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              Abstract. The problem for obtaining an upper bound for  the minimal value of a 

linear function on the efficient set of a MOLP problem  is considered. A multiobjective 

optimization method is used to get Pareto (or efficient) points. An illustrative example is 

presented. 
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1. Introduction                 

 

            The multiobjective linear programming  (MOLP)  problem  can be described  as 

follows: 

                                               max  f1(x)  
                                               max  f2(x) 

               (1)                                                    . 
                                                                        . 
                                                                        . 
                                                      max  fm(x) 

                    s.t.                           
                                         x  S    Rn 

             



 2 

Here  fi(x), i = 1,2,…, m , are linear functions. The vector  x  S  is called an argument 

vector. The vector  f (x) = (f1(x), f2(x), …, fm(x))  Rm     is called a criteria vector. The 

feasible set  S   is defined as follows :  

 

                                  S = { x   Rn  ci(x)  0,  i = 1,2,…,k  } 

All ci(x)  are linear functions, too. The list of constraints  ci(x)  0,  i = 1,2,…,k  contains 

the inequalities  xj  0 for all  j = 1,2,…,n . We suppose that the set  S  is not empty and is 

bounded .  The set   

 

                     Z = { z   Rm   z = f(x) , x  S } 

is called an attainable set in the criteria space. The point  z1 = f(x1)  Z, x1  S , is called a 

nondominated (Pareto) point , if there does not exist another point  x2  S ,  x2  x1,  such 

that the following  two conditions  are fulfilled simultaneously : 

                                        fi (x2)   fi (x1)    for all   i    ( i= 1,2,…,m)   , 

                                        fj (x2)   fj (x1)    for one  j  at least . 

 If the point   z1 = f (x1) , z1  Z ,  is nondominated , then the point  x1  S is called  

an efficient point. The set  P  Z , containing all nondominated points from  Z, is called  

a nondominated set  (Pareto set). The set  E  S , containing all efficient points from S, is 

called an efficient set . For each MOLP problem the set   E   is   closed.   

             There is also the notion of weak efficiency. The point x1  S is called weakly 

efficient if there does not exist another point  x2  S , such that   fi (x2)   fi (x1)   for all  i . 

By analogy with the text above we have the notions of weakly efficient set (subset of S) 

and weakly nondominated  (weakly Pareto) set (subset of  f(S)).    

            In addition we have given the function   (x), that is a linear function on   S.  

Having in mind problem  (1), our purpose in this paper will be to describe a way for 

obtaining  an upper bound for the following minimum :  

 (2)   min   (x)   =    B     
    xE 
 

             This is not a standard mathematical programming problem because the set  E  is 

not convex. 
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           2. A short review of the literature  

 

           Many papers in various journals consider the problems for optimization of a 

function over the set   E . Some of the first steps in this direction were connected with the 

idea to organize a movement in the set of efficient extreme points of S only. Later on 

many attempts have been made to apply various optimization techniques for solving or 

analyzing problem (2).  The survey of Yamamoto [21] proposes a classification of the 

existing algorithms for optimization over the efficient set. This classification contains 

seven classes: adjacent vertex search algorithms,  nonadjacent vertex search algorithms,  

face search algorithms, branch and bound search algorithms,  Lagrangean relaxation 

based algorithms, dual  approach,  bisection algorithms. Yamamoto’s paper contains 

some information about the considered algorithms concerning the corresponding 

computational requirements. 

          Thi, Pham and Thoai  [14]  propose a branch and bound procedure based on some 

properties in Lagrange duality. They give a way to obtain a global search algorithm.  The 

paper contains data about computational experiments on a large set of  examples.   

           Yamada, Tanino, Inuiguchi [22] propose a method  for approximate minimization 

of a convex function over the weakly efficient set . The method uses a branch and bound 

procedure.             

          For a similar problem Horst and Thoai [8] propose again an algorithm  of branch 

and bound type. 

           A  bisecting search algorithm is  proposed by H.Benson [2]. 

           A penalty function approach to maximize a function over the efficient set is 

proposed by D.J.White [20]. 

           Linear functions optimization on an integer efficient set  is considered in the paper 

of  Abbas and  Chaabane  [1].   

             It is worth noting that the relevant literature does not contain many data about 

applications of multiobjective optimization methods for analysis of problem (2).This 

paper gives some information of this type. 
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3. Some preliminary information 

          In this paper the  -constraint method  is chosen  with the purpose to find  efficient 

points in  S. The main optimization construction of this method is briefly described here.  

           We choose in an arbitrary manner the function   fp   for maximization and we 

convert  the rest part of functions  fi to inequality constraints. So we obtain the following 

single objective programming problem 

           (3)                                           max   fp (x) 

                                     s.t.               fj (x) > rj     (for all  j   but  j   p )     

                                                         x    S 

Every optimal solution of problem (3) is weakly efficient in the original multiobjective 

problem (1) (Ehrgott and  Gandibleux [6] , Chankong  and  Haimes [4],  Miettinen [12] ). 

          The point    x*   S  is efficient if and only if it is a solution to this problem for 

every   p = 1,…, m,  and   rj = fj (x*)  (j = 1,…,m  , j   p )    (Miettinen[12]). For each 

given vector  r = (r1,…,rp-1,rp+1,…,rm)  an optimal solution of the  -constraint  problem 

(3) is efficient if it is unique  ((Miettinen [12], Ehrgott and Gandibleux [6],. Chankong  

and  Haimes [4]).   We will suppose for our purposes that  r   f(S)  .  Many other data 

about the properties of this problem can be found in  the works cited above. 

             Now we will introduce the notion of  wall  of the set  S.  In problem (1) the set  S  

is described by the constraints  ci(x)  0,  i = 1,2,…,k   and this list contains the 

inequalities   xj > 0   for all  j=1,2,…,n . In addition, this list does not contain redundant 

constraints. Let’s consider the sets  Wj   where  

 

        (4)              Wj  =  { x  S  cj (x)= 0 } ,    j = 1,2,…,p  

 

Each one of these sets is called a wall of the set  S . It must be noted that there is a more 

general notion of   a facet . A definition of this notion can be found in Steuer [13].  So 

each wall is a facet, but there can be a facet that is not a wall. 

             It is well known in the theory of MOLP problems that if an inner point of S is 

efficient  then all points  of  S are efficient  (Steuer, [13]). So we will suppose that  all 

efficient points of   S    belong to the frontier of this set, i.e.  each efficient point of    S    

belongs to one of his walls, at least . 
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4. The main idea for obtaining efficient points with “small” value of   

 

           The main idea of this paper is presented here. The efficient set belongs  to the 

frontier of  S. (Correspondingly the Pareto set belongs to the frontier of f(S)). Therefore it 

is sufficient to examine all walls of S (one by one). We need to find points that:  belong to 

some wall, belong to the set  E and that have corresponding  “small”  values of   .To do 

this we firstly determine a subset of  S, that is described by linear constraints, is  “close”  

to  the  “studied”  wall  and has the same form; we get this subset “shifting” the studied 

wall a little bit inside. We minimize  the function    on the so obtained subset. As a 

result  we  obtain  a  point  r  f(S) and we use this point  in the constraints of -constraint 

problem  (3) . We solve the so modified  problem (3)  sequentially for all criteria  fi . If 

the obtained point belongs to the  “studied” wall, it has a corresponding “small”  value of  

. The Pareto property is checked for all obtained points of criteria space. If we denote by 

C the minimal value among all values of    obtained by this procedure, we have the 

following inequality 

                                                  min   (x )   <    C  
                                                  x   E                       
 

 

              6. Some experiments        
 

              To illustrate the proposed method of computations we will consider the 

following MOLP example   (Steuer [13], p.244, example 8). 

 

                                              max  f1(x) , 

                                              max  f2(x) , 

                                              max  f3(x) , 

                               s.t. 

                                              x     S , 

where:   



 6 

                                f1(x)   =  x1 + 3x2 - 2x3 + x5 ; 

                                f2(x)   =  3x1 - x2 +  3x4 + x5 ; 

                                f3(x)   =  x1 +  2x3 +  3x5 ; 

 

The set   S    is described by the following  constraints :  

                           2x1  +  4x2  +  3x5  +  SL1  =  27, 

                           2x3  +  5x4  +  4x5  +  SL2   =  35, 

                           5x1  +  SL3  =  26, 

                           2x4  +  SL4  =  24, 

                           5x1  +  5x2  +  2x3  +  SL5  =  36. 

Here SLi are the slack variables. The following linear function is to be minimized  

                                (x) =  3x1 + 5x2 - 4x3 - 2x4  + 3x5 . 

The data given by Steuer contain the list of the nondominated extreme points, belonging  

to the criteria space f(S) . The  recalculated coordinates of these points are presented here 

in Table 1. 

     Table  1                                  

   A nondominated               f1                           f2                            f3                       

     extreme point 

 

         z1                          20.25                      14.25                      0.0                    19.75 

         z2                          19.8                         17.4                       0.9                    20.2 

         z3                            9.3125                     8.5625                26.25                 27.1875 

        z4                           14.0666                   30.5866                13.80                  24.7865 

        z5                             9.125                       9.875                  26.625               27.375 

        z6                           10.73333                 28.85333              21.80                   27.05332 

        z7                           11.2                         34.6                        5.2                      11.6 

        z8                           - 1.26083                 20.26083              34.04343           8.086998 

        z9                             5.2                         36.6                        5.2                      1.6 

        z10                          0.733333                22.853333             31.80                11.05333 

        z11                         - 34.80                      0.6                       35.2                   - 69.4 
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The last column of  Table 1 contains the corresponding values of  function   . It 

can be seen that the proposed method of computations has to find the value   69.4  or a 

good  approximation. 

     There is an observation that  max (2x4) = 14,  therefore  min SL4 = 10. In the same 
                                                 x    S                                               x   S 
time    min SLi = 0, i = 1,2,3,5 . 
              x   S        
 

           We shall not shift all walls of S. For the demonstration purposes we shall consider 

the following subsets only: 

 

                               Q1 =  { x  S   2x1 + 4x2 + 3x5 = 26.9 } 

                               Q2 =  { x  S   2x3 + 5x4 + 4x5 = 34.9 } 

                               Q3 =  { x  S   5x1 = 25.9 } 

                               Q4 =  { x  S   2x4 = 14 }           

                               Q5 =  { x  S   5x1 + 5x2 + 2x3 = 35.9 } 

 

Minimizing the function    on each one of these  subsets we obtain the following results 

(Table 2) 

Table 2 

________________________________________________________________________ 

                                 Obtained minimal value of             corresponding vector  of  f(S) 

 

       x    Q1                         -5.854839                    r1 = ( -3.248387, 0.641935, 30.79032 ) 

       x    Q2                           -69.8                           r2 = ( -34.9,  0.0,   34.9 ) 

       x    Q3                           -14.62                         r3 =  (-4.92,  30.48,  15.28 ) 

       x    Q4                           -14.0                           r4 = ( 0.0,  21,  0.0 ) 

       x    Q5                           -69.46                          r5 = ( -34.82,  0.54,  35.18 ) 

 

Solving the  corresponding -constraint problems (3)  for each  ri we obtain the following 

results (Table 3). 
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Table 3   

________________________________________________________________________ 

used vector     function  fi  that          obtained Pareto vector        corresponding value of   

     ri                  is maximized 

 

     r1                       f1                 3.293552, 15.80645, 30.79032             16.54517 

                               f2                1.743013,  23.45914,  30.79032            12.66882 

                               f3               -3.248387,  19.09577,  34.11201             3.495106 

        

      r2                      f1                   -26.1,  5.7,  34.9                                  -49.3 

                              f2                    -26.1,  5.7,  34.9                                  -49.3 

                              f3                    -34.8,  0.6,  35.2                                  -69.4 

 

       r3                    f1                     12.8,  30.48,  15.28                            24.136 

                              f2                      8.56,  31.89,  15.28                           17.056 

                              f3                 9.571429,  30.48,  18.31428                  21.70857 

 

       r4                    f1                    18.23478,  21,  4.421739                     21.45217 

                              f2                         5.2,  36.6,  5.2                                    1.6 

                              f3                         0.0,  21,  32.78571                          10.10714 

 

       r5
                    f1                       -34.22,  0.94,  35.18                           -68.06 

                             f2                        -34.22,  0.94,  35.18                           -68.06 

                             f3                        -34.8,  0.6,  35.2                                 -69.4 

 

          All vectors written  in the third column of this table are Pareto vectors. It is clear 

that in the considered case the proposed method gives the needed value exactly. The 

corresponding vector  x*  E  is 

                                                x* = (0.2, 0.0, 17.5, 0.0, 0.0). 
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 But, generally, it is of interest to know whether there is another efficient point  xa with 

smaller value  (xa) , for example  (xa)  69.6 . If not, we have a  lower  bound  for     

min  (x)  x    E . 

          The set 

                                    { x  S   (x)    69.6 } 

has the following ideal point :  (34.75; 0.4;  35.1333)  and this is  an attainable point in 

f(S). We can use this point as a reference point and using the reference point method of 

professor Wierzbicki [18,19] we obtain that it is dominated by the point   (34.68719; 

0.66613;  35.19611),  that  is  attainable  and  Pareto  point.  This  means  that  the  

checked  set    {x  S(x)  69.6}  does not contain  any efficient points . Thus we 

have the following two inequalities 

    69.6  <  min  (x)  <   69.4   , 
                                                          x  E 
They can be obtained without any preliminary data about the efficient set  E  of the 

considered example. 

           A  LINGO-9  DEMO  version  is used for all here presented computations .   

 

           6. Conclusion  

 

           Using the described procedure for obtaining an upper bound for B we have 

obtained the exact value practically in all experiments. This procedure needs standard LP 

software only. This procedure does not need as initial data any results obtained by  some 

earlier developed methods for optimization over the efficient set. It does not use any 

methods for efficient set investigation. It does not use any special optimization methods. 

The properties of  here proposed  approach allow to use parallel computing. Now there is 

a need of a good corresponding method for obtaining lower bounds of B . This will 

confirm the opinion that the multiobjective optimization techniques can have some 

influence on the methods for optimization  over  the efficient set. 
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