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1. Introduction 

Usually in the ordinary minimum cost flow problem the purpose is to find such a 
flow on the arcs of the network, which satisfies the capacity constraints on those 
arcs and which is the cheapest one. In the paper presented a flow is investigated, for 
which a capacity constraint is added to the constraint set of the minimum cost flow 
problem. This constraint is a linear combination of the arc flows, constrained by a 
rational number. Such a flow is named here “a flow with one side constraint 
(Flosc)”. 

The problem for minimal Flosc may arise in practical and theoretical 
generalizations of the minimum cost flow problem. It arises also in the scalarization 
problem of the bicriteria network flow problem. [1, 9]. 

The classical optimal flow problems are phenomena in the field of linear 
programming in view of the fact, that their unimodular structure of the constraint 
matrix ensures the existence of strongly polynomial combinatorial algorithms for 
finding the optimal solution. And moreover, for these kinds of problems the optimal 
flow is integer for integer costs and capacities of arcs. It turns out that even the 



 42 

smallest “violations” of the unimodular property of the constraint matrix make these 
algorithms inappropriate for searching the optimal solution.  

Having in mind the fact that such problems, like the optimal generalized flow, 
the submodular flow and the flow with side constraints are linear programming 
problems, they can be solved, using adapted versions of linear programming 
algorithms. But usually these algorithms are not polynomial and do not ensure the 
integrality of the optimal solution. 

Another interesting approach for solving this kind of problems is offered by 
Goldberg and Tarjan [2] − a minimum mean cycle cancelling algorithm, developed 
for the minimum cost flow problem. This idea is generalized by Wallacher [3] by 
means of cancelling the minimum ratio cycles. The ratio of the cycle is determined 
by the cost of the cycle, divided by the sum of the arcs’ weights. An arc weight is 
represented as a reciprocal of its capacity. This approach is extended later and 
applied to the generalized minimum cost flow problem [4], to the minimum 
submodular flow problem [5] and even to the linear programming problem [6]. 

The purpose of this paper is to apply the minimum ratio cancelling technique 
in receiving a ε-optimal solution of Flosc. 

The problem is formulated in Section 2. In Section 3 we propose an iterative 
algorithm, which reduces the gap between the next two feasible solutions x and y by 
a value, which is M times smaller than the gap between x and the optimal solution 
of the problem. M is a function of the input data of the problem. 

2. Formulation of  the problem  

Let G = {N, U, c, b, u} be a network, which has: a set of nodes                                 

N = {i, j, s, t, p, q,  …}, │N│= n; a set of arcs U, U = N × N, │U│ = m; a cost 

function c: U→ R+, c = {cij, (i, j)∈U}; a constraint function b: U→ R, b = {bij,          

(i, j)∈U}; a capacity function u: U→ R+, u = { uij, (i, j)∈U}. The flow function can 

be denoted by x, y, z;  x: U→ R+, x = {xij, (i, j)∈U}. 

We add an arc (t, s) with  cts = bts = 0  to the arc set U and formulate the problem 

for minimum Flosc like a MC problem for minimum circulation with one side 

constraint. 

 
MC:    

( , )
min ( ) ij ij

i j U
c x c x

∈
= ∑  

subject to 
(1)           0 , ,i j j i

j N j N
x x i N

∈ ∈
− = ∈∑ ∑  

(2)    
( , )

( ) ;ij ij
i j U

b x b x b
∈

= =∑  
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(3)    0 , ( , ) .ij ijx u i j U≤ ≤ ∈  
We would like to develop an approximation algorithm in order to find an          

ε-optimal solution of Flosc, i.e. such an algorithm that makes at any iteration the 
gap between the current flow and the optimal flow near to zero. If the current flow 
and the optimal flow are denoted by x´ and x* respectively, then (1 + ε)c(x´) = c(x*). 

The optimal solution of the problem being investigated may be received by a 
specialization of the simplex algorithm, which exploits the embedded network 
(unimodular) structure in the constraint matrix. In [7] it is proved that the basic 
solution of this problem has a structure that corresponds to a spanning tree with one 
additional arc in the graph {N, U}of the network G. In [8] three different methods 
(primal, dual and Lagrangean) are described and their computational efficiency is 
compared. These methods handle the side constraint within the framework of a 
network code. But none of them is polynomial. 

The combinatorial flow programming methods are interior point methods. They 
“work” with objects like paths, cycles, circulations. They could help in 
understanding the nature of the problem, and hence, the search of efficient 
algorithms for an optimal rational or integer flow. 

3. Min ratio cancelling 

Let y be a circulation in the network G. We denote by G(y) = {N, Uy, c(y), b(y), 
u(y)} the residual network for y. This network is constructed in the following way:  

– for each arc  (i, j) ∈U  an arc  (i, j) ∈ U(y)  exists if  yij < uij  and  cij(y) = cij, 
bij(y) = bij, 

                                             uij(y) = uij – yij; 
– for each arc (i, j) ∈U  an arc (i, j) ∈U(y) exists if  yij > 0  and  cji(y) = –cij, 

bji(y) = –bij,       uji(y) = xij.  
A circulation x in the residual network G(y) is feasible, if it satisfies the 

conditions: 
 

(4)         
( , )

( ) 0
y

ij ij
i j U

b y x
∈

=∑ ; 

(5)      0 ≤ xij ≤ uij(y),  (i, j) ∈Uy. 
 
Note that if x is a feasible circulation in the residual network G(y), then the 

circulation  z = x + y, where zij = yij + xij – xji, (i, j) ∈ U, is a feasible circulation in 
the network G. 

Lemma 1. The circulation y is optimal if and only if there is not a feasible 
circulation in the network G(y). 

P r o o f: If there is another circulation z with a lower cost, then the flow z–y is 
a feasible one in the residual network and vise versa.  

Let σi  be a cycle and x − a feasible flow in G(y). We denote by xi(σ) the flow 
on the cycle σi. 
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By ci(σ) and by bi(σ) the values 
( , ) i

ij
i j

c
σ∈

∑  and  
( , ) i

ij
i j

b
σ∈

∑  are denoted 

respectively. 
We call ci(σ)  a cost of the cycle and by bi(σ) – a b-cost of the cycle.  
Because x is a circulation, we can decompose it into k, k ≤ m, cycles of a flow 

and thus obtain: 
( ); ( ) ( ) ( ); ( ) ( ) ( ).

k k k

i i i i i
i I i I i I

x x c x c x b b xσ σ σ σ σ σ
∈ ∈ ∈

= = =∑ ∑ ∑  

Lemma 2. Let x be a feasible circulation in G(y). Then x can be represented 
like a linear combination with positive coefficients of the flows on the cycles with 
positive b-costs. 

P r o o f.  For each cycle σi we denote its b-cost by bi
+
(σ) if it is positive and by       

bi
–
(σ), if it is negative. The positive b-cost cycles are numerated from 1 to k1 and the 

negatives are numerated with the rest upto k. 
Since x is feasible, it is obtained: 

(6)   1 2

1 21 1 1 1 2

( ) ( ) ( ) ( ) 0;

{1, 2, , }, { , 1, , }, .
k k

i i i i
i I i I

k k

b x b x

I k I k k k k k k

σ σ σ σ+ −

∈ ∈
+ =∑ ∑

= = + + =… …
 

We apply an iterative procedure where at each iteration one xj(σ), j∈ Ik2, is 
determined as a linear combination  of the positive terms of (6): 
 
(7)   xj(σ) = (–1/ bi

–
(σ)) 

1

( ) ( ).
k

ij i i
i I

a b xσ σ+

∈
∑  

Then 

(8)     
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1 2 1

1 2

( ) ( ) ( )

( ) [1 / ( ( )) ( )] ( ) ( )

(1 ( )) / ( ( )) ( ).

k k k

k k k
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i i j
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i I j I
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x b x a b x

b a b x

σ σ σ

σ σ σ σ σ

σ σ σ

∈ ∈ ∈

− +

∈ ∈ ∈
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= + −∑ ∑

 

If we define a Flosc for the residual network and substitute xj(σ), j∈ Ik2
, by (8),  

we get a MCC problem: 
 
MCC:   

1 2

min ( ( ) ( )) ( ) / ( ) ( )
k k

i i ji j j i
i I j I

c b a c b xσ σ σ σ σ+ −

∈ ∈
−∑ ∑  

subject to 

1

max( ) ( ) .
k

i i
i I

b x Bσ σ+

∈
≤∑  

We denote: 
Bmax = max 

( , ) , 0ij

ij ij
i j U b

b x
∈ >
∑  s.t. (1) and (3); 

Bmin = min 
( , ) , 0ij

ij ij
i j U b

b x
∈ >
∑  s.t. (1) and (3). 

Following the already made notes, we will propose an algorithm MCCR with 
canceling a defined min ratio in the search for an approximate solution of the 
minimum Flosc problem, which is very close to an optimal point. 
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Let σi be one cycle with a positive b-cost, bi
+
(σ)  and σj be another with a 

negative b-cost  bi
–
(σ) in G(y). We name “two-cycle” the set of arcs of these two 

cycles and denote it by σij.  
We define the cost cij(σ) of the two-cycle as follows: 

cij(σ) = (cj(σ) bj
−  
(σ) – cj(σ)bi

+
(σ))/bj

–
(σ). 

We define a MCRC problem: 
MCRC:    

1 2,
min ( ) ( )

k k

ij i
i I j I

c xσ σ
∈ ∈

∑  

subject to 

1

max( ) ( ) .
k

i i
i I

b x Bσ σ+

∈
≤∑  

We denote: 
ui(σ) = min upq,  (p, q) ∈ σi,  uj(σ) = min upq,  (p, q)∈ (p, q) ∈σj. 
The flow on the two-cycle σij  is denoted by xij(σ)  and defined as follows: 

xij(σ) = xi(σ) on the arcs of σi, xi(σ) ≤ ui(σ) 
xij(σ) = xj(σ) on the arcs  of σj and xj(σ) ≤ uj(σ), xj(σ)= bi

+
(σ)/(– bj

–
(σ)))xi(σ). 

It is clear that the flow on a circulation may be represented as a sum of flows on 
the two-cycles of the network, because from (7) we can determine k2k1 two-cycle σij 
with a flow xi(σ) and xj(σ) = (–1/ bj

–
(σ)) bi

+
(σ) aji xi(σ).  

Then it is obtained that bi
+
(σ)xi(σ) + bj

–
(σ)xj(σ) = 0, i.e. the flow xij(σ)  is a 

feasible flow in the residual network, it satisfies the capacity and the side constraint. 
In case at least one arc is saturated, we say that the two-cycle is cancelled. 

A two-cycle is called augmenting if there is a nonzero flow z on it in G(y). If 
one two-cycle is augmenting and has a negative cost, then the cost of the flow in 
G(y) will be decreased by the value cij(σ)zi(σ). 

We call the value cij(σ)/ bi
+
(σ) a two-cycle ratio. 

The algorithm (MTCRA), described below, cancels the minimum two-cycle 
ratio in the residual network. In this way the gap between the current solution and 
the optimal solution will be decreased to zero. 

The algorithm MTCRA: 
Step 1. Let y be an initial feasible solution of the problem MC. 
Step 2. Define the residual network G(y). If there are not any negative 

augmenting two cycles, then y is an optimal flow, stop. 
Step 3. Find a minimum two-cycle σij ratio in G(y). Determine the flow xij(σ). 
Step 4. The new flow y is y:= y + xi(σ) + xj(σ). Go to Step 2. 
Theorem 1. Let x and z be the solutions received at iterations i1 and i1+1 of the 

algorithm MTCRA and xopt – an optimal solution of the problem Flosc. Then  
 

c(z–x) ≤ c(xopt – x)/(Bmax/Bmin). 
 

P r o o f. Since x and z are neighborhood solutions, z–x is a flow on the two-
cycle σij  and the ratio cij(σ)/bi

+
(σ) is minimal in G(x). On the other hand, the 
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circulation xopt – x is feasible in G(x) and it can be represented as a linear 
combination of the two-cycles: 
  

xopt – x = 
1 2,

( ),rl
r I l I

x σ
∈ ∈

∑  I1 and I2 are subsets of Ik1
 and Ik2

. 

Let σpq be a negative one, with the minimum ratio in this representation. Then: 
cij(σ)/bi

+
(σ) ≤ cpq(σ)/bp

+
(σ); 

cij(σ)xi(σ)/bi
+
(σ)xi(σ) ≤ cpq(σ)xp(σ)/bp

+
(σ)xp(σ) ≤ 

1 2,
( ) ( ) / ( ) ( )rl r rl r

r I l I
c x b xσ σ σ σ+

∈ ∈
=∑ ∑  

= c(xopt – x)/
1 2,

( ) ( ),rl r
r I l I

b xσ σ+

∈ ∈
∑  

which leads to 
c(z–x)/Bmin = cij(σ)xi(σ)/Bmin ≤ cij(σ)xi(σ)/bi

+
(σ)xi(σ) ≤ c(xopt – x)/ 

1 2,
( ) ( )rl r

r I l I
b xσ σ+

∈ ∈
∑ ≤  

≤ c(xopt – x)/Bmax . 

4. Conclusion 

The minimal two-cycle ratio can be determined as a sum of the min ratio ci(σ)/bi
+
(σ) 

of the cycles with positive b-costs and the min ratio ci(σ)/bi
–
(σ)of the cycles with 

negative b-costs.  
The statement of the theorem says that the amount of the objectives decrease at 

each iteration is always at least a Bmin/Bmax  fraction of the remaining to the optimal 
objective value amount. 

In the paper presented the author has not investigated how to get an exact 
minimal solution of Flosc from the solution, received by MTCRA. 
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