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Abstract: An experimental study of the effectiveness of two speech detection 
parameters in the text-independent speaker identification task is presented in the 
paper. The first parameter is obtained by processing the spectral autocorrelation 
function derivative, while the second one is based on the multi-band spectral 
entropy. The techniques employed are: the two above mentioned parameters and a 
single MLP for speech detection, LPC cepstrum as a speaker identification feature 
and a common (for all speakers) MLP for speaker classification procedure. The 
training and testing have been done using noisy telephone speech data from BG-
SrDat corpus. The experiments have shown that in comparison with the multi-band 
spectral entropy, the use of the spectral autocorrelation function derivative in 
speech detection results in a lower speaker recognition error.  
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1. Introduction 

The speech detector is one of the key components in speaker recognition systems 
designed to operate in noisy real-world environments. The recognition error in such 
systems is due to many causes, one of which is the inaccurate speech fragments 
detection. The speech fragments usually provide data for speaker model estimation. 
The non-speech ones are discarded or are used for noise parameters estimation with 
the purpose of reducing the noise effect on the recognition performance.  
                                                 
1 This research is supported in part by the Contract BY-TH-202/2006 with the Ministry of Education 
and Sciences in Bulgaria.  
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In the study text-independent speaker recognition experiments are carried out. 
During these experiments the speech part of the analyzed signal is separated using a 
speech detection module. This module is a particular two-class classification 
scheme utilizing MultiLayer Perceptron (MLP) as classifier and selected parameters 
as features. The idea in the paper is to study the effect of the speech detection 
features on the speaker recognition rate. In the work, the raw speech detection 
(without speech enhancement and hangover mechanisms) is under study.  

The speech detection features used in the study are the Mean-Delta (MD) 
feature [6, 7, 8] and the Multi-Band Spectral Entropy (MBSE) feature [4]. The 
previous speech detection experiments with both features and corresponded 
performance analysis using the ROC-graphs [1] are described in detail in [8]. 

The text-independent speaker recognition (closed set test) is realized using the 
Linear Predictive Coding (LPC) cepstrum as feature and a common (for all 
speakers) MLP as a classifier. The training and testing is carried out using a limited 
amount of noisy telephone speech data from BG-SrDat corpus [5]. 

2. The robust features 

2.1. The Mean-Delta feature 

The MD parameter is proposed in [6] as a feature for trajectory-based speech 
detection. Some its modifications intended for pattern recognition-based speech 
detection are described in [7, 8]. In this study, the modification proposed in [8] will 
be used.  

The MD parameter is estimated using the delta spectral autocorrelation 
function of the power spectrum of speech signal. Let )(ix  is a discrete signal, 
where i = 0, …, I – 1, I  being the number of samples and the spectrum )(kX of 

)(ix is obtained by the Discrete Fourier Transform (DFT), where 0,..., / 2,k K=  
where K is the number of points in the DFT.  

The biased spectral autocorrelation function p ( )R l  is defined with the power 

spectrum 2)(kX as [6] 
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where 0,..., ,l L= L is the number of correlation lags and 12/ −= KL . 
In order to remove the tilt in the spectral autocorrelation function and enhance 

its peaks, in [6] is proposed a parameter obtained in a way similar to the delta 
cepstrum evaluation. It is named as Delta Spectral AutoCorrelation Function 
(DSACF). This parameter is computed as an orthogonal polynomial fit of the first-
order derivative (in correlation domain) of the spectral autocorrelation function.  

For a particular frame, the DSACF is computed utilizing only the frame’s 
spectral autocorrelation lags. For the nth frame, the DSACF p ( , )R n l∆  is  

4 
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where Ll ,...,0= ; 1,...,0 −= Nn , N is the number of frames. 
The parameter Q defines the window width around the lag l and it effects over 

the accuracy of the approximation. For the purpose of this study, it is chosen to be 
between 10 and 15 lags (based on the preliminary experiments). 

To design the frame feature vector we find the maximum values of p ( )R n∆  in 
different non-overlapping ranges of lags. The MD feature vector for nth frame is 
formed as d d{ (1), , ( )}m m J… . Its components are defined as follows (for simplicity, 
the frame index is omitted)  
(3)    { } 1
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where Jj ,,1…= , J is the number of ranges and    
1 2 1 2 1 2{ , },...,{ , },...,{ , }j j J JL L L L L L+ −    

are pairs of the boundary lags for each range.  
The algorithm for the MD feature vector estimation is summarized as follows 

(for each frame) [8]: 
• apply Hamming window to the analyzed signal; 
• compute the power spectrum of the windowed signal via FFT; 
• compute the non-normalized biased spectral autocorrelation function by 

equation (1) with lags 4/KL = ; 
• compute the delta spectral autocorrelation function by equation (2); 
• take the absolute value of the delta spectral autocorrelation function; 
• divide the number of lags L  into J non-overlapping lags ranges of equal 

size;  
• find the maximum values of p ( )R l∆  in the lags ranges 

1 2 1 2 1 2{ , },...,{ , },...,{ , }j j J JL L L L L L+ −  according to (3); 
• take the logarithm of the maximum values and obtain the MD feature vector 

in the form d d{log( (1)), , log( ( ))}m m J… . 
The last step in the MD feature vector estimation is the mean normalization. It 

is done by dividing the MD feature vector for each frame by the average MD 
feature vector computed over all frames. If the speech data consists of different 
speech records (files), the mean normalization should be applied for each file 
separately. 
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2.2. Multi-band spectral entropy 

The spectral entropy for the nth frame is estimated in the following steps [4]. First, 
the Probability Mass Function (PMF) 2( ( , ) )P X n k  for the full-band power 

spectrum
2),( knX  is computed as 
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where 2/,...,0 Kk = , K is the number of DFT-points and 1,...,0 −= Nn , N is the 
number of frames. 

Second, the spectral entropy )(nH  for nth frame is computed as follows  
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The entropy in (5) is named as full-band spectral entropy [4]. To capture a local 
variation in the spectrum, the idea of multi-band spectral entropy is introduced in 
[4]. The core of this idea is to divide the full-band PMF into sub-bands and then the 
spectral entropy to be computed for each sub-band using full-band PMF. In this 
case, one entropy value is obtained for each sub-band. 

According to [4] the Multi-Band Spectral Entropy (MBSE) feature vector for 
the nth frame is formed as MBSE MBSE{ ( ,1), , ( , )}H n H n G…  and its components are 
computed as  
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where )),(( 2knXP  is the full-band PMF in (5); Gg ,,1 …= , G is the number 
of sub-bands and 1 2 1 2 1 2{ , },...,{ , },...,{ , }g g G GB B B B B B+ −  are pairs of boundary 
spectral bins for each sub-band.  

3. Speech detection 

The speech detection module is a particular two-class classification scheme 
utilizing MLP as classifier and selected parameters as features. The MLP with a 
structure 15-20-1 is selected. The network has 20 neurons in one hidden layer and a 
single output neuron. The activation functions of the neurons are hyperbolic tangent 
function (in hidden layer) and sigmoidal function (in output layer). The Rprop 
algorithm with most typical parameters settings is applied according to 
recommendation in [9]. The input vector size is set to 15. The used target levels are 
[0.1; 0.9] and the network is trained in batch mode. In testing mode, in order to 
make the speech/non-speech decision, the output neuron level is thresholded at 0.5 
(speech threshold).  

In speech detection module the number of sub-bands in the entropy estimation 
is G=15. The number of lags regions is the same, i.e., J = 15 and Q = 15 in (2) [8].  
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The speech detection training always precedes the training procedure for the 
speaker recognition and the training data for these two procedures are not 
correlated. The training of speech detection module is speaker independent and it is 
done only once. For more details about speech detection features, training and 
testing procedures, see [8]. 

4. Speech processing and speaker classification 

In the study one large neural network is used to perform the speaker classification 
task. The data in experiments are selected from small number of speakers (10) and a 
single MLP with structure 14-100-10 is used. The network has 100 neurons in one 
hidden layer and 10 output neurons (number of speakers). The input vector size is 
set to 14. The hyperbolic tangent function is selected as activation function for all 
neurons. The Rprop algorithm with most typical parameters settings is applied 
according to recommendation in [9]. The used target levels are [−0.95; 0.95] and 
the network is trained in batch mode. The structure of MLP is selected based on 
heuristic considerations and advices given in [2, 3]. 

The speech data are sampled with frequency of 8 kHz at 16 bits, PCM format 
and mono mode. The analyzed frequency range is up to 4000 Hz. No additional 
filtering is applied. The analysis parameters are frame length-30 ms and frame shift-
10 ms. In the speech preprocessing are included hamming windowing and a 14th 
order LPC-derived cepstral vector calculation. 

5. Experiments 

In the speaker recognition experiments are utilized speech samples selected from 
updated version of the BG-SrDat corpus [5]. The BG-SrDat is a corpus in Bulgarian 
language collected over noisy analog telephone channels and designed for speaker 
recognition.  

The selected data for speaker recognition included speech material from 10 
speakers (male). This data is divided into three groups - for training, testing and 
validation.  

In further text the term ‘speech frames’ means the frames detected as speech 
by speech detection module.  

The data for training and validation is formed by speech data sets. Each set 
consists of 2000 speech frames randomly collected from speech data obtained from 
single telephone call. The training data for each speaker consists of 2 speech data 
set (4000 speech frames from 2 different calls). The validation data consists of only 
one set per speaker. In testing mode supra segments-based technique is used. The 
length of supra segment is 200 speech frames and the shift is 100 speech frames. 
The speaker identification is performed for each supra segment separately. The 
recognized class is the class with maximum value in the average MLP outputs 
vector obtained over frames belonging to the particular supra segment. The MLP 
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training is stopped, when based on the validation test a global minimum in the 
output mean square error is found or this error is not changed significantly up to 
200th epoch. 

Since the neural network learning algorithms include random number based 
procedures, the speech data in the study are utilized by MLP classifier in a multiple 
runs scheme [2]. In the experiments, 10 runs are performed (typically, runs are not 
more then 20 [2]). In Table 1 are shown the identification errors in percentage for 
each speaker of the 10 speakers and for both features. These errors are calculated by 
averaging over the errors obtained in the 10 runs scheme. In testing data, the 
number of supra segments are 260 for MD feature and 235 for MBSE. 

                                Table 1. Identification errors in percentages 
FEATURES № SPEAKER 

MD MBSE 
1 Spk1 38.69 45.02 
2 Spk2 4.78 3.44 
3 Spk3 7.03 0.30 
4 Spk4 5.75 31.11 
5 Spk5 12.38 79.79 
6 Spk6 2.59 98.21 
7 Spk7 13.61 0.0 
8 Spk8 66.00 3.41 
9 Spk9 74.54 89.58 
10 Spk10 0.0 0.0 
11 Average 22.53 35.08 

6. Discussion and conclusions 

In the experiments with noisy speech data, we study the raw speech detection effect 
on the speaker recognition rate. The raw speech detection does not utilize any 
additional techniques to improve speech/non-speech decision. It is often used for 
development of speech detection algorithms because the lack of improvement 
techniques helps to identify easily which feature is more effective.  

Based on the results shown in Table 1 we conclude that the MD feature 
provides better speaker recognition rate then the MBSE one. It can see in the table 
that the identification error for speaker Spk6 is 98.21% when using the MBSE 
feature and it is only 2.59% when using the MD one. The results for Spk8 are in 
reverse order. Partial analysis of speech data by spectrograms shows that in signal 
fragments with nasalized sounds, the raw MBSE trajectory (i.e., speech detection 
module output before using the threshold) falls often below the speech threshold. In 
such cases these frames are classified as non-speech ones. Moreover, the random 
variations in the raw MBSE trajectory due to the telephone noise are more 
significant then these ones in the raw MD trajectory, which results in more 
detection errors. 

In fact, we are not sure what cause the high error for some speakers. It can be 
due to wrong speech detection or to bad generalization in the MLP classifier or due 
to both reasons. It is advisable to do a further research in order to find the error 
cause.  
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The forthcoming work will include improvements in the MD feature and 
attempts to use it in detection of the voiced part of noisy speech data in speaker 
recognition tasks.  
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