
 73

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 8, No 1

Sofia • 2008

Applications

Dynamic Generation of Testing Questions in SQL in DeTC

Olga Rahneva1, Angel Golev2, Nikolay Pavlov2

1 Department of Informatics and Statistics, University of Food Technologies, 4000 Plovdiv
E-mail: rahneva@hiffi-plovdiv.acad.bg
2 Faculty of Mathematics and Informatics, Plovdiv University “Paisii Hilendarski”, 4003 Plovdiv
E-mails: angel@kodar.net npavlov@kodar.net

Abstract: This paper describes how dynamic questions for testing in SQL are being
created, generated and applied into practice at a Distributed e-Testing Cluster –
DeTC. As a result, the learners receive unique testing questions, while the database
with tests does not grow significantly in size, and the size of the information
transferred is minimized.

Keywords: Electronic Testing, e-Testing, DeTC, Dynamic Question, Free Answer.

1. Introduction

Testing examination is one of the most popular and well-developed assessment
instruments in higher education [1]. The classic test is a sequence of precisely
defined questions, each question suggesting a simple answer, which can be easily
checked and assessed as correct, incorrect or partially correct (for example,
incomplete).

Questions are often split in types, according to the expected answer:
– a classic type of question – with a “yes/no” answer;
– a multiple-choice question – one answer (MC/SA, Multiple-Choice/Single-

Answer);
– a multiple-choice question – more than one correct answer (MC/MA,

Multiple-Choice/Multiple-Answer);
– free-type questions − with the answer being a number or a text;
– others.

 74

Most of the existing Web-based systems for testing and assessment provide
technologies and tools for creation, submission and assessment of questions of the
first three types [2-6]. A certain number of systems process all types of questions
[7,8].

However, most of the latter do not provide a solution to the problem for
dynamic creation of questions, which forces the development of a large set of test
versions, in order to prevent the test from being learned by heart.

The IMS Question & Test Interoperability (QTI) specification describes a data
model for the representation of questions and test data and their corresponding
results reports. Since 2005 starting with version 2.0, QTI supports parameterized
questions via assessment item templates [9].

There exist online testing systems in SQL, but they work with a predefined set
of questions on SQL, and choose randomly a subset of them when creating a test
[10, 11].

It is described below how dynamic free-type questions for testing in SQL are
generated and applied in practice at a Distributed e-Testing Cluster – DeTC.
Learners are given unique testing questions by generating random values for the
variables in the question. This does not increase the number of the preliminary
created questions, decreases the size of the database with tests, and minimizes the
size of the transferred information.

DeTC [12-14] is being developed as a joint project of the University in
Limerik – Ireland, and the Department of Computer Systems and the Department of
Computer Technologies at the University of Plovdiv, Bulgaria, and the Department
of Informatics and Statistics at the University of Food Technologies, Plovdiv,
Bulgaria.

2. Generating dynamic testing questions in SQL

In DeTC, learners are provided with these types of testing questions in SQL:
– A free text question: write an SQL query on a testing question.
– A multiple-choice question, which can be one of the following:

• Select the correct answer out of multiple pre-generated SQL queries.
• Select the error in a pre-generated SQL query from a list of errors.
• Determine which one from a list of pre-generated SQL queries returns a

given result.
• Determine the result of an SQL query.

– Find and correct the errors in a pre-generated SQL query.
The described solution uses a base of texts and templates to generate multiple

correct SQL constructions.
For each group of tests there should be a general description of the used tables,

their fields, and value ranges for each data type. According to the questions types,
it might be necessary to create these tables in a real database, and populate them
with data for correct query execution.

An example is given in Fig. 1.

 75

Fig. 1. Description of tables and their fields

Every dynamic question is described by a number of sections. Section
text_pattern describes the text contents of the questions. Special tags are used to
denote the places in the text where names of database tables and fields will be
dynamically inserted. Symbol @ is used as a prefix for tag names, in accordance
with the notation in DeTC. These tags are in format @field1 for the selected field
and @table1 for the selected table, and @oper1 for comparison operators. The test
generation tool (TGT) selects random values for names of fields and tables when
generating actual questions.

Section answer_pattern describes the contents of a SQL query and uses the
tags described above, for example @field1, @table1, @oper1, etc.

Section system_gen describes the rules for dynamic selection of tables, fields,
operators, data types and value ranges for each type.

Sections test_tables, ranges, table_data contain information about tables, value
ranges per data type, and description of data, which are used to create and fill the
sample tables. These sample tables are created and populated with data when SQL
queries of testing questions have to be executed.

3. Generated elements syntax

The names of all tags, used to generate dynamic SQL queries start with @. The
templates and system information is described in XML. There a dollar sign “$” is
used instead of @.

 76

Table 1

<table value=‘Tables’> $table1 </table> Select for @table1 a random name from the list
of described table

<table name=‘Orders’> $table2 </table> @table2 is linked to physical table Orders
<field rand=‘yes’ table=‘$table1’>
 $field2 </field> Select for @field2 a random field from @table1

<field name=‘onum’ table=‘$table1’>
 $field1 </field>

@field1 is statically linked to field “onum” from
table @table1

<oper rand=‘yes’ type=‘$wfield.type’>
 $oper1 </oper>

Select a random comparison operator, applicable to
the data
 type of field @wfield

<value rand=‘yes’ type=‘$wfield.type’
range=‘free’>
 $value1 </value>

Select a value, corresponding to the data type of
field @wfield

<field name=‘onum’>
 <fullname>Order number</fullname>
 <type> integer </type>
 ...
</field>

Describes a field in a table

4. Extending DeTC tools

Dynamic Test Development Tool (DTDT) is used to create and describe testing
templates. DTDT is an extension of DeTC’s test editor Test Development Tool
(TDT). It is possible to create testing templates without knowledge of the XML
description of the testing tables and their data.

An extension to DeTC’s Dynamic Test Assessment Tool (DTAT) is created to
enable DTAT assess tests in SQL. The free form syntax of SQL raises two
problems before the task of automatic assessment. The first problem is related to the
whitespaces and formatting of the answer. The extension of DTAT uses a SQL
parser to compare the correct answer of the test question with learner’s answer. The
second problem is related to the logic of the SQL queries. Additional analysis is
necessary when comparison operators are used. Operations in learners’ answers and
the given correct answers must be checked whether logically equal.

For example “city = ‘Plovdiv’” is equal to “not city < > ‘Plovdiv’”.
The process of generating tests in SQL is outlined in Fig. 2.
DeTC features a conversion tool for exporting DeTC-generated questions into

QTI XML format, Version 1.2. Since 2006 this conversion tool is being extended to
support QTI Version 2.0, and export both generated questions, and question
templates into QTI assessment item templates. This enables interoperability of
DeTC with authoring tools, item banks, test constructional tools, and learning
systems, which support QTI.

 77

Fig. 2. Generating tests in SQL

5. Real-life implementation

The described approach is used in real-life testing examination in lectures on
databases and SQL. Three examples are presented here.

Example 1. Question “Write a SELECT query, which returns the sequential

number, sum and date for all records of table ‘Documents’” can be created by the
following template:

Write a SELECT query, which returns @field1, @field2 and @field3 for all
records of table @table1.

The template of the correct answer will be:
SELECT @field, @field2, @field3
FROM @table1

A correct answer of the question of Example 1:

SELECT cust_id, amts, odate
FROM orders

The complete template of Example 1 in XML format is:
<test_example1>
 <text_pattern> <![CDATA[

Write a SELECT query, which returns @field, @field2 and
@field3 for all records of table @table1.]]>

 </text_pattern>
 <answer_pattern> <![CDATA[

Author

Templates Description of tables
and fields

Sample data for testing
tables

Data types and
ranges

Test questions texts Correct answer or groups
of answers

Creating test tables with data,
executing SQL queries

 78

 select @field, @field2, @field3
 from @table1]]>
 </answer_pattern>
 <system>
 <table values=‘Tables’> $table1 </table>
 <field primarykey=‘yes’ table=‘$table1’> $field </field>
 <field random=‘yes’ table=‘$table1’> $field2 </field>
 <field random=‘yes’ table=‘$table1’> $field3 </field>
 </system>
</test_example1>
<test_tables>
 <table name=‘orders’ descr=‘Documents’ ... >
 <field name=‘cust_id’>
 <descr> Sequential number </descr>
 <type> integer </type>
 ...
 </field>
 <field name=‘amt’>
 <descr> Amount </descr>
 <type> numeric(10,4) </type>
 ...
 </field>
 </table>
 <table name=‘customers’ descr=‘Customers’ ... >
 <field name=‘...’>
 ...
 </field>
 </table>
 ...
</test_tables>
<ranges/>
<table_data/>

Example 2. Question “Write a SELECT query which returns the number of
customer, registration date for all records for table “Customers”, meeting the
condition “city = ‘Plovdiv’”.

<test_example2>
 <text_pattern> <![CDATA[

Write a SELECT query which returns @fieldlist1 for all records for
table @table1, meeting the condition @wfield @oper1 @value1.
]]>

 </text_pattern>
 <answer_pattern> <![CDATA[
 select @fieldlist

 79

 from @table1
 where @wfield @oper1 @value1]]>
 </answer_pattern>
 <system_gen>
 <table values=‘Tables’> $table1 </table>
 <fieldlist random=‘yes’ table=‘$table1’>

$fieldlist1
</fieldlist>

 <field random=‘yes’ table=‘$table1’> $wfield </field>
 <oper random=‘yes’ type=‘$wfield.type’> $oper1 </oper>
 <value random=‘yes’ range=‘free’ type=‘$wfield.type’>

$value1
</value>

 </system_gen>
</test_example2>

Figs. 3 and 4 demonstrate how DTGT is used to create the dynamic question
template, and a sample generated question with its correct answer.

Fig. 3. Creating templates

 80

Fig. 4. A sample generated question and its correct answer

Example 3. Question: fill in the missing text in a SQL query.

Fill in the missing text:
SELECT *
... orders
... orders.onum > 20

Template definition in XML format:
<test_example3>
 <text_pattern> <![CDATA[
 Fill in the missing text:
 @blank{SELECT} *
 @blank{from} @table1
 @blank{where} @field1 @oper1 @value1]]>
 </text_pattern>
 <system_gen>
 <table values=‘Tables’> $table1 </table>
 <field random=‘yes’> $field1 </field>
 <oper random=‘yes’ type=‘$field1.type’> $oper1 </oper>
 <value type=‘$field1.type> $value1 </value>
 <blank places=‘2’/>
 </system_gen>
</test_example3>

The example templates above can be used also to generate multiple-choice

 81

questions like: what will be the result of the following statement: …. The multiple
choices are generated by executing the correct queries and some incorrect ones. In
this case there can be more than one correct answer.

DeTC is already used to conduct real-life electronic assessment of learners.
Results demonstrate that DeTC is recognized by learners as very convenient and
easy to use. Vast majority of the learners certify that their knowledge has been
assessed impartially [15, 16]. There is no representative sample for testing in
databases and SQL yet.
Acknoledgement: This research has been partially supported by the Bulgarian NSF under Contract
number VU-MI 107/2005.

R e f e r e n c e s
1. B r u s i l o v s k y, P., P. M i l l e r. Web-Based Testing for Distance Education. WebNet 1999,

149-155.
2. http://wdo.uni-svishtov.bg

Last vist December 2007.
3. http://estudy.iccs.bas.bg

Last vist December 2007.
4. http://www.nbu.bg

Last vist December 2007.
5. http://www.vg-u.de

Last vist December 2007.
6. G u s e v, M., G. A r m e n s k i. A New Model of On-line Learning. – In: Proc. of SSGRR Advances

in Infrastructure for Electronic Bussiness, Education, Science and Medicine. Roma, 2002.
7. B o n t c h e v, B., T. I l i e v. ARCADE − a Web-Based Authoring and Delivery Platform for

Distance Education. – 1st Balkan Conference on Informatics (BCI’2003), Thessaloniki,
Greece, 21-23 November, 2003.

8. U e n o, M., K. N a g a o k a. Web Based Computerized Testing System for Distance Education. –
In: Proc of ICCE 2001, Korea, 2001, 547-554.

9. http://www.imsglobal.org/question/
Last vist December 2007.

10. http://www.w3schools.com/sql/sql_quiz.asp
Last vist December 2007.

11. http://www.sqlquiz.com/
Last vist December 2007.

12. R a h n e v a, O. DeTC – Distributed Electronic Testing Cluster. – Scientific and Practical
Conference “New Technologies in Education and Professional Learning”, Sofia, 16-17 May
2003, 84-91.

13. R a h n e v a, O. Testing and Assessment in Distributed Electronic Testing Cluster – DeTC. – In:
12th International Conference Electronics ’2003, Sozopol, 24-26 Sept. 2003, Conference
Proceedings, Vol. 4, 214-219.

14. R a h n e v a, O. Generating Dynamic Questions in Distributed e-Testing Cluster. – DeTC,
ECEST’04, Bitola, 2004, Vol.1, 305-308.

15. I l i e v, A., V. V a l c h a n o v, T. T e r z i e v a. Shared Experience of Software Test System Usage
for Conducting Exams in the Course of Information Modeling. – In: Jubilee Scientific
Conference “Science, Education and Time as Our Concern”, Smolyan, November 30-
December 1 2007.

16. R a h n e v, A., O. R a h n e v a, N. V a l c h a n o v. Application of DeTC for Examination and
Assessment in Qualification “Teacher in Information Technologies”. – In: Thirty Sixth
Spring Conference of the Union of Bulgarian Mathematicians, Varna, April 2-6 2007,
Conference Proceedings, 397-403.

6

