
 13

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 7, No 3

Sofia • 2007

A Fast Algorithm for Solving the Optimum Circulation Problem

Dimiter Ivanchev
New Bulgarian University, Department of Telecommunications, 1618 Sofia
E-mail: divanchev@nbu.bg

Abstract: A modification of an algorithm for solving the well-known optimum
circulation problem in directed networks is presented here. It uses the Prim’s
algorithm in the initialization step for finding an optimum spanning tree according
to one or two criteria in a lexicographical sense on a graph with special arc
weights. The modification makes it much faster. The running time is

()())(1 2KmnOmnnmO ++− where m and n are the arc and node numbers,
respectively, and K is a constant, depending on the input data. A computational
experiment is accomplished with series of randomly generated networks up to
10 000 arcs and the average time is compared with that of the Out-of-Kilter
algorithm.

Keywords: Network programming, optimum circulation, complexity, computer
experiments.

1. Introduction and problem statement

The optimum circulation problem is one of the most important ones in
mathematical programming and especially in network optimization. This is due to
the fact that many other problems can stem from this one as a special case. On the
other hand the problem is a polynomial one and there are efficient polynomial and
pseudo polynomial time running algorithms for its solution.

About 70 real applications of this problem and variety of algorithms are
mentioned in [1]. They can be summarized as three types: basic algorithms
[1, Ch. 9], polynomial algorithms [1,Ch. 10] and network simplex algorithms
[1, Ch. 11], [7, 8]. A short overview is given at the end of this section.

 14

The problem statement is the following. Let G = (V, A) be a directed graph
with vertices nVVV ,...,, 21 and arcs mAAA ,...,, 21 with three arc weights ak, bk and
ck for each arc kA , where: ka is a lower bound of the arc capacity, kb − an upper
bound of the arc capacity, and kc − transportations costs. We assume that kk ba ≤
for all arcs.

Without any loss of generality we assume that kk ba , and kc are integers. We
denote by CCi

+ and CC i
− the arc subsets of the Co-Cycle CC ,i containing all arcs

leaving and entering vertex iV , respectively.
We have to find an integer ()mxxxx ,...,, 21= , which minimizes

(1) () j

m

j
jC xcxF ∑

=

=
1

subject to
(2)

CC CC
0, 1,2,...,

k i k i

k k
A A

x x i n
+ −∈ ∈

− = =∑ ∑

and
(3) , 1, 2,..., .k k ka x b k m≤ ≤ =

The known basic algorithms for solving this problem are given in [1]: out-of-
kilter algorithm, cycle canceling algorithm, successive shortest path algorithm,
primal-dual algorithm and relaxation algorithm. As a main feature they repeatedly
find the shortest paths (or cycles) and the time complexity depends on a constant
connected with the input data, i.e. they are pseudo polynomial.

The theoretical advantage of the strongly polynomial algorithms is that they
can solve problems with irrational data. This is not the case in our consideration.
Six algorithms are given below [1]. The first three ones are weakly polynomial, i.e.
the time-complexity depends logarithmically on the input data and the last three
ones are strongly polynomial: capacity scaling algorithm, cost scaling algorithm,
double scaling algorithm, minimum mean cycle cancelling algorithm, repeated
capacity scaling algorithm and enhanced capacity scaling algorithm. The last one
seems to be the fastest known polynomial one – running time

()()()nnmnmO loglog + . It is a hybrid version of the first and the fifth one above
mentioned.

The network simplex algorithms rely on the fact that there always exists a
spanning tree solution, i.e. for which there is a spanning tree containing all the arcs
for which (3) is fulfilled as a strong inequality. This is the reason to restrict the
search among all spanning tree solutions.

A network simplex algorithm with some related variants is presented in [1].
Some special cases are discussed for solving the shortest path problem, the
maximum flow problem and sensitivity analysis.

Two simplex type algorithms are presented in [7] and [8] for non-flow
capacitate networks.

In [5] the authors have proposed a simplex type algorithm dealing with basic
feasible solutions.

 15

The algorithm which is described below, is a pseudo polynomial one and not
of simplex type. It has a relatively good complexity and a good real running time.

2. The algorithm

An integer node number it (dual variable, potential) is assigned to each node, to
each arc ()jiAk ,= an arc number is assigned
(*) kijk cttd −−=: , 1, 2, ...,k m= .

If kc in (1) is substituted by (*), it will be easy to see that

() () j

m

j
jDC xdxFxF ∑

=

−=−=
1

:

is satisfied. In this way we reformulate the problem as

(1*) () →= ∑
=

j

m

j
jD xdxF

1
: max

subject to (2) and (3).
Let ()mxxxx ,...,, 21= be a feasible circulation, i.e. for which (2) and (3)

holds and ()ntttt ,...,, 21= − a potential vector. The condition

(4)
0

, 1, 2, ..., ,
0

k k k

k k k

d x b
k m

d x a

> ⇒ =⎧
⎪ =⎨
⎪ < ⇒ =⎩

is called an optimality condition for the problem since the following theorem is
true.

Theorem 1. If x is a feasible circulation and t is a potential vector such that
(4) is fulfilled then x is an optimum circulation. If (2)and (3) are not contradictable
then there exists an optimum circulation x and a potential vector t such that (4)
holds.

P r o o f. Sufficiency – see [4, p. 233].
For the second part of the statement we start the out-of-kilter procedure with a

feasible circulation and an arbitrary potential vector. It finishes with an optimum
circulation x and a potential vector ,t which satisfy (4).

Thus, to each arc ()jiAk ,= , a point ()kk dx , , is assigned, which can be in
nine states – three of them are optimal ones ((2), (3) and (4) are fulfilled), the
others are not (see [4]). The optimum states are called In-Kilter States, the other
ones are Out-of-Kilter States.

The curve
(5) KC: (){ }, if 0; if 0; if 0k k k k kx y x a y x b y a x b d| = < = > < < =

 16

is called a kilter-curve of kA . Its integer points can be moved to the kilter-curve
horizontally if we change the flow on this arc and vertically, if we change the
potentials of its nodes.

The algorithm Out-of-Kilter (OKA) keeps condition (2) fulfilled at each
iteration and tries to fulfill (3) and (4) [4]. The algorithm given below, called
Modified External Flow Algorithm (MEFA) keeps (3) and (4) and tries to fulfill (2)
[2, 3].

For any arbitrary ()mxxxx ,...,, 21= and iV

CC CC
: , 1, 2,...,

k i k i

i k k
A A

F x x i n
+ −∈ ∈

= − =∑ ∑ ,

and will call it external flow of iV . The node is called a source node if iF is
negative. If it is positive the node is a sink one, otherwise it is a transit node.

To each node iV we attach labels iS and iE − integers with the meaning:
0=iS means that the node is not labeled; otherwise, 0>iS means that there

exists a chain from a special starting node to iV and the last arc is a forward one. If
it is negative, the last arc is a backward one. iE is the maximum quantity of the
flow changed on the last arc of the chain.

Further, for each arc ()jiAk ,= are denoted SV :k i= and EV :k j= (Start
Vertex and End Vertex of kA). For an arc kA with 0,0,0 =≠= jik SSd and

ii FE ≠ three logical variables are defined as follows:
 ()CondF , , : truekA i j = iff
 1) SV :k i= and EV :k j= ,
 2) if ii FE > then kk bx < , else kk ax > ;
 ()CondB , , : truekA i j = iff
 1) SV :k j= and EV :k i= ,
 2) if ii FE > then kk ax > else kk bx < ;

 ()Cond , , :kA i j = ()CondF , ,kA i j ∨ ()CondB , ,kA i j .
The idea of the algorithm is the following. At the initialization step a

maximum spanning tree Ĝ is found with arc weights kk ab − , which allows to
have at least one flow augmenting chain between every two nodes for the defined
flow x . Further (3) and (4) are preserved fulfilled and an attempt is made to reduce
all external flows to zero, i.e. to fulfill (2) as well. In the Main loop we start with a
source node lV and using the strategy Depth First Search (DFS) all nodes
reachable from it with one flow augmenting chain are found. If jV is such one and
it is not possible to continue the DFS procedure with the forward step, the algorithm
either goes backward if it is not possible to reduce the external flow of jV , or this

 17

vertex is dislabeled, its external flow is reduced and the flow of the last arc leading
to it changed and the DFS procedure continued. In this way we get a tree with
labeled nodes which “pulsates” (gets larger or smaller). At the end of DFS
execution we stop at lV . If this node becomes a transit one, we simply jump to
another source node and start the next iteration. Otherwise we change potentials of
the labeled nodes and continue the procedure with a growing tree.

2. 1. Modified External Flow Algorithm (MEFA)

(*Input: graph connected and Directed (),G V A= and integers kkk cba ,,
 with kk ba ≤ ;
Output: n circulatio Optimum ()mxxxx ,...,, 21= .*)

1 0 . ,(* solutionstartingfeasiblenongoodafindingtionInitializa −−
)*)4()3(andsatisfieswhich

 Set ()AVG ˆ,ˆ:ˆ = with { }1:ˆ VV = , { }=:Â ; set 0:1 =t ;
 for : 1 to 1l n= − do
 begin
 find ()jiAk ,= largest with kk ab − such that

 ()ˆ ˆandi jV V V V∈ ∉ or ()ˆ ˆandi jV V V V∉ ∈ ;

 set casefirst in kij ctt +=: and { }jVVV ∪= ˆ:ˆ ,

 set case secondin kji ctt −=: and { }iVVV ∪= ˆ:ˆ ;

 set ⎥⎦
⎤

⎢⎣
⎡ +

=
2

: kk
k

ba
x , 0:=kd and { }kAAA ∪= ˆ:ˆ

 end ;
 for all AAk

ˆ∉ set kijk cttd −−=: and

 if 0>kd then kk bx =: else if 0<kd then kk ax =:

 else ⎥⎦
⎤

⎢⎣
⎡ +

=
2

: kk
k

ba
x ;

for : 1 toi n= do set 0:=iF and 0:=iE ;
for : 1 tok m= do

 if ()jiAk ,= then set kii xFF +=: and kjj xFF −=: ;

()**.20 loopMain
 for : 1 tol n= do
 if 0≠lF then

2

 18

 begin
 ;0:=lE true,:GoOn = ji =: ;

 repeat ()* 0 *luntil F =
 if li = and GoOn then
 begin
 for 1=j to n do 0=jS ;

 false, :GoOn = 1: += mSl
 end ;
 find arcan kA with ()jiACond k ,, = true ;
 if kA then arcan such is ()** stepForward
 if ()jiACondF k ,, then
 begin ;: kS j =

 if ii FE > then { }iikkj FEabE
i

−−= ,min:

 else { }iikkj FExaE −−= ,max: ; ji =:

 end
else ()()*,* truejiACondB k =
 begin ;: kS j −=

 if ii FE > then { }iikkj FEaxE −−= ,min:

 else { }iikkj FEbxE −−= ,max: ; ji =:
 end
 else ()()*,* ikk CCAallforfalsejiACond ∈=

begin iSk =: ;
If li ≠ then
 If 0>ii FE then
 begin changeflowstepBackward :(* *)gdislabelinand

 () { }: sign min ,i i iF E Fε = ;

 trueGoOnFF ii =−= :;: ε ;
 0:=iS ;
 0 thenif k >
 begin : ; : endk k kx x i SVε= + =
 else begin : ; : endk k kx x i EVε= − = ;
 ε+= ii FF :
 end

 19

 else (* 0*)i iE F ≤
 0 then : else :k kif k i SV i EV> = =

*)li(*else =
not GoOn then (* *)if Change potentials

begin :δ = ∞ ;
for : 1 to dok m=
begin

;:;: kk EVqSVp ==
if 0 and 0 and 0 andp q k kS S d d≠ = < − < ∞
 then begin : ; : endkd i pδ = − =
 else
 if 0 and 0 and 0 andp q k kS S d d δ= ≠ > <
 then begin : ; : endkd i qδ = =
end ;
if then STOP (* *)There exists no feasible circulationsδ = ∞
else

 begin
 for : 1 to doj n=
 if 0 then :j j jS t t δ= = + ;
 for : 1 to dok m=
 begin
 ;:;: kk EVjSVi ==
 kijk cttd −−=:
 end
 end

end (* *)Change potentials
end

 until 0=lF
end .

Theorem 2. MEFA solves the problem correctly with time complexity
()2KmnO .

P r o o f. The algorithm finds at the initialization step a maximum spanning
tree Ĝ with arc weights kk ab − . It needs)(mnO operations (Prim). For each arc

kA of Ĝ 0=kd and [],k k kx a b∈ holds, i.e. (3) and (4) are fulfilled. For all other
arcs kx and kd are defined in order to fulfill (3) and (4).

The complexity of the Main loop is ()2KmnO [2], which is the total
complexity.

 20

The procedure terminates either if every node becomes a transit one or if no
potential changes are possible. In the first case condition (2) is fulfilled, hence the
problem is solved. In the second case a co-cycle ()CC V ′ has been found for which
the condition for existence of a feasible solution is not fulfilled. It is really the fact
since: if ()CCkA V+∈ ′ is a forward arc then the flow on it cannot be increased
since the point ()kk dx , is on one of the vertical branches of the Kilter Curve KC. If
no potential changes are possible this point is on the right branch, i.e. kk bx = .

Analogously, kk ax = for all backward arcs from the co-cycle. Hence, if

{ }| 0i iF V V∈ <∑ ′ then

0 > (){ } (){ }| CC | CCk k k kx A V x A V+ −∈ − ∈∑ ∑′ ′

= (){ } (){ }| CC | CCk k k kb A V a A V+ −∈ − ∈∑ ∑′ ′ .

It follows from the circulation existing theorem of Hoffmann [4, p.79], that there
exists no feasible circulation in the network.

Comment. For an arbitrary pair of source-node iV and sink-node jV one
wants to find a chain of arcs connecting them in order to send some flow. If it is not
possible, we have to change potentials –)(nO operations. But if we start with x
and d from the initialization step, a change of the flow is possible from iV to jV

at least on the only chain from the spanning tree Ĝ . The optimality of Ĝ allows a
larger change since this chain belongs to the spanning tree.

Sometimes it is possible to start with much better non-feasible x , i.e. which
allows larger flow changes. It is a solution to the following problem P.

Let ()AVG ˆ,ˆˆ = be a sub graph of G . We denote by

(5) ˆ ˆab() : { | }k k kG b a A A= − ∈∑
and
(6) ˆ ˆAB() : min{ | }k k kG b a A A= − ∈ .

Now we define an optimization problem in lexicographical sense:
(P) ˆ ˆ ˆlex max {(ab(), AB()) | a spanning treeof }G G G G− ,
i.e. find an optimum spanning tree according to (6) among all optimum solutions
according to (5). It can be solved with the procedure given below. The idea is the
same as that in [5] and [6] for solving the bicriterial optimum path problem.

Procedure (P)

Let Ĝ maximumbe a spannig tree of G with arc weights kk ab − ;
repeat

 21

 weightsarcsmallestthewithGofAarcsalldelete k
 ;Gbygraphnewthedenoteand ′

 ˆ ˆmax imum ;let G be a spanning tree of G′ ′

 ˆ ˆ ˆ ˆab() ab() : :if G G then set G G and G G= = =′ ′ ′
ˆ ˆab() ab()until G G> ′ ;

)(ˆ PofsolutionaisG .
This procedure needs no more than 1+− nm iterations, i.e.

))1((mnnmO +− operations at all. Hence, if we modify the initialization step of
MEFA in this way, the total complexity of the algorithm will be

)())1((2KmnOmnnmO ++− . Note that 01 >+− nm since G is connected
and contains cycles. We cannot say which term is larger since everything depends
on K as well as the relation between m and n . If the graph is a dense one, the
first term dominates and the complexity is polynomial one. If, on the other hand, it
is sparse K plays a crucial role in the amplitude of the latter term. In this case the
complexity of MEFA will be pseudo polynomial and the same as EFA –
()2KmnO . Finally, if we start MEFA with a bicriterial maximum spanning tree,

mentioned above, the total complexity will be)())1((2KmnOmnnmO ++− .

3. Computational experiment [3]

Both algorithms OKA and MEFA and the old version EFA are pseudo polynomial
ones, since the complexity 2(),O Km n)())1((2KmnOmnnmO ++− and

)(2KmnO , respectively, depend on the input data. We again point out that we use
OKA only as a measure unit since it is well-known and popular.

For “small” networks we have arranged a computational experiment and have
compared the executing time of both algorithms OKA and EFA. For the purpose we
have developed a computer code in Turbo Pascal 6.0 and have used a PC AT with
microprocessor I80286 and coprocessor 180287. The regression model for the ratio

time(OKA)/time(EFA) R =
of type baXY = has been obtained with the program package STATGRAPHICS.
We made three kinds of experiments.

We fix 100=n (number of nodes) and let m (number of arcs) vary from
1000 to 10000 in 1000 interval. For each case we generate randomly five networks
and solve the problem with both algorithms. The ratio of both times is

4425.0)(2772.0)(mmR = . For 10000 arcs EFA is about 7 times faster than OKA –
Fig. 1.

 22

Fig. 1

Now we fix 5000m = and vary n from 10 to 100 at 10 interval. Again five
networks for each case have been generated. The regression function is

6868.0)(472.73)(−= nnR . EFA is about 10 times faster for 100 nodes – Fig. 2.

Fig. 2

Finally we fix 50=n and 500=m and vary the difference kk ab − from 10

to 100 at 10 interval. Again a series of five networks have been generated. The
result is 651.0)(6504.0)(ababR −=− . For 100=− ab EFA is more than 15
times faster (Fig. 3).

 23

Fig. 3

Further we compare the number of iterations for both algorithms. At each

iteration of EFA, the actual source node becomes a transit one. For OKA the actual
arc, which is in an out-of-kilter state, gets in an in-kilter-state.

The results are given in Table 1, where ANI(EFA) and ANI(OKA) means
“Average Numbers of Iterations” of the algorithm for the series of five randomly
generated networks.
 Table 1

n m ANI(EFA) ANI(OKA)
20 30 6.8 12.6
20 55 8.4 19.4
20 80 6.4 23.8
20 105 5.8 32.0
20 130 6.4 32.2
20 155 6.0 36.8
20 180 6.2 40.8
20 205 5.6 43.6
20 230 5.8 41.0
40 1000 7.2 122.4
55 1000 13.0 127.0
70 1000 16.6 132.6
85 1000 23.0 116.8

100 1000 23.2 122.8
115 1000 33.8 115.2
130 1000 36.8 109.0
145 1000 40.2 121.8
160 1000 43.6 119.8
10 90 3.2 21.8
15 210 5.4 39.8
20 380 5.0 61.4
25 600 4.4 71.6
30 870 4.4 91.2
35 1190 5.4 107.4
40 1560 5.2 144.4
45 1980 5.4 147.2
50 2450 4.2 185.6

 24

4. Conclusions

The difference between MEFA and EFA is in the initialization step which does not
depend on the input data ,a b and c .

Since MEFA starts with a better, non-feasible solution as EFA, it should be
faster. In this case the ratio time(MEFA)time(OKA)/ should be larger than

 time(EFA)time(OKA)/ .
MEFA is much faster than OKA for dense graphs. It is not slower for sparse

graphs.
If ab − and c increase then the ratio of both times decreases but it is greater

than one, i.e. MEFA is faster.
The memory we need for both computer codes is nearly the same.
The constant K increases for both algorithms but the speed for MEFA is

much faster.
MEFA needs definitely fewer iterations.
The PASCAL-like description of MEFA allows to develop a computer code

very easily. We recommend a Neighbour-Vertex-List networks presentation in
order to speed up the procedure.

Acknowledgments. The author is grateful to Professor Vangelis Paschos from the University of Paris-
Dauphine and the anonymous referees for their remarks and suggestions which improved the quality
of this paper.

R e f e r e n c e s

1. A h u j a, R. K., T. L. M a g n a n t i, J. B. O r l i n. Network Flows. Englewood Cliffs, Prentice-

Hall, 1993. 943 p.
2. I v a n c h e v, D. An Algorithm for Solving the Minimum Cost Flow Problem with Complexity

O(Kmn^2). – Compt. Rend. Acad. Bulg. Sci., 44 (7) , 1991, 13-16.
3. I v a n c h e v, D. A Computational Comparison of Two Algorithms for Solving the Optimum

Circulation Problem. Applications of Mathematics in Engineering and Economics. Sofia,
Heron Press, 2002, 359-367.

4. F o r d, L. R., D. R. F u l k e r s o n. Flows in Networks. New Jersey, Princeton University Press,
1961. 276 p.

5. I v a n c h e v, D. Network Optimization. Sofia, Heron Press MathBooks, 2001. 204 p.
6. I v a n c h e v, D., D. K y d r o s. Multicriteria Optimum Path Problems. YUJOR, 5, 1995, No 1,

79-93.
7. K a r a g i a n n i s, P., K. P a p a r r i z o s, N. S a m a r a s, A. S i f a r e l a s. A New Simplex Type

Algorithm for the Minimum Cost Network Flow Problem. – In: Proc. of the BALCOR 2005,
Konstanta, Romania, 2007, 133-139.

8. G e r a n i s. G., K. P a p a r r i z o s, A. S i f a r e l a s. A Dual Exterior Point Simplex Type
Algorithm for the Minimum Cost Network Flow Problem. Abstracts. – In: Proc. of the
BALCOR 2007, Belgrade–Zlatibor, Serbia, 2007. 53 p.

