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Abstract: A modification of an algorithm for solving the well-known optimum 
circulation problem in directed networks is presented here. It uses the Prim’s 
algorithm in the initialization step for finding an optimum spanning tree according 
to one or two criteria in a lexicographical sense on a graph with special arc 
weights. The modification makes it much faster. The running time is 

( )( ) )(1 2KmnOmnnmO ++−  where m  and n  are the arc and node numbers, 
respectively, and K  is a constant, depending on the input data. A computational 
experiment is accomplished with series of randomly generated networks up to 
10 000 arcs and the average time is compared with that of the Out-of-Kilter 
algorithm. 

Keywords: Network programming, optimum circulation, complexity, computer 
experiments. 

1. Introduction and problem statement 

The optimum circulation problem is one of the most important ones in 
mathematical programming and especially in network optimization. This is due to 
the fact that many other problems can stem from this one as a special case. On the 
other hand the problem is a polynomial one and there are efficient polynomial and 
pseudo polynomial time running algorithms for its solution.   

About 70 real applications of this problem and variety of algorithms are 
mentioned in [1]. They can be summarized as three types: basic algorithms            
[1, Ch. 9], polynomial algorithms [1,Ch. 10] and network simplex algorithms         
[1, Ch. 11], [7, 8]. A short overview is given at the end of this section.  
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The problem statement is the following. Let G = (V, A) be a directed graph 
with vertices nVVV ,...,, 21  and arcs mAAA ,...,, 21  with three arc weights  ak, bk and  
ck for each arc kA , where: ka  is a lower bound of the arc capacity, kb  − an upper 
bound of the arc capacity, and kc  − transportations costs. We assume  that kk ba ≤  
for all arcs.  

Without any loss of generality we assume that kk ba ,  and  kc  are integers. We 
denote by CCi

+  and CC i
−  the arc subsets of the Co-Cycle CC ,i  containing all arcs 

leaving and entering vertex iV , respectively. 
We have to find an integer ( )mxxxx ,...,, 21= , which minimizes 

(1)    ( ) j

m

j
jC xcxF ∑

=

=
1

 

subject to 
(2)   

CC CC
0, 1,2,...,

k i k i

k k
A A

x x i n
+ −∈ ∈

− = =∑ ∑  

and 
(3)    , 1, 2,..., .k k ka x b k m≤ ≤ =  

The known basic algorithms for solving this problem are given in [1]: out-of-
kilter algorithm, cycle canceling algorithm, successive shortest path algorithm, 
primal-dual algorithm and relaxation algorithm. As a main feature they repeatedly 
find the shortest paths (or cycles) and the time complexity depends on a constant 
connected with the input data, i.e. they are pseudo polynomial.  

The theoretical advantage of the strongly polynomial algorithms is that they 
can solve problems with irrational data. This is not the case in our consideration. 
Six algorithms are given below [1]. The first three ones are weakly polynomial, i.e. 
the time-complexity depends logarithmically on the input data and the last three 
ones are strongly polynomial: capacity scaling algorithm, cost scaling algorithm, 
double scaling algorithm, minimum mean cycle cancelling algorithm, repeated 
capacity scaling algorithm and enhanced capacity scaling algorithm. The last one 
seems to be the fastest known polynomial one – running time 

( )( )( )nnmnmO loglog + . It is a hybrid version of the first and the fifth one above 
mentioned. 

The network simplex algorithms  rely on the fact that there always exists a 
spanning tree solution, i.e. for which there is a spanning tree containing all the arcs 
for which (3) is fulfilled as a strong inequality. This is the reason to restrict the 
search among all spanning tree solutions.  

A network simplex algorithm with some related variants is presented in [1]. 
Some special cases are discussed for solving the shortest path problem, the 
maximum flow problem and sensitivity analysis.  

Two simplex type algorithms are presented in [7] and [8] for non-flow 
capacitate networks.   

In [5] the authors have proposed a simplex type algorithm dealing with basic 
feasible solutions.  
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The algorithm which is described below, is a pseudo polynomial one and not 
of simplex type. It has a relatively good complexity and a good real running time.  

2. The algorithm 

An integer node number  it  (dual variable, potential) is assigned to each node, to 
each arc ( )jiAk ,=  an arc number is assigned 
(*)   kijk cttd −−=: , 1, 2, ...,k m= .  

If kc  in (1) is substituted by (*), it will be easy to see that 

( ) ( ) j

m

j
jDC xdxFxF ∑

=

−=−=
1

:  

is satisfied. In this way we reformulate the problem as 

(1*)                   ( ) →= ∑
=

j

m

j
jD xdxF

1
:  max 

subject to (2) and (3). 
Let ( )mxxxx ,...,, 21=  be a feasible circulation, i.e. for which (2) and (3) 

holds and  ( )ntttt ,...,, 21=  − a potential vector. The condition 

(4)    
0

, 1, 2, ..., ,
0

k k k

k k k

d x b
k m

d x a

> ⇒ =⎧
⎪ =⎨
⎪ < ⇒ =⎩

 

is called an optimality condition  for the problem since the following theorem is 
true. 

Theorem 1. If x  is a feasible circulation and t  is a potential vector such that 
(4) is fulfilled then x is an optimum circulation. If (2)and (3) are not contradictable 
then there exists an optimum circulation x and a potential vector t  such that (4) 
holds.  

P r o o f. Sufficiency – see [4, p. 233].  
For the second part of the statement we start the out-of-kilter procedure with a 

feasible circulation and an arbitrary potential vector. It finishes with an optimum 
circulation x  and a potential vector ,t  which satisfy (4). 

Thus, to each arc ( )jiAk ,= , a point ( )kk dx , , is assigned, which can be in 
nine  states – three of them are optimal ones ((2), (3) and (4) are fulfilled), the 
others are not (see [4]). The optimum states are called In-Kilter States, the other 
ones are Out-of-Kilter States.  

The curve  
(5)     KC: ( ){ }, if 0; if 0; if 0k k k k kx y x a y x b y a x b d| = < = > < < =  
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is called a kilter-curve of kA . Its integer points can be moved to the kilter-curve 
horizontally if we change the flow on this arc and vertically, if we change the 
potentials of its nodes. 

The algorithm Out-of-Kilter (OKA) keeps condition (2) fulfilled at each 
iteration and tries to fulfill (3) and (4) [4]. The algorithm given below, called 
Modified External Flow Algorithm (MEFA) keeps (3) and (4) and tries to fulfill (2) 
[2, 3].   

For any arbitrary ( )mxxxx ,...,, 21=  and iV    

CC CC
: , 1, 2,...,

k i k i

i k k
A A

F x x i n
+ −∈ ∈

= − =∑ ∑ , 

and will call it external flow of iV . The node is called a source node if iF  is 
negative. If it is positive the node is a sink one, otherwise it is a transit node.   

To each node iV  we attach labels iS  and iE  − integers with the meaning: 
0=iS  means that the node is not labeled; otherwise, 0>iS  means that there 

exists a chain from a special starting node to iV  and the last arc is a forward one. If 
it is negative, the last arc is a backward one. iE  is the maximum quantity of the 
flow changed on the last arc of the chain.  

Further, for each arc ( )jiAk ,=  are denoted SV :k i=  and EV :k j=  (Start 
Vertex and End Vertex of kA ). For an arc kA  with 0,0,0 =≠= jik SSd  and 

ii FE ≠  three logical variables are defined as follows: 
  ( )CondF , , : truekA i j =  iff  
   1) SV :k i=  and EV :k j= , 
   2)   if  ii FE >  then kk bx < , else kk ax > ; 
  ( )CondB , , : truekA i j = iff  
   1) SV :k j=  and EV :k i= , 
   2)   if  ii FE > then  kk ax >  else kk bx < ; 

  ( )Cond , , :kA i j =  ( )CondF , ,kA i j ∨ ( )CondB , ,kA i j .  
The idea of the algorithm is the following. At the initialization step a 

maximum spanning tree Ĝ  is found with arc weights kk ab − , which allows to 
have at least one flow augmenting chain between every two nodes for the defined 
flow x . Further (3) and (4) are preserved fulfilled and an attempt is made to reduce 
all external flows to zero, i.e. to fulfill (2) as well. In the Main loop we start with a 
source node  lV  and using the strategy Depth First Search (DFS) all nodes 
reachable from it with one flow augmenting chain are found. If jV  is such one and 
it is not possible to continue the DFS procedure with the forward step, the algorithm 
either goes backward if it is not possible to reduce the external flow of jV , or this 
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vertex is dislabeled, its external flow is reduced and the flow of the last arc leading 
to it changed and the DFS procedure continued. In this way we get a tree with 
labeled nodes which “pulsates” (gets larger or smaller). At the end of DFS 
execution we stop at lV . If this node becomes a transit one, we simply jump to 
another source node and start the next iteration. Otherwise we change potentials of 
the labeled nodes and continue the procedure with a growing tree.  

2. 1. Modified External Flow Algorithm (MEFA) 

(*Input: graph   connected and Directed ( ),G V A=  and integers kkk cba ,,  
 with kk ba ≤ ; 
Output:  n circulatio Optimum ( )mxxxx ,...,, 21= .*) 

1 0 . ,(* solutionstartingfeasiblenongoodafindingtionInitializa −−  
                                                                        )*)4()3( andsatisfieswhich  

 Set   ( )AVG ˆ,ˆ:ˆ =   with { }1:ˆ VV = , { }=:Â ; set 0:1 =t ;  
 for   : 1 to 1l n= −  do  
  begin  
   find   ( )jiAk ,=  largest with kk ab −  such that  

  ( )ˆ ˆandi jV V V V∈ ∉ or   ( )ˆ ˆandi jV V V V∉ ∈  ; 

  set   casefirst in kij ctt +=:  and { }jVVV ∪= ˆ:ˆ , 

  set    case secondin kji ctt −=:  and { }iVVV ∪= ˆ:ˆ ; 

  set ⎥⎦
⎤

⎢⎣
⎡ +

=
2

: kk
k

ba
x , 0:=kd   and   { }kAAA ∪= ˆ:ˆ  

   end ; 
 for all   AAk

ˆ∉ set   kijk cttd −−=: and    

   if 0>kd  then kk bx =:  else    if 0<kd then  kk ax =:  

    else ⎥⎦
⎤

⎢⎣
⎡ +

=
2

: kk
k

ba
x ;   

for   : 1 toi n= do   set 0:=iF and   0:=iE ;  
for : 1 tok m=  do    

 if ( )jiAk ,=   then set   kii xFF +=: and   kjj xFF −=: ; 

( )**.20 loopMain  
 for   : 1 tol n=  do  
   if 0≠lF  then  

2 
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  begin  
   ;0:=lE    true,:GoOn = ji =: ; 

   repeat   ( )* 0 *luntil F =  
     if li =  and GoOn then  
    begin  
     for 1=j   to n  do 0=jS ;  

   false, :GoOn = 1: += mSl  
     end ; 
    find  arcan  kA with   ( )jiACond k ,,  = true ; 
     if   kA   then  arcan such  is ( )** stepForward  
      if ( )jiACondF k ,, then  
     begin   ;: kS j =  

      if ii FE >  then { }iikkj FEabE
i

−−= ,min:  

   else { }iikkj FExaE −−= ,max: ; ji =:  

 end  
else   ( )( )*,* truejiACondB k =  
   begin   ;: kS j −=  

      if ii FE >  then { }iikkj FEaxE −−= ,min:  

   else   { }iikkj FEbxE −−= ,max: ; ji =:  
    end  
   else   ( )( )*,* ikk CCAallforfalsejiACond ∈=  

begin iSk =: ; 
If   li ≠  then  
     If 0>ii FE  then  
  begin  changeflowstepBackward :(*  *)gdislabelinand  

  ( ) { }: sign min ,i i iF E Fε = ; 

  trueGoOnFF ii =−= :;: ε ; 
  0:=iS ; 
  0 thenif k >   
  begin : ; : endk k kx x i SVε= + =   
  else begin : ; : endk k kx x i EVε= − = ; 
  ε+= ii FF :  
  end  
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  else (* 0*)i iE F ≤  
  0 then : else :k kif k i SV i EV> = =  

*)li(*else =  
not GoOn then (* *)if Change potentials  

begin :δ = ∞ ; 
for : 1 to dok m=  
begin  

;:;: kk EVqSVp ==  
if 0 and 0 and 0 andp q k kS S d d≠ = < − < ∞  
 then begin : ; : endkd i pδ = − =  
 else  
 if 0 and 0 and 0 andp q k kS S d d δ= ≠ > <  
  then begin : ; : endkd i qδ = =  
end ; 
if then STOP (* *)There exists no feasible circulationsδ = ∞  
else  

  begin   
   for : 1 to doj n=  
   if 0 then :j j jS t t δ= = + ; 
   for : 1 to dok m=  
    begin  
     ;:;: kk EVjSVi ==  
     kijk cttd −−=:  
    end  
  end  

end (* *)Change potentials  
end  

 until 0=lF  
end . 

Theorem 2. MEFA solves the problem correctly with time complexity  
( )2KmnO . 

P r o o f. The algorithm finds at the initialization step a maximum spanning 
tree Ĝ  with arc weights kk ab − . It needs )(mnO operations (Prim). For each arc 

kA of Ĝ  0=kd and [ ],k k kx a b∈  holds, i.e. (3) and (4) are fulfilled. For all other 
arcs kx  and kd  are defined in order to fulfill (3) and (4). 

The complexity of the Main loop is ( )2KmnO  [2], which is the total 
complexity.  
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The procedure terminates either if every node becomes a transit one or if no 
potential changes are possible. In the first case condition (2) is fulfilled, hence the 
problem is solved. In the second case a co-cycle ( )CC V ′  has been found for which 
the condition for existence of a feasible solution is not fulfilled. It is really the fact 
since: if ( )CCkA V+∈ ′  is a forward arc then the flow on it cannot be increased 
since the point ( )kk dx ,  is on one of the vertical branches of the Kilter Curve KC. If 
no potential changes are possible this point is on the right branch, i.e. kk bx = . 

Analogously, kk ax =  for all backward arcs from the co-cycle. Hence,  if 

{ }| 0i iF V V∈ <∑ ′  then  

0 > ( ){ } ( ){ }| CC | CCk k k kx A V x A V+ −∈ − ∈∑ ∑′ ′  

= ( ){ } ( ){ }| CC | CCk k k kb A V a A V+ −∈ − ∈∑ ∑′ ′ .  

It follows from the circulation existing theorem of Hoffmann [4, p.79], that there 
exists no feasible circulation in the network. 

Comment. For an arbitrary pair of source-node iV  and sink-node jV  one 
wants to find a chain of arcs connecting them in order to send some flow. If it is not 
possible, we have to change potentials – )(nO  operations. But if we start with x   
and d  from the initialization step, a change of the flow is possible from iV   to jV  

at least on the only chain from the spanning tree Ĝ . The optimality of Ĝ  allows a 
larger change since this chain belongs to the spanning tree.  

Sometimes it is possible to start with much better non-feasible x , i.e. which 
allows larger flow changes. It is a solution to the following problem P.  

Let ( )AVG ˆ,ˆˆ =   be a sub graph of  G . We denote by 

(5)                                ˆ ˆab( ) : { | }k k kG b a A A= − ∈∑  
and 
(6)          ˆ ˆAB( ) : min{ | }k k kG b a A A= − ∈ . 

Now we define an optimization problem in lexicographical sense: 
(P)          ˆ ˆ ˆlex max {(ab( ), AB( )) | a spanning treeof }G G G G− , 
i.e. find an optimum spanning tree according to (6) among all optimum solutions 
according to (5). It can be solved with the procedure given below. The idea is the 
same as that in  [5] and [6] for solving the bicriterial optimum path problem.   

 
Procedure (P)  

Let  Ĝ maximumbe a spannig tree of G    with arc weights kk ab − ; 
repeat  



 21 

 weightsarcsmallestthewithGofAarcsalldelete k  
 ;Gbygraphnewthedenoteand ′  

 ˆ ˆmax imum ;let G be a spanning tree of G′ ′  

 ˆ ˆ ˆ ˆab( ) ab( ) : :if G G then set G G and G G= = =′ ′ ′  
ˆ ˆab( ) ab( )until G G> ′ ; 

)(ˆ PofsolutionaisG . 
This procedure needs no more than 1+− nm  iterations, i.e. 

))1(( mnnmO +−  operations at all. Hence, if we modify the initialization step of 
MEFA in this way, the total complexity of the algorithm will be 

)())1(( 2KmnOmnnmO ++− . Note that 01 >+− nm  since  G  is connected 
and contains cycles. We cannot say which term is larger since everything depends 
on K  as well as the relation between m   and n . If the graph is a dense one, the 
first term dominates and the complexity is polynomial one. If, on the other hand, it 
is sparse K  plays a crucial role in the amplitude of the latter term. In this case the 
complexity of MEFA will be pseudo polynomial and the same as EFA – 
( )2KmnO . Finally, if we start MEFA with a bicriterial maximum spanning tree, 

mentioned above, the total complexity will be )())1(( 2KmnOmnnmO ++− .   

3. Computational experiment [3] 

Both algorithms OKA and MEFA and the old version EFA are pseudo polynomial 
ones, since the complexity 2( ),O Km n  )())1(( 2KmnOmnnmO ++−  and 

)( 2KmnO , respectively, depend on the input data. We again point out that we use 
OKA only as a measure unit since it is well-known and popular. 

For “small” networks we have arranged a computational experiment and have 
compared the executing time of both algorithms OKA and EFA. For the purpose we 
have developed a computer code in Turbo Pascal 6.0 and have used a PC AT with 
microprocessor I80286 and coprocessor 180287. The regression model for the ratio   

time(OKA)/time(EFA) R =  
of type baXY =  has been obtained with the program package STATGRAPHICS. 
We made three kinds of experiments. 

We fix 100=n  (number of nodes) and let m  (number of arcs) vary from 
1000 to 10000 in 1000 interval. For each case we generate randomly five networks 
and solve the problem with both algorithms. The ratio of both times is 

4425.0)(2772.0)( mmR = . For 10000 arcs EFA is about 7 times faster than OKA – 
Fig. 1. 

 



 22 

 
Fig. 1 

Now we fix 5000m =  and vary n  from 10 to 100 at 10 interval. Again five 
networks for each case have been generated. The regression function is 

6868.0)(472.73)( −= nnR . EFA is about 10 times faster for 100 nodes – Fig. 2. 

 
Fig. 2 

 
Finally we fix 50=n  and 500=m  and vary the difference kk ab −  from 10 

to 100 at 10 interval. Again a series of five networks have been generated. The 
result is 651.0)(6504.0)( ababR −=− . For 100=− ab  EFA is more than 15 
times faster (Fig. 3). 
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Fig. 3 

 
Further we compare the number of iterations for both algorithms. At each 

iteration of EFA, the actual source node becomes a transit one. For OKA the actual 
arc, which is in an out-of-kilter state, gets in an in-kilter-state.  

The results are given in Table 1, where ANI(EFA) and ANI(OKA) means 
“Average Numbers of Iterations” of the algorithm for the series of five randomly 
generated networks. 
                     Table 1 

n m ANI(EFA) ANI(OKA) 
20 30 6.8 12.6 
20 55 8.4 19.4 
20 80 6.4 23.8 
20 105 5.8 32.0 
20 130 6.4 32.2 
20 155 6.0 36.8 
20 180 6.2 40.8 
20 205 5.6 43.6 
20 230 5.8 41.0 
40 1000 7.2 122.4 
55 1000 13.0 127.0 
70 1000 16.6 132.6 
85 1000 23.0 116.8 

100 1000 23.2 122.8 
115 1000 33.8 115.2 
130 1000 36.8 109.0 
145 1000 40.2 121.8 
160 1000 43.6 119.8 
10 90 3.2 21.8 
15 210 5.4 39.8 
20 380 5.0 61.4 
25 600 4.4 71.6 
30 870 4.4 91.2 
35 1190 5.4 107.4 
40 1560 5.2 144.4 
45 1980 5.4 147.2 
50 2450 4.2 185.6 
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4. Conclusions 

The difference between MEFA and EFA is in the initialization step which does not 
depend on the input data ,a  b  and c .  

Since MEFA starts with a better, non-feasible solution as EFA, it should be 
faster. In this case the ratio  time(MEFA)time(OKA)/ should be larger than 

 time(EFA)time(OKA)/ .  
MEFA is much faster than OKA for dense graphs. It is not slower for sparse 

graphs. 
If ab −  and c  increase then the ratio of both times decreases but it is greater 

than one, i.e. MEFA is faster. 
The memory we need for both computer codes is nearly the same.  
The constant K  increases for both algorithms but the speed for MEFA is 

much faster. 
MEFA needs definitely fewer iterations.  
The PASCAL-like description of MEFA allows to develop a computer code 

very easily. We recommend a Neighbour-Vertex-List networks presentation in 
order to speed up the procedure.  
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