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Abstract: Input-output linearization approach to induction motor position control 
problem is investigated.  Linearizing transformation and control law for the full 
sixth-order induction motor model are presented. The effects of variations in 
mechanical parameter values on the linearized system are derived and discussed. 
Simulation results with the discrete-time version of the obtained overall controller 
are presented. 
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1. Introduction 

Motion control applications are mostly based on DC and PM motors. Induction 
motors, on the other hand, are known with their ruggedness and reliability, due to 
their simple construction, much lower cost, lack of commutating elements, better 
power to mass ratio compared to the DC motors, which make them an attractive 
alternative in these applications. However, the advantages above mentioned come 
with the very complicated, strongly coupled nonlinear dynamics, which requires 
putting in place sophisticated control algorithms in order to obtain good 
performance. A good overview of the state of the art in electric servo drives can be 
found in [15]. 

Different approaches to induction motors position control are available in the 
scientific literature, mostly based on passivity theory and sliding-mode designs for 
the current-command mode with different adaptive features in the control scheme 
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[10, 12, 13, 14] in order to compensate for mechanical parameter variations. In [12] 
a feedback linearization-like technique is used to decouple rotor position and flux. 
An adaptive position tracking control algorithm is presented in [9]. 

The application of input-output feedback linearizing techniques to induction 
motor control design [2, 6, 7, 8, 16], enables the exact linearization of rotor 
speed/position and flux dynamics. Unlike the case of field-oriented control, where 
only asymptotic decoupling is achieved i.e. when the flux is constant, here this 
restriction is eliminated and both system outputs are completely decoupled. This 
feature enables the optimization of a motor torque [2], without degrading 
mechanical output regulation, which makes feedback linearization an attractive 
approach to induction motor position control. Papers [2, 6, 7] report experimental 
results of an induction motor position control system, based on input-output 
linearization of the current-fed field-oriented model, showing good position 
tracking and ability to independently control the flux magnitude. 

In this paper input-output linearization approach to induction motor position 
control problem is investigated.  Linearizing transformation and control law for the 
full sixth-order induction motor model are presented. The effects of variations in 
mechanical parameter values on the linearized system are derived and discussed. 
Outer-loop controllers are proposed and simulation results with the discrete-time 
version of the obtained overall controller are presented. 

2. Dynamic modeling of the induction motor 

The induction motor considered here is a three-phase stator, three-phase short 
circuited rotor machine. The following considerations are valid for the case of a 
squirrel-cage rotor, since it is equivalent to a three-phase short-circuited one 
through a simple transformation. The common assumptions are adopted for the 
modeling i.e. symmetrical construction, sinusoidal distribution of the field in the 
air-gap and linearity of magnetic circuits.  

Remark: The rotor flux magnitude can be kept away from the saturation zone 
by an appropriate control action, thus forcing the assumption for linear magnetic 
circuits. 

Writing the equations describing the motor dynamic behavior in the two-phase 
stator-fixed α–β frame and eliminating stator fluxes and rotor currents, the 
following equivalent two-phase model is obtained: 
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where: ,  S Si iα β  are stator currents, ,  R Rα βψ ψ  – rotor fluxes, ω  is rotor speed,     

θ – rotor position, ,  S Su uα β  – voltage inputs to the motor, ( )S Rl  – phase stator 

(rotor) winding inductances, ( )S Rr  – phase stator (rotor) winding resistances, 

0 2 / 3m m=  – mutual inductance, pn  – number of pole-pairs, J – rotor moment of 

inertia; c – viscous friction coefficient, /R Rr lη = , 2( ) / ( )R S R Sl l m l lσ = − , 
2 2 2( ) / ( )R S R R Sl r m l l lγ η σ= + , / ( )p Rn m l Jµ = , / ( )R Sm l lζ σ= , Lτ  – load torque. 

The complete derivation of the model can be found in [1, 2, 3]. 
The induction motor model (1) is put in the following form: 
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3. Input-output feedback linearization of the induction motor 

Basically, feedback linearization consists of applying a nonlinear transformation on 
system variables i.e. expressing them in a new “suitable” coordinate system, which 
will enable the introduction of a feedback, so that an input-output or state 
linearization in the new coordinates is achieved. Theoretical foundations and a 
systematic procedure for finding these can be found in [4, 5, 11].  

For the induction motor case, by choosing the output functions as the rotor 
position and flux square respectively 

(3)      1 1 6( )   y h x x= = , 2 2
2 2 2 3( )y h x x x= = +  , 

and applying the following transformation: 
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where fL h  denotes  the Lie derivative of the scalar function h with respect to (or 

along) the vector field f and represents a scalar function defined by f
hL h f
x
∂

=
∂

 

(iteratively 1n n
f f fL h L L h−= ), the system (2) is transformed in the following normal 

form: 
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The transformation (4) is basically the one given in [8], only position 
coordinate is added. 

The correspondant Lie derivatives are given by the following expressions: 
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Choosing the linearizing control law in the form 
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the linearized system is put in the following form: 
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The matrix ( )A x , called “decoupling”, is given by 
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As seen from (10), the decoupling matrix is invertible only when the 
singularity condition is verified, i.e. when flux magnitude is not zero: 
(11)                 2 2 2

2 3det( ( )) 2 ( ) / ( ) 0SA x m x x lη µ σ= − + ≠ .  

By choosing the control law as (7), the dynamics of the original nonlinear 
system is decomposed into two parts: a linear input-output map, given by (8) and a 
nonlinear, unobservable through the output, internal part (9). The stability 
properties of this internal dynamics, a general limitation of feedback linearization 
control are not an issue in this case since 1χ  represents an angle by definition. In 
Fig. 1 the resulting linear decoupled input-output system is shown. It is seen, that 
the problem of controlling rotor position and flux is rendered to controlling a triple 
integrator for the position loop and a double integrator for the flux loop. 

 
Fig. 1. Input-output linearized sysytem 
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To study the effects of variations in mechanical parameter values, let us 
assume uncertainties on these parameters, formalized in the following form: 

pJ kJ= , pc c c= + ,  with 1J J −= . 
System (2) can be rewritten as 
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Expression (5) takes the following form with variables defined as in (4): 
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The respective Lie derivatives are given by expressions 
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Applying the same linearizing control law (7), the system is put in the 
following form: 
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By comparing (15) with (8) and (9), it is seen that the internal feedback 
connections in the position loop appear due to the mechanical parameter 
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uncertainties and the double integration is lost. Also additional disturbances enter 
this subsystem. The flux loop is not affected by these variations neither coupling 
between the subsystems is restored. Fig. 2 visualizes the resulting perturbed linear 
decoupled input-output system.  

 
Fig. 2. Perturbed input-output linearized sysytem 

4. Outer control loops and flux observer 

The block diagram of the proposed control scheme is given in Fig. 3. The position 
control loop is realized by using a cascade principle and consists of a fast inner 
speed control loop using a PID controller, also reducing the effects of mechanical 
parameter variations, and position feedback control loop with a P controller.  

The flux control loop is realized by using a PID controller, determining fast 
output response, thus giving the possibility of setting a desired dynamics of the flux 
value by an adequate pre-filter. 

Since generally the flux vector components are not measurable, a simple flux 
observer, representing a simulation of the second and third equations in (1) is used 
to estimate their values. Assuming const, ( 1)S SkT t k Tω = < < +  and 

* const, ( 1)S S Si kT t k T= < < + , a discrete-time version of the open-loop simulator is 
given by: 
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Fig. 3. Overall control system 

5. Simulation setup and results 

The motor parameters used for simulation purposes, chosen as in [16], are given 
below: 

20.13Ω,Sr =  13Ω,Rr =  1.05 H,Sl =  1.33 H,Rl =  0.957 H,m =   
20.0005 N.m.s ,J =  0.00014 N.m.s,c =  2pn = . 

The respective gain values for both PID controllers in the position and flux 
control loops respectively are set to:  

32,4.10PK = , 54,8.10IK = , 300DK = . The gain value of the P controller is set to 
100K = .  

 
Fig. 4. Transient responses 
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In order to assess more realistically the feasibility of the proposed control 
system, both linearizing and outer loops, as well as the flux observer have been 
simulated with their discrete-time realizations with sampling period 0,0005 s.ST =  
Also, a delay of one sampling period is added to control inputs. The transient 
responses of the system are shown in Fig. 4. First, the flux is regulated to its 
nominal value and then the motor is required to attain a position of 90 rads in one 
second, along a half-wave sinusoidal speed trajectory. At 0.5 s,t =  a 2 N.m load 
torque, unknown to the controller is applied. The uncertainties on the mechanical 
parameter values are set to 0.5c c= and 0.66k =  i. e. 1.5pJ J= . 

6. Conclusion 

In this paper, an induction motor position control system, based on input-output 
feedback linearization, is proposed.   

Simulation results show the system ability to track the desired position 
trajectory. The main advantage consists in the exact decoupling between 
mechanical output and flux, obtained as a result of the linearization, a result that can 
be used for torque optimization. The influence of possible uncertainties on 
mechanical parameters in the setup of this approach is derived. It is shown that both 
subsystems remain independent even in their presence, though some internal 
feedback connections and additional disturbances appear in the position control 
subsystem. However, due to errors introduced by the discrete-time realization of the 
flux observer and the linearizing control loop certain coupling is re-instated as the 
flux value is affected by the rotor speed, which is seen on the transients. Fast outer 
control loops, with high-gain PID controllers for both subsystems are proposed in 
order to enable setting the dynamics of their responses as desired by using pre-
filters, and to provide robustness against parameter variations. Simulations have 
shown that the control system can track reference positions, achieving speeds much 
greater than the nominal speed of the motor, though in those cases the additional 
delay accounting for control value calculation becomes critical. 

Currently, an experimental setup is put in place to confirm the feasibility and 
practicability of the proposed control system. 
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