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Abstract: This paper presents an approach to controller design in the complex 
plain, satisfying some performance specifications and an analysis of the obtained 
system in the presence of parametric uncertainty. The relative location of regions in 
the complex plane, specifying performance and uncertainty, is analyzed. Transient 
responses and the notion of robustness are commented. The design example, shown 
in the paper is based on a triparametric plant model and a PID controller. 
Simulations are run in Matlab. 
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1. Introduction 

It is well-known that the complex plane analysis and design methods form a 
powerful tool available to the control engineer. Nowadays, more and more attention 
is given to the adaptation and the extension of these methods when dealing with 
modern control systems analysis and design problems in the presence of plant 
uncertainties [1-12]. Time-domain performance specifications are graphically 
“mapped” in pole location regions in the complex plane, when all analysis and 
design considerations are based on the well-accepted “dominating poles” concept. 
Designing a controller, meeting certain performance specifications, by using the 
tools and the properties of the complex plane requires an engineering intuition, 
since there are many choices available to the designer. The construction of the so-
called gamma-regions [1] widens the set of tools in the plane, by giving new 
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alternatives in studying plant parametric uncertainties [2, 3, 7, 8], and in designing 
controllers, classified in a category tagged by the notion of “robustness”. 

2. Goal 

The overall goal of this paper is to propose a solution to the controller design 
problem for a typical triparametric industrial plant model, in order to meet certain 
closed-loop system time-domain performance specifications and to analyze the 
behavior of the obtained system in the presence of uncertainty in all three dynamic 
parameters of the plant model. 

3. Problems 

In order to meet our goals, the following problems are addressed: 
a)  design of a controller, guaranteeing specified closed-loop system 

performance – overshoot and settling-time, by using the argument equation, 
describing the root loci formation; 

b)  verification of the obtained performance by analyzing transient responses 
and the relative time-domain specifications and their graphically determined 
counterparts in the complex plane; 

c)  specification of parameter uncertainty regions, by plotting root loci for each 
of the three uncertain real dynamic parameters entering the plant model; 

d)  analysis of the relative location of the performance specifying “gamma” 
and uncertainty regions, and interpreting the time-domain performance. 

4. Third-order system 

It is well-known, that in [4-6], [9-11] a large number of typical industrial processes 
and plants are modeled by transfer functions including an integrator and two simple 
lags,  

(1)             ( ) ( )( ) 1

1 21 1GG s k s s sτ τ
−

⎡ ⎤= + +⎣ ⎦ . 

Some of the candidate plants that “successfully apply” for description with the 
transfer function given by (1) are: flexible arm, gripper tool, robot submarine, arm 
rotating dynamics, vehicle, actuator, motor and joint as well as laser eye surgery 
system, two camera control, surface grinding wheel control system, milling 
machine control etc. [5]. Closed-loop systems are characterized by non-oscillating 
and oscillating transient responses. Under certain conditions the closed-loop system 
may become unstable. The settling-time decreases until two of the poles “meet” 
each other, after that the settling-time increases and the transients become 
oscillatory. The steady-state error ( )ε ∞  to input  qAs−  is equal to zero for ( 1q = ), 
bounded for ( 2q = ) and tends to infinity for ( 2q > ). 
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5. Controller design 

The example considered in this paper is the triparametric model (1) with the 
following dynamic parameter values: 
(2)      1 20.3 s,  0.2 s,  1.6Gkτ τ= = = . 
The goal is to design a controller giving closed-loop system performance specified 
by – overshoot 20%σ ≈  and settling-time 2% 2.2 sst ± ≈ . 

The dynamic parameter combination (2) (it is assumed that controller is P type 
with 1Rk = ) determines the following indirect performance specifications in the 
complex plane – damping ratio 0.456ξ =  and absolute stability margin 0.91nξω = −  
(Fig. 1). Using overshoot and settling-time relations (3) with the damping ratio and 
undamped natural frequency 

(3)   
21 %e

πξ

ξσ
−

−=  and  42% s.s
n

t
ξω

± ≈  

The following time-domain specifications are obtained: 20%σ = , 2% 4.4 s.st ± =  

6. Desired point coordinates calculation 

The new desired settling-time is two-times smaller than that of the uncorrected 
system. From the analytical relations between direct and indirect specification 
indices (3), one can determine the new value of the absolute stability margin, 

1.82nξω = − , that guarantees settling-time 2% 2.2 sst ± ≈  (Fig. 1). 

.

1c
z−

2cz−3.33−5− 01.82−

3.6

0.456ξ =

. 1Θ∠
2Θ∠3Θ∠ Ψ∠

( )Re s

( )jIm s

0ek =0ek = 0ek =

ek → ∞

ek → ∞

1.6ek =

0.91−

1.84.
Uncompensated
system

 
Fig. 1. PID controller design 

It is obvious that the desired poles don’t lie on the branches of the root locus. 
Therefore, improving the system speed of response, keeping the overshot at the 
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desired value, is not possible by only altering the Evans-coefficient (the P controller 
gain) in the right direction. It is necessary to design a controller that alters the root 
locus, in order to ensure that its branches will contain the point specifying the 
desired performance. 

A possible solution may be found in a PID controller design. The additional 
integration will ensure zero steady-state error to ramp inputs qAs−  and the most 
importantly disturbance rejection. In the case considered in this work, the zeros of 
the PID controllers will alter the current root locus, improve stability margins and 
limit the system speed of response.  

7. Zero 
1cz  design  

The zero 
1cz  characterizes the speed of response of the system. Its value is 

determined by the performance specifying point, which the root locus branches 
must contain, and is calculated using the argument equation (4) (Fig. 1). It is 
assumed that [ )0,ek ∈ +∞ : 

(4)     ( )
1 1

( ) 2 1
m n

i i
i j

G s i π ψ Θ
= =

∠ = ± + = −∑ ∑ . 

Using the geometrical relation given by Fig. 1, the following argument values 
are calculated: 
(5)   1 117.3Θ∠ = ° , 2 71.6Θ∠ = ° , 3 48.15Θ∠ = ° .  

From (4) and (5), the zero argument can be found to be: 
(6)   56.88ψ∠ = ° , and finally 

1
4.14cz = − . 

8. Zero 
2cz  design 

Placing the zero 
2cz  is a delicate stage of the controller design and suggests an 

iterative procedure. An engineering intuition is required, since complex plane 
design methods are based on the assumption for a second-order system. In these 
cases, it is recommended that the zero must be placed in sufficient proximity to the 
origin of the coordinate system. In our case, the zero is positioned at a distance of 
0.01 from the origin of the coordinate system in the complex plane. This helps 
reducing the influence of the zero on the transient responses and the second-order 
system approximation is valid. 

The design of both zeros 
1cz , 

2cz  completes the design of the PID controller 
and its transfer function is given by 
(7)        ( ) ( )( ) 1

PID 4.15 0.01 sG s s s −⎡ ⎤= + +⎣ ⎦ , 

for the PID controller parameters, one can obtain the following values: 
4.15;  0.71;  0.24.R i dk T T= = =  
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9. Desired performance verification 

The structure of the root locus shown in Fig. 2 indicates that the corrected system 
can indeed be treated as a second-order one. 

 

1.82−5− 4− 3.33− 0

3.55

3.55−

( )jIm s

( )Re s0ek =

0ek =0ek =0ek =

ek → ∞

ek → ∞

ek → ∞
ek → ∞

0.7ek =

2
0.01cz = −

.

.
0.456ξ =

 

Fig. 2.  Root locus of the corrected system 

 

It must also be accounted for the fact that the root locus method is primarily a 
graphical method, which introduces additional inaccuracy, yielded for example of 
rounding PID parameter values. This fact, along with the influence of the zeros, and 
the second-order system assumptions are the reason why the desired point doesn’t 
sit exactly on the corrected root locus branches. In situations like this, the control 
engineer again needs its intuition in order to choose the correct value of the Evans-
gain. In our case, the value 0.7еk =  corresponds to point where the root locus 
branches cross the constant damping ration loci in the plane at 0.456ξ = . Fig. 3 
visualizes the transient response of the corrected system.  

It is seen that the obtained performance specifications − overshoot of 20% and 
settling time of 2s, have values that meet the preliminary set performance 
requirements. 
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Fig. 3. Transient response of the corrected system 

10. Robustness test  

The notion of robustness means insensitivity of the system in certain degree to 
variations in the dynamic parameter values. The specification of a Γ-region, whose 
boundary is determined by (8), sets a desired dynamic behavior of the control 
system, and guarantees robustness, in the case when all dominating poles, 
repositioned in the plane due to plant parameter uncertainties, lie in it: 

(8)      ( ) ( ){ }2| 1 ,   n ns s j − +⎡ ⎤∂Γ = −ξω λ ± ω − ξ λ λ ∈ λ λ⎣ ⎦= ,  

where λ  is a generalized parameter. 
Plant parameter uncertainties form an uncertainty region sQ  in the complex 

plane. The analysis of the relative location and overlapping of those regions enables 
the interpretation of the robustness properties of control systems. 

In our numerical example, the uncertainty in the control system is due to 10% 
variations of the plant parameters around their nominal values (2), 

(9)     ;  ;G G Gk k k− +⎡ ⎤∈ ⎣ ⎦  1 1 1;  ;− +⎡ ⎤τ ∈ τ τ⎣ ⎦  2 2 2;  − +⎡ ⎤τ ∈ τ τ⎣ ⎦ . 

The region of desired performance “gamma” is specified by upper and lower 
bounds on the admissible deviations from the nominal system performance. 
(nominal parameters (2) and controller (7)) i.e. lower and upper bounds on the 
damping ratio [ ]0.5;  0.3ξ ∈  and the speed of response [ ]2.5;  1.5nξω ∈ . 

The characteristic equation of the closed-loop system in the presence of  
triparametric uncertainty is given by 

(10)   ( ) ( ) ( ) ( )1 2 1 2

4 3 2
1 2 1 2 1 0G c c c c GP s s s k s z z s z z k= τ τ + τ + τ + + + + + = . 
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In order to construct the uncertainty region sQ , a root locus is plotted for each 
of the three plant parameters as Evans-gain (9).  The three needed generalized 
characteristic polynomials are obtained after the respective modification of (10): 

(11)          ( ) ( ) ( )1 2 1 2

4 3
2

1 1 3 2
2

1
1 G c c G c c G

s sP s
s k s z z k s z z k

τ +
= + τ

τ + + + + +
, 

( ) ( ) ( )1 2 1 2

4 3
1

2 2 3 2
1

1
1 G c c G c c G

s sP s
s k s z z k s z z k

τ +
= + τ

τ + + + + +
,        

( )
( )

( )
1 2 1 2

2

3 4 3 2
1 2 1 2

1 c c c c
G

s z z s z z
P s k

s s s

+ + +
= +

τ τ + τ + τ +
. 

Twelve characteristic polynomials “shape” the boundary of sQ , each one 
obtained by taking the lower and upper bounds on the variations of the plant 
parameters. Fig. 4 shows the construction of the uncertainty region, by using the 
three basic polynomials (11) with the nominal values (2) in which the parameters 1τ , 

2τ  and Gk  vary from zero to infinity. The uncertain part of each root locus around 
the nominal values of the parameters can also be seen in Fig. 4. 
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Fig. 4. sQ  construction 

Fig. 5 shows only the parts of the root loci resulting from the parameter 
variations and forming the uncertainty region. 
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Fig. 5. Robust root locus 

In the presence of 10% variation of the plant parameter values, the closed-loop 
characteristic equation roots dominating the system transient response remain in the 
performance specifying Γ-region and the overall system possesses robust properties 
in this sense. 

In the time domain (Fig. 6), one can see that the system transient responses are 
specified by admissible overshoot and settling-time for the entire range of 
parameter deviations. 
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Fig. 6. Transient responses 
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11. Conclusion 

The root locus method, in comparison with other design methods, considerably 
facilitates the design of a controller guaranteeing desired closed-loop system 
dynamic behavior, since it offers an adequate interpretation of the time-domain 
performance. Certain level of engineering skills and intuition is required, due to the 
existence of more than one solution of a given problem. The complex plane can be 
used when evaluating the dynamic behavior of control systems in the presence of 
parametric uncertainties as an alternative to other common approaches. It is 
relatively easy to form an uncertainty region, showing the combinations of the 
parameter values which cause changes in system characteristics. Root loci, plotted 
for different dynamic parameter as Evans-gain show values of the respective 
parameter, causing loss of stability. The specification of performance regions, 
different in their properties, can yield more comprehensive analysis of the designed 
control system, which helps the adequate choice of a controller that will guarantee 
the desired performance in a wide sense. 
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