1.4142×10–6 1.4142×10–6 1.4142×10–6 

4 0 1.4142×10–8 1.4142×10–8 1.4142×10–8 1.4142×10–8 1.4142×10–8 

5 0 1.4142×10–10 1.4142×10–10 1.4142×10–10 1.4142×10–10 1.4142×10–10 
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The results for the non-local perturbation bound fv(ε) (11) for the norm of Z are 
given in Table 6. 
             Table 6. Perturbation bounds for Z (Example 6) 

k ||Z||F 
fv(ε),  
ν = 0.25 

fv(ε),  
ν = 0.5 

fv(ε),  
ν = 0.75 

fv(ε),  
ν = 1 

1 1.0000×10–2 * 4.4276×10–2 2.2995×10–2 1.6073×10–2 

2 1.0000×10–4 5.6910×10–4 2.8344×10–4 1.8879×10–4 1.4154×10–4 

3 1.0000×10–6 5.6572×10–6 2.8285×10–6 1.8856×10–6 1.4142×10–6 

4 1.0000×10–8 5.6569×10–8 2.8284×10–8 1.8856×10–8 1.4142×10–8 

5 1.0000×10–10 5.6569×10–10 2.8284×10–10 1.8856×10–10 1.4142×10–10 

As it is seen, here the local bound Cε estimates a projection of the perturbation 
Z in the solution X0, which in this particular example is the zero vector. 

6. Concluding remarks 

In this paper a perturbation analysis of the matrix equation 2XA AX X− =  is 
presented. Local and non-local perturbation bounds are derived under the 
Assumptions A2-A4, fulfilled for a set of small perturbations preserving the Jordan 
form of A. The local bound concerns only a projection of the perturbation in the 
solution and gives satisfactory results for small perturbations in the data. The non-
local bound is slightly more pessimistic but holds when the perturbation in the data 
belongs to a preliminary defined domain of applicability of the bound. Numerical 
examples demonstrate the effectiveness of the bounds proposed. 
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