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Abstract: The paper presents the authors’ experience with HMMs (Hidden Markov 
Models) used for isolated word speech recognition in Bulgarian. Two methods 
provoked by experiments are discussed, namely: (i) the precise quantization of 
Gaussian probability density function (G-pdf) modeling the HMM states’ output, 
and (ii) a method for averaging a set of HMMs trained for different versions of a 
given word. A universal threshold is evaluated for switching between the “large” 
and “slim” models of G-pdf defined here. Experimental results of the threshold 
usage for averaging of HMMs are also reported. 
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1. Introduction 

Speech recognition is one of the most dynamic areas of today’s Informatics. Speech 
recognition could be helpful in many different areas of everyday life – voice control 
of household appliances, dialing telephone numbers by digits pronunciation, voice 
navigation helping the driver and so on. 

Early achievements in the topic are done still in the 50’s of XXth century by 
BELL Laboratories and MIT Lincoln Laboratories. A great success has been made 
in the end of 70’s in the area of isolated word recognition, namely by recognition of 
frequency or cepstral templates [2, 4], using Bayesian estimators, Winner filtering, 
linear prediction coding, etc., [9]. In the 80’s, these techniques were gradually 
supplemented by HMM based statistical methods [1, 5, 6, 8]. 
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Fig. 1. An original signal of the word “internet” (a), and its cepstrum (b) 

In brief, HMM-s are used for modeling of word(s) pronounced by one or more 
speakers, where modeling means obtaining a HMM to give a maximum 
resemblance probability only for the input word it was trained for. Hence, the 
recognition of isolated words makes a choice in a set of HMM-s for the HMM best 
molding the given input word [1, 5, 6, 8]. 

In this paper, practical specifics in setting up of HMM for isolated word 
recognition are discussed. Two methods are proposed: a method for adaptive 
quantization of probabilities molded by Gaussian distributions, see Sections 3 and 
4, and a method for averaging a set of HMM-s, see Section 5. Section 2 describes 
the necessary background for the problems considered. The conducted experiments 
are discussed in Section 6, and future work plans are discussed finally in Section 7. 

2. Formulation 

The appropriate conventional symbolism [1, 2, 3, 5, 6, 8, 9] has been obeyed, as far 
as possible hereinafter.  

2.1. Cepstrum of an input speech signal 
After preprocessing for noise reduction, the input speech signal is extracted by its 
(most) informative features, i.e. representing it by both enough accuracy and 
statistical independency as much as possible. In speech recognition, this role plays 
usually the so-called cepstrum that, in broad terms, carries out the information for 
energy change of the speech signal [2, 4].  

The input signal is split into frames of equal length. For each frame Ft, t=1÷T, 
a cepstral vector tO  is calculated that is a Q-dimensional feature vector 

)1),(( QqqoO tt ÷== . Thus, the input speech signal is represented by its time 
sequence ),...,,( 21 TOOO=O  of cepstral vectors. In practice, Q is chosen in the 
range of 20-40 [2, 8]. 

s 

Frames 
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In Fig.1 a speech cepstrum is illustrated, where the darker areas correspond to 
words or syllables, i.e. to higher energy of the signal.  

We generally assume that the input speech is already split into isolated words, 
or respective syllables, or other phonetic-lexical units, e.g. the “allophones” from 
[7], which cepstral representation O  is to be given to a HMM for recognition. 

2.2. HMM – Hidden Markov Models 

Like many other recognition structures, HMM-s are also foreseen to work in two 
different regimes: (1) training and (2) recognition.  

When a sequence ),...,,( 21 TOOO=O , in our case consisting of cepstral 
vectors, feeds the HMM input, the conditional probability )|( MOP  is expected at 
the HMM output. Here M marks the training (setting up) degree of HMM 
respecting O . Given HMM is considered trained for the word O , if the output 

)|( MOP  reaches maximum at O . We assume that the elements , 1 ,tO t T= ÷  of 
O  are simultaneously passed to the HMM in each regime, training or recognition, 
i.e. the input space can be considered TQ dimensional one (Fig. 2). 

 

A given HMM can be defined by the five (S, A, s0, O, B ), where: 
• },...,,{ 21 NsssS =  is the set of the internal states; 
•

)1()1(, +×+
=

NNjiaA  is the matrix of conditional probabilities ai,j for transition from state 

si to state sj, ,0 ( | ) 1,  1 1i j j ia P s s i, j N≤ = < = ÷ + ; obviously, 11,11

1 , +÷==∑ +

=
NiaN

j ji ; 

• s0 is the starting state; we mark with sN+1 one more auxiliary state, the finishing 
one, and set for the respective extra transitions: 0<aN, N+1<1, and a0,1 = aN+1, N+1 =1; 

• },...,,{ 21 TOOOO =  is the set of possible observations; 
•

NNjibB
×

= ,  is the matrix of conditional probabilities for given observation, the 

HMM being in some internal state, i.e. NiTjsOPObb ijjiji ÷=÷=== 1 ,1 ,)|()(, . 
Thus, HMM is considered a probability finite automaton, whose internal states 

(in contrast to classical Markov models) cannot be directly measured (observed) but 
only indirectly.  

 

 
HMM 
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Word 

O1 

O2 

 O3 
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Fig. 2. For each input word O  the HMM generates a corresponding probability )|( MOP  that 
could be computed either by Baum-Welch or by Viterbi algorithms 
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In speech recognition, the most spread HMM-s are the so called “left-right 
schemes” also known as “Bakis machines” [3, 6]. Here, instead of the complete 
transition graph, the matrix A reflects the streamness of modeled speech signal in 
time, i.e. the spread direction is “not backward”, and the pre-history dependency is 
minimal (up to 1÷3 states back), [1, 6, 8] (Fig. 3). 

 
The observation set O  as numbered above strictly corresponds to the time 

sequence ),...,,( 21 TOOO=O  of cepstral vectors at the HMM input. The way M of 
HMM-training consists either of choosing N towards T, (i.e. N<T or N=T or N>T), 
or of calculating the transition matrix A as well as the matrix B of the output 
probabilities. It is mostly realized by an iterative optimization algorithm of Baum-
Welch, while the real recognition – by the simpler and less exact approach of 
Viterbi.  

Thus, HMM calculates the output )|( MOP  during the internal time 
Ttt ≤≤1, , as if reproducing the complete input O , state by state (Fig. 3). On the 

other hand, from an external viewpoint, HMM operates as a black box, in time 
intervals of length T  that can vary at different input words, see again Figs. 2 and 1. 

2.3. Calculation of the output probability )|( MOP  

At each moment , 1 ,t t T≤ ≤  HMM could be in an arbitrary state Nisi ÷= 1, , 
starting from s0 (in t=0) and finishing in sN+1 (in t=T+1). In this sense, each vector 

, 1 ,tO t T= ÷  can correspond to (or be molded by) every internal state Nisi ÷= 1, , 
despite the fact that some state(s) would be the most probable one(s) for this Ot. 

Fig. 3. A left-right HMM used in speech recognition 
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Because of the independence assumption for the state events, )|( MOP  can be 
calculated as the sum:  

(1)                           ∑=
}{

)|,()|(
X

XPP MM OO , 

over all possible ways )1,( TtxX t ÷== , along the states Sxt ∈  of HMM, from 
the starting s0 to the final sN+1. This interpretation is often illustrated by a network 
diagram (Fig. 4), and it is easy to check by it that: 

(2)                        )1(),(
1

)()1(),0( )()|,( +
=

∏= txtx

T

t
ttxxx aObaXP MO , 

where 1)1(),0( =xxa , )1(),( +txtxa  and )()( ttx Ob  are the corresponding transition and 
output probabilities for the given training M. 

In this network interpretation, HMM being in a given state is , at the moment t, 
as if “generates” the corresponding input cepstral vector tO , with a probability 

(3)                       )|()()|()|)(( MM tObttsP itiii βα M= , 

where )|( Mtiα and )|( Mtiβ  are the corresponding complete probabilities, 
“forward to is ” and “backward till is ”, associated with any state Nisi ÷= 1, , at 
the moment , 1t t T= ÷ : 

(4)      { }

{ }
,)()|1()(

)|,()|(

1
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Fig. 4. An illustration of HMM progress in time, where the possible directions 
are to the right (at time t =1÷T) and/or to the top (over the states si, i=1÷N) 



 78 

(4a)    
{ }

{ }
.)|1()()(

)|,()|(

1
,

)1,(),(
)1(),(

1
)()1(,

)1,(),(

∑∑ ∏

∑

=+→∈
+

+=
+

+→∈

+==

==

N

j
jtjji

TNtiX
τxτx

T

tτ
ττxtxi

TNtiX
i

tObaaOba

XPt

M

MM

β

β O

 

In this way the output probability )|( MOP  obtains the well known expression: 

(5) TttObttsPP
N

i
itii

N

i
i ÷=== ∑∑

==

1,)|()()|()|)(()|(
11

MMMM βαO , 

that is independent on the time t , cf. (1), and is often replaced by the simpler:  

(5a)      0),|0()|( 0 == tP MM βO , or 
(5b)                         1),|1()|( 1 +=+= + TtTP N MM αO .  

Of course, (5a) and/or (5b) do not change the fact that the )|( MOP  
calculation needs extra calculation of all, (N+2)(T+2) in number, probabilities of the 
type (4), (4a). But it is equation (5) that explicitly shows the difference between 
both basic methods for )|( MOP  calculus, Baum-Welch and Viterbi, as well as 
which of them to choose for the M training iterations. 

2.4. Training and recognition 

In a HMM based recognition system, a separate HMM is built (trained) for each 
word W∈OO, , W is the set under recognition. The training of each HMM consists 
in setting up (adjusting calculus) of its matrices A and B, so that the probability 

)|( MOP  of “its own” word W∈O  to be maximal and as high as possible. Baum 
proposed a monotone converging algorithm for recursive adjustment of HMM to 
the optimal BWM  training, so that )|( BWMOP , defined with (5), and first proposed 
by Welch [6], to reach the maximum in O , i.e. 

(6)                       BW BW( | ) max{ ( | )}P P= =P O O
M

M M . 

The Baum-Welch computation schema and many modifications as well [1, 3, 
5, 6, 8] could be also used for almost optimal calculus of )|( BWMOP , namely by a 
formulae similar to (1) and inherited from Viterbi’s approach well-known in 
graphs’ theory: 
(7)     )|()|,()|,(max)|(

}{}{

* MMMM OOOO PXPXPP
XX

=<= ∑ , 

and consequently: 
(7a)                     { }*

Vi Vi BW( | ) max ( | )P P= = <P O O P
M

M M . 

Here, instead of summation over all possible paths, cf. (1), )|( ViMOP  is evaluated 
only over the maximal path (it is shown in black on Fig. 4). Similar replacements 
should also be done defining respectively the new )|( Mtiα  and )|( Mtiβ  by 
analogy to (4), (4a), what usually sharply improves the computational performance.  
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Viterbi’s algorithm is very appropriate for the recognition regime, when HMM 
is enough trained. At the very beginning of the training and often during the whole 
training, Baum-Welch algorithm is totally recommended, especially if it is 
important to ensure the monotony convergence conditions, i.e. without freezing in 
any false optimums. And the last could be usable, e.g. when appropriate correction 
in the number of HMM states is aimed, simultaneously with training, for reaching 
the optimal correspondence TN ⇔ .  

2.5. Transition matrix modeling 

Often for the )|( MOP  calculation [1, 6, 8], the output probabilities )( ti Ob , i.e. the 
B matrix elements for a given state is  of HMM, are modeled by a Q-dimensional 
Gaussian distribution of density ( , )i iG µ Σ , Ni ÷= 1 . Each centre iµ  presents the 
mean of all cepstral vectors tO  the HMM “generates” being in the state is . The 
covariance matrix Σi is most often assumed a diagonal one, i.e. that all cepstral 
vector components TtQqOqo tt ÷=÷=∈∈ 1,1,)( O  are uncorrelated. Thus, each 
model ( , )i iG µ Σ  simplified to its ),( iiG σµ  can be represented as multiplication of 
1D Gaussians, and independently examined by the respective outputs )( ti Ob , 

)1|)(()( QqqobOb iiti ÷==  along the coordinates Qqq ÷= 1),( :  

(8)       

,1,1,)1|)((,)1|)((

,
)(2

))()((exp
)(

1

)2(

1

))(),();((),;()(

1
2

2

1

TtNiQqqQqq

q
qqo

q

qqqoGOGOb

iiii

Q

q i

it

i
Q

Q

q
iitiitti

÷=÷=÷==÷==
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⎞
⎜⎜
⎝

⎛ −
−=

===

∏

∏

=

=

σσµµ

σ
µ

σπ
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where iµ  and iσ  are the respective vectors of centers and mean-square deviations. 
Obviously, )|( MOP  could overcome “very quickly” the lower limit of the 

computer numbers representation, e.g. ~10-308 for the C-language type “double”. For 
instance, in accordance with (3), (4), (4a), (5) and (8), we can evaluate roughly for 
the output )|( MOP : 

(8a)                            11
6

~)|( <⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∆ TQNT

TN
P

σ
MO . 

The better a HMM is trained for given word, the “sharper” its Gaussians 
become which results in further more diminishing of the modeled probabilities. For 
this reason a computation scaling for the intermediate probabilities )(tiα  and )(tiβ  
is usually proposed, [6]. In this way the whole computation range is pursued. But 
our experiments show that often no scaling can solve the problems either with 
underflow or with extra overflows appearing as well. A solution of this could be the 
use of log-probabilities, where it is appropriate, but a more serious approach lies in 
an adaptive and more precise calculation using the modeling Gaussians. 
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3. Adaptive and precise quantization of the modeling Gaussians 

Figuratively, each state of the HMM molds the input sequence ),...,,( 21 TOOO=O  
by a combination of N in number Q-dimensional “Gaussians” each of them being 
just a multiplication of Q one dimensional (1D) Gaussians.  

By definition, the density ),;( σµoG , )(qiµµ = , )(qiσσ = , Ni ÷= 1 , 
Qq ÷= 1 , of each 1D-Gaussian is a continuous function (pdf) over the input 
)(qoo i=  and the parameters µ and σ. This leads to the necessity for suitable 

quantization. Mainly, by reasons of uniformity, i.e. of isometrics for each input 
cepstrum element, we assume that the interval ∆ of quantization is equal along each 
coordinate of all the Gaussians considered. 

As it is well known, the G-pdf as density is a differential of the respective 
distribution function, see also (10) and (10a) below. So the probability P(x), 
modeled by given 1D-Gaussian ),;()( σµxGxG =  can be evaluated by the well 
known “trapezium-like” formulae: 

(9)          ( )
2

)2/()2/()2/2/()( ∆
∆++∆−≈∆+<≤∆−= xGxGxXxPxP . 

The probability P(x) could be approximated more precisely, but the problem of 
∆ preliminary choice is more important in the case. Obviously, if ∆ decreases, the 
accuracy of P(x) calculation is increasing (Fig. 5), while P(x) decreases itself that 
could lead to undesirable “underflow” in the computer calculations. 

On the other hand, by a chosen sampling unit ∆ the computation accuracy 
remains dependent only on the value of σ, the mean-square deviation of the given 
1D-Gaussian that can vary with each step of HMM training algorithm. Obviously, 
there exists a boundary value )(, 000 ∆= σσσ , depending on the choice of ∆ only, so 
that for each 0, σσσ < , the calculation of P(x), e.g. by (9), will lose an accuracy. 
An illustration of this is given on Fig. 5.  

 

 

 
Fig. 5. Computational precision of probabilities depending on the 

choice of σ and ∆: (a) by )(0 ∆≥ σσ ; (b) by )(0 ∆< σσ  
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So, the formula (9), we will call it large G-model, is used for 1D-Gaussians of 
0σσ ≥ . In the cases of 0σσ < , we introduce another calculation, called here a slim 

G-model, where the classical integration formulae is used: 

(10)        ⎟
⎠
⎞

⎜
⎝
⎛ ∆−−

Φ−⎟
⎠
⎞

⎜
⎝
⎛ ∆+−

Φ== ∫
∆+

∆− σ
µ

σ
µσµ 2/2/),;()(

2/

2/

xxduuGxP
x

x

 . 

Here, )(xΦ  is the well-known Laplace function that represents the cumulative 
Gaussian distribution: 

(10a)                 ∫∫
∞−∞−

=−=Φ
xx

duuGduux )1,0;()2/exp(
2
1)( 2

π
 

and that could be tabulated only once at the beginning. 
Intuitively, not bad evaluation of the threshold 0σ  for switching between the 

both models, (9) and (10) could be given with the choice: 

(11)                                        ∆=1 and 10 =σ . 

We will try to evaluate more precisely the threshold )(00 ∆= σσ  for an arbitrary ∆, 
∆>0. 

4. Evaluation of the switching threshold between the Large 
and Slim G-models 

The approximation (9) of the proposed large-G-model is based on the formula of  
“1 trapezium per ∆ unit” type. A significantly more precise approximation P2(x) can 
be also given by the next formula − for “2 trapezia per ∆ unit”: 

(12)   ( )
4

)2/()()2/()2/2/()(2
∆

∆+++∆−≈∆+<≤∆−= xGxGxGxXxPxP . 

Thus, the current error EL of using the large-G-model can be estimated via the 
difference )()( 12 xPxP − , namely: 

 (12a) ( )
4

);(2);2/();2/()()(),;( 12
∆

−∆++∆−=−=∆ σσσσ xGxGxGxPxPxEL , 

where for completeness we have set )()(1 xPxP =  and ( ; ) ( )G x G xσ = , see (9). 
In a similar way, we can define also the current error ES in using the slim-G-

model: 

(13) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆−

Φ−⎟
⎠
⎞

⎜
⎝
⎛ ∆−

Φ−⎟
⎠
⎞

⎜
⎝
⎛ ∆+

Φ−⎟
⎠
⎞

⎜
⎝
⎛ ∆+

Φ=∆
σσσσ

σ 2/2/2/2/),;( 1212
xxxxxES , 

where ( )x1Φ  and ( )x2Φ  denote two consecutive approximations of the Laplace 
function (10a) evaluated by the “1 trapezium” formula and “2 trapezia” formula 
correspondingly. 

Now we can define the respective mean and/or maximal values for EL and ES, 
and search by them the optimal threshold 0σ  for switching between the models:  

6 
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(14) mean ( , ) ( ; , ) ( )L L
x

E E x P xσ σ
+∞

=−∞
∆ = ∆∑ , { }max ( , )

( , ) max ( ; , )L Lx
E E xσ σ

∈ −∞ +∞
∆ = ∆ , 

(15) mean ( , ) ( ; , ) ( )S S
x

E E x P xσ σ
+∞

=−∞
∆ = ∆∑ , { }max ( , )

( , ) max ( ; , )S Sx
E E xσ σ

∈ −∞ +∞
∆ = ∆ . 

It can be proven that our goal functions from (14) and (15) are relatively 
smooth either on σ or on ∆, and that they have most often 1 maximum (at least 2 
maxima) for relatively small values of σ as well as they asymptotically converge to 
zero with increasing of σ (Fig. 6). Temporarily, we will assume that ∆ = const. 

In brief, considering (14) and (15), we can evaluate two optimal values for the 
threshold 0σ  applying a criterion for a minimal error of both the defined G-models 
of joint implementation, either for the mean error 

(16)  { }mean mean mean mean 0 mean 0( , ) min ( , ), ( , ) ( , ) ( , )L S L SE E E E Eσ σ σ σ σ∆ = ∆ ∆ ⇒ ∆ = ∆  

or for the maximal error 

(17)  { }max max max max 0 max 0( , ) min ( , ), ( , ) ( , ) ( , )L S L SE E E E Eσ σ σ σ σ∆ = ∆ ∆ ⇒ ∆ = ∆ . 

Algorithmically, the computation of 0σ , following both approaches (16) and 
(17), can be designed like searching of an unique (or eventually multiple) cross-
point of the respective two graphics, see Fig. 6 and Table 1 (the row L=100). 
 

 
Table 1. Optimal threshold 0σ  evaluated for 4 cases of the sampling unit ∆. 

L ∆ 
∆

0σ by Emean  
Switching Emean 
i.e. Emean(σ0, ∆) ∆

0σ by Emax 
Switching  Emax 
i.e. Emax(σ0, ∆) 

50 0.752 1.3338  0.0113892 1.3322  0.0163991 
100 0.376 1.3295 0.0013606 1.3294 0.0024934 
200 0.188 1.3294 0.0001767 1.3293  0.0003266 
500 0.075 1.3293  0.0000114 1.3293 0.0000212 

    
(a)     (b) 

Fig. 6. Two estimations for the optimal threshold 0σ by ∆=0.376: 

(a) ( )),(),(|)( 0mean0mean00 ∆=∆∆= σσσσ SL EE , and (b) ( )),(),(|)( 0max0max00 ∆=∆∆= σσσσ SL EE  



 83 

In Table 1, the obtained values of 0σ  are given for four different values of the 
sampling unit ∆, i.e. for the number L of sampling points of ( )xP1 , ( )xP2 , ( )x1Φ , 
and ( )x2Φ , cf. (9), (12) and (13). 

The differences in the respective optimal thresholds 0σ  as dependant on ∆  
(i.e. on L) can be considered as being within the limits of precision determined by 
the corresponding approximation formula, namely: “1 trapezium per ∆” to estimate 
the G-model itself, and “2 trapezia per ∆” to estimate the error of using it. The 
differences in the evaluation of 0σ  either by Emean or by Emax are also not very 
significant, i.e. they also obey the predetermined precision limits. Naturally, with an 
increment of L the preciseness of the above estimation becomes better. 

In facts, the estimations (9) and (12) of the probabilities ( )xP1  and ( )xP2  as 
well as the evaluations (12a), (13), (14), (15), (16), and (17) of the approximation 
errors for the proposed switching between both G-models, the large (9) and the slim 
(10), should be considered independant on ∆, because of the obvious equations: 

(18)  ⎟
⎠
⎞

⎜
⎝
⎛

∆∆∆∆
=∆ 1,,;1),,;( σµσµ xGxG ,  and ⎟

⎠
⎞

⎜
⎝
⎛

∆
±∆

Φ=⎟
⎠
⎞

⎜
⎝
⎛ ∆±

Φ
/

2/1/2/
)2(1)2(1 σσ

xx . 

Thus, a universal value can be generally adopted for the optimal 0σ  of 
switching between the both models, namely 

(19)   0
0 0

( )
(1) 1.3293  const ( 0)

σ
σ σ

∆
= = = = ∀ ∆ >

∆
. 

Obviously (19) is a much better estimation than the initially supposed (11), in 
view of the larger errors for ),1( 0σσ ∈  if (11) is applied instead of (19), namely: 

• for the min(Emean) criterion (16): an extra error up to 82%, and 
• for the min(Emax) criterion (17): an extra error up to 87%. 
Additionally, we can set a new task for investigation supposing that (19) is the 

right (or at least very good) estimation for the threshold 0σ  between the large- and 
slim-G-models when using approximations of “n trapezia” type, n>1, instead of our 
case (n = 1). 

5. An averaged HMM for given word versions 

So far we have considered the training of HM for a given word only. But we often 
have to deal with word versions caused by differences of the speaking speed, 
speaker’s timbre, dialect, etc. Then we need a generalization for the set of resulting 
HMMs to recognize as many versions as possible and with enough confidence. We 
have examined two possible approaches:  

1. Instead of using a unique (Q-dimensional) Gaussian, each HMM state could 
be modeled by a mixture of Gaussians (Fig. 7), each one reflecting the version 
specifics of the given word in the corresponding (to the HMM state) interval of 
pronunciation. The novel HMM has to be “uniformly” trained with all versions of 
the word at each training step. 
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2. Similarly to the first approach, but the Gaussian mixture to be formed after 
training of all HMM-s for the given word versions. Besides, a new Gaussian can be 
also defined as an average of this (Q-dimensional) Gaussian mixture.  

The first approach seems more 
precise, but it requires much longer time 
for training, almost in a square degree 
longer because of each 1D-Gaussian of the 
mixture as well as each version of the word.  

We have preferred the second 
approach mostly after considering its 
performance effectiveness. Thus, each 
extra version of the given word is molded 
more simply, by training its own HMM 
only, followed by a final actualization of 

the respective averaged Gaussians. In this way we reach the idea of an averaged 
HMM, where the necessary restriction for a constant and a priori given number N of 
the HMM internal states seems very acceptable. 

Let us have K versions less or more, distinguishing the input template (word). 
Let us also assume possible statistical dependences among the versions’ cepstrums 
only by separate coordinates (q), q=1÷Q. Thus, we can average the corresponding 
HMM-s sequentially, state by state, coordinate by coordinate, i.e. for a given 
coordinate (q), for the state si, i=1÷N, we have K number of 1D-Gaussians to 
average (Fig. 8). 

Fig. 7. A Gaussian mixture 

 
 

Fig. 8. HMM averaging: (a) Q-dimensional Gaussians for the states of HMM(1); 
(b) corresponding 1D-Gaussians over the axis (q), q=1÷Q for HMM(1) and HMM(2); 
(c) we average all 1D-Gaussians over the axis (q) for the state is  of all HMM(1÷K); 

(d) mixture of Q-dimensional Gaussians for the states of the averaged HMM(*) 

Si 
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 As in Fig. 8, we will mark hereinafter the averaged HMM, its Gaussians and 
their attributes by an asterisk (*). 

The centre ,*iµ  of the averaged Gaussian for the given state si can be evaluated 
as the mean vector:  
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where ki,µ  is the mean vector for the state si of the k-th HMM (i.e. for k-th word 
version). 

For the vector ,*iσ  of mean-square deviations of the averaged Gaussian for the 
given state si we can write 

(21)                                 NiQqqii ÷=÷== 1),1|)(( ,*,* σσ , 

where for its components Qqqi ÷= 1),(,*σ , the following equation is always 
fulfilled: 
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Here )(),(, qC lki  are the so called co-variation moments: 
( )( )( ) KlkNiQqqqoqqoqC liltkiktlki ÷=÷=÷=−−= 1,,1,1,)()()()(E)( ,,,,t),(, µµ , 

(.)E
t

 is the mean operator applied over the time t, t=1÷T, and for completeness only 

we could also write down that 
KkNiQqqCqqoq kkikiktki ÷=÷=÷==−= 1,1,1,)(]))()(([E)( ),(,

2
,,t

2
, µσ . 

To escape the relatively difficult evaluation of the co-variation moments we 
should assume that the cepstral vector components O∈∈ ktkt Oqo ,, )( , Qq ÷= 1 , 

Tt ÷= 1 , as numbered by k=1÷K, are uncorrelated. In this way we broaden the 
similar assumption of Section 2.5 over the input word versions (k), k=1÷K. As a 
result, all lkqC lki ≠),(),(, , become equal to zero and equation (21a) − of the simpler 
type: 
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Finally to meet the experimental results we extend (21b) to the following two 
inequalities: 
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where the equality on the left is reached for independent items (1D-Gaussians), 
considering (21b). The equality on the right could also be reached probably for 
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some degree of dependency among the cepstral vector components )(, qo kt , 
Tt ÷= 1 ,  1 ,k K= ÷ for each coordinate (q), Qq ÷= 1 . Practically, (21c) gives us 

an interval for possible experimental variation of mean-square deviations of the 
averaged Q dimensional Gaussians, for each state si, i=1÷N−1, of the averaged 
HMM(*), cf. also Fig. 8. 

As for the averaged transition matrix 
)1()1(

*
,

*

+×+
=

NNjiaA , it is simply 

calculated as the matrix sum 
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where 
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+×+
=

NNji kakA  is the respective transition matrix A for the k-th 

HMM, Kk ÷= 1 . Equation (22) reflects the incompatibility assumption for 
corresponding probabilities Kkka ji ÷= 1),(, , for each couple (i, j), Nji ÷= 1, , i.e. 
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Additionally, it is experimentally concluded that it is better the transition 
matrix averaging to be performed mean-geometrically instead of mean-
arithmetically (22), because of the recognition improvement in this way. 

6. Experimental results and analysis 

The experiments are done on an IBM PC compatible: Intel Pentium4 3 GHz CPU, 
1MB L2-cache, 512 MB RAM, 160 GB HDD. The operational system is Windows 
XP(SP2). 

The experimental program operates with standard WAV-files recorded on 22 
kHz, 16 bits per datum, mono signal. 

The experiment database consists of about 30 words, about 5 versions per 
word. For each version a separate HMM is trained. For the homonymous word 
versions an averaged HMM has been computed using the method above proposed. 
By no special measures for optimizing the computing environment, the average 
training time for the whole database is about 5 min, i.e. about 2 s per word version. 
Experimental timing for 5 words of the database is given in the following Table 2. 

Table 2. Experimental results for 5 sound words from Windows practice 

Input 
word 

spelling 

Frames’ count 
(10 ms per frame) 

Preprocessing 
time (s) 

Baum-Welch 
training time 

(s) & (s per frame) 

Baum-Welch 
recognition 

time (s) 

Viterbi 
recognition 

time (s) 
internet  185 0.016 1.187 0.079 0.500 0.422 
folder 115 0.013 0.828 0.055 0.375 0.351 
open 153 0.014 0.719 0.048 0.484 0.465 
menu 107 0.012 0.688 0.046 0.469 0.443 
delete 167 0.015 0.875 0.059 0.406 0.391 
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Some fixed parameters concerning the experiments are: (a) the frame F length 
∆t for windowing the cepstrum computing, ∆t = 10 ms; (b) the cepstral vectors’ 
length Q = 40; (c) the HMM states’ number, N = 7; (d) the maximal number of 
training iterations is 15.  

Each word version is preliminary processed, i.e. the sound noise is cleared as 
better as possible and each word is isolated. 

Under such conditions the average recognition rate is about 98%. For the 
present the automatic end-point detection is not precise enough that drops down the 
recognition rate to about 75-80%. However this should be considered optimistic. 
Experiments have been also made for words pronounced by different speakers, 
where the recognition rate decreases to about 50-60%. We believe that the 
recognition rate is to become better if the averaged HMM is trained by more 
versions per word, what, of course will increase the training duration. 

7. Conclusion and discussion 

Experimentally provoked, two methods have been proposed for improvements in 
the HMM based speech recognition, namely: 

1. A method for adaptive and precise computation of probabilities modeled by 
Gaussian pdf-s. Two models are proposed, a large-G-model and a slim-G-model, 
and optimal threshold 0σ  is evaluated for switching between them depending on the 
current value of the Gaussian deviation σ, cf. (19). The method aims at providing 
the monotone convergence of the HMM trained by Baum-Welch and the 
consecutive recognition by Viterbi. Practically, at early stages of HMM training 
(when most often 0σσ > ) the large-G-model is recommended, while at the last 
stages of training as well as in recognition regime (i.e. when 0σσ <  is expected) the 
slim-G-model should be preferred. 

2. A method for HMM averaging that combines separate HMM-s already 
trained for different versions of words under recognition. The method offers more 
effective implementation of the Gaussian mixture idea, i.e. for final 
mixing/averaging instead of training the HMM-s at each iteration, since it is popular 
recently. 

In near future we intend to develop an approach for automatic optimal choice 
of the HMM internal states number adaptively to each input word length and 
content. Besides, an effective (either fast or noise tolerance) content based access 
method to the DB of HMMs is also intended to help the recognition task by 
precedents. 

The final purpose of the research work is to develop a HMM based method for 
speech recognition with automatic adapting to the specifics of Bulgarian language. 
A definite expectation in this respect is due to the experimental hypothesis of [7] for 
the almost full representation completeness of a set of about 500÷1500 Bulgarian 
allophones. 
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