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Abstract: The principle of extremum seeking control has been applied to 2nd and 4th

order models of anaerobic digestion. In the case of variations of the inlet organics
the maximum biogas flow rate was obtained. Laboratory experiments have been
provided with step and impuls changes of acetate addition (new control input). Based
on the dynamical responses of the biogas flow rate, non-linear optimization and
simulations some of the model coefficients have been estimated more precisely. Input-
output static characteristics, optimal steady-state and some constraints have been
derived analytically.
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1. Introduction

During anaerobic digestion (AD) of organic wastes the organic matter is mineralized
by microorganisms into biogas (methane and carbon dioxide) in the absence of oxygen.
The biogas is an additional energy source and the methane is a greenhouse gas.

A lot of models of the AD are known. However, because of the very restrictive
on-line information their coefficients estimation is a very difficult problem (B a s t i n,
D o c h a i n [1]; S i m e o n o v [7]; N o y k o v a [5]).

The task of extremum seeking control is to find the operating set-points that
maximize or minimize an objective function. Recently some new results concerning
the stability analysis of extremum seeking of nonlinear systems have been obtained
(W a n g  et  al. [8]; K r s t i c, W a n g [2]; M a r c o s, G u a y,  D o c h a i n [4]).
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In the present paper, in order to maximize the biogas productivity of the AD, we
apply extremum seeking control using the dilution rate as a control action and the
biogas flow rate as a measured output. As a benchmark for our demonstration, we use
two non-linear process models after precision of some of their coefficients using an
impuls like additional signal (acetate addition).

2. Process model and parameter estimation

2.1. Experimental studies
Laboratory experiments are carried out in continuously stirred tank bioreactor with
cattle wastes at mesophillic temperature and addition of acetate in low concentrations
The added acetate is mixed with the effluent organics and pH of this mixure is kept in
the admissible range. (L u b e n o v a  et  al. [3]). The responses of Q are obtained for
step and impuls changes of the acetate addition.

2.2. Mathematical modelling of the process
The 2nd order model used in this paper is build on one-stage reaction scheme
(S i m e o n o v [7]):

(1)           
dX
dt

X DX  ,

(2)    
dS
dt

k X D S Si   1 0 ( ),

(3)               2Q k X ,
S (g/l) is the substrate concentration, X (g/l)  biomass concentration,

Q (l.d1)biogas flow rate, (d1) is the Monod type specific growth rate.
The 4th order model for AD, used in this paper, is based on the two-stage reaction

scheme:
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where iX (g/l), iS (g/l), i (d–1), i = 1, 2, are the bacterial concentrations, the associated
substrate concen-trations and the Monod type specific growth rates for the acidogenic
(i=1) and methanogenic (i=2) stages, respectively; Q (l.d–1) is the biogas flow rate;
the coefficients imax (d–1) and 

iSk
2
(g/l) represent the maximum specific growth rates

and saturation constants for both microorganisms groups, respectively. 1k , 2k , 3k  and
4k  are yield coefficients; 1D  (d–1), is the dilution rate for the inlet soluble organics

with concentration 0
1inS . We assume that the second biodegradation stage starts in the

bioreactor and therefore the concentration of acetate in the inlet substrate is 0
2inS =0;

2D (d–1), is the dilution rate for the input acetate concentration 2inS (g/l). 21 DDD 
is the total dilution rate. The state vector is:  2211 XSXSx . The parameter vector

is:   T1max 1 1 2 max 2 2 3 4S Sk k k k k k p . The only measurable output is
Qy . We assume that 1D ,  and  are constants, the acetate concentration  is a control

input and the first acidogenic stage is in steady state with coordinates:

(10)               1

1

*

1max

SDk
S

D


 ;

(11) 1*
1 1in

1 1max

1 –
–

Sk D
X S

k D
 

  
 

,

where all parameters are known. This allows us to simplify the dynamical model (4),
…,(8) as:

(12)                  2
2 2

dX D X
dt

  ,

(13)                2
1 2 2 2 2 2in 2 ,dS C k X D S DS

dt
   

(14) 4 2 2Q k X ,

where *3
1 1

1

kC DX
k

  is a constant.

In this simplified model the state vector is  2 2S Xx ; input u=S2in, output
y=Q.  The parameter vector is extended with the initial sta tes values :

p=  T
1 2max 2 2 4 2 2(0) (0)SC k k k X S . The initial value of p is taken from

(L u b e n o v a et al. [3]).
The simplified version (12), …, (14) is very similar to the model (1), …, (3),

with the addition of the control action S2in, which is very suitable for identification
and control purposes.
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2.3. Parameter estimation when only the biogas production rate Q is measurable.
S i m e o n o v [7] provided investigation of model parameters in (1), …, (3). Here we
use the estimated values from this work: k1 = 6.7, k2= 16.8, max= 0.35, kS= 2.3.

For the simplified model (12)-(14) S i m e o n o v  et al. [6] investigated both
theoretical and practical identifiability of the model parameters. After combining the
results from both identifiability investigations (N o y k o v a [5]) we conclude that the
most suitable parameter combination, which has to be estimated, is

p2 = 
2 max2 2(0), ,X k   .

During the parameter estimation stage we had to minimise the following quadratic
error functional:

(15)                                   2
2 2 exp

0
CRIT( ) ( )

N i i

i
Q Q


 p p  .

We have used constrained non-linear optimisation, realised in the function
fmincon, OPTIMIZATION toolbox 2.0 of MATLAB5.3. The initial values of the
estimated parameters are: 0

2 (0) 0.01X  ,  0
2max 0.25  ; 0

2 4.2k  . The estimated

parameter values are: 2 (0)* 0.9948X  ; *
2max 0.2561  ; *

2 5.5330k  . The value of
the optimization criterion is CRIT = 1.8136. The graphical results from the parameter
estimation (experimental and simulated data for Q and four impulses of acetate addition
with amlitudes 0.5, 0.75, 1.0 and 1.5 (g/l), respectively) are shown on Fig.1. From
these results it is clear that the model fits well the experimental data.

Fig. 1. Experimental and simulated data for Qm and Qexp (g/l) in time (d)

3. Extremum seeking control

3.1. Problem statement
We assume that the goal of the AD process is production of biogas. As an optimization
objective it is then natural to consider the maximization of the biogas flow rate
Q (l.d–1)
(16)                                                    maxQ  .
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In the next paragraph we show that the steady states of the AD process are
characterized by a non – monotonic map relating the biogas flow rate Q (controlled
output) to the dilution rate D, which is our control input. The purpose of the extremum
seeking method is then to iteratively adjust the dilution rate in order to steer the
process to the maximum of this map.

3.2. Steady-states analysis of the open – loop system
In ideal stationnary conditions all the derivatives in the model (4)-(9) are equal to
zero. The steady states S1

* and X1
* are given with (10) and (11). The other stationary

values are:

(17)                                            
2*

2
2

,
–

m

Sk D
S

D


(18)            
1 2* 3

2 0in
2 1 1max 2

1 – –
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  
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,

(19)                 
1 23* 34

0in
2 1 1 1max 2 max

–
– –
S SDk k DkkDkQ S

k k k D D 

 
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 
.

From (10) and (17) is clear that in order to have positive substrate concentrations
the following conditions have to be satisfied:

1maxD   and 2maxD  .

From (11) we obtain the upper bound for dilution rate, such that  does not go
extinct:

(20)                                                 
1
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sup1

1inS

S
D

k S



 .

For the case when X2
*=0 we obtain from (18) a quadratic equation with respect to the

dilution rate D. Next we analyze this function. We see that
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 is always negative.
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The graphics of this function is shown on Fig. 2.  In this case we assume that
1max<2max. For the case when 2max<1max the graphics is analogous because the
function is symmetric with respect to the specific growth rates. When 1max= 2max
there is only one point where the function is not defined.

We see that this function has two upper bounds Dsup2 and Dsup3 for dilution rate
D, such that X2 does not go extinct. We assume Dsup2 to be the smaller value.

Next we compare the value Dsup1 with Dsup2 and Dsup3. For the case when 1max<2max
and Dsup1<1max. we can conclude that Dsup1 lies in the first branch of this curve. We
replace (20) into (18) and obtain the following expression

(21)                  
  

2

1

3 1max 1in*
2 sup1

2 1 2 max 1max 2max 1in

( ) S

S

k k S
X D

k k k S


  


  

and it is clear that *
2 sup1( ) 0X D  , because

  
1 2 max 1max 2 max 1inSk S     

 
1

2max sup1
1in

1 0
S

D
k S

   


.

In this case Dsup2< Dsup1 < Dsup3.
For the case when 2max<1max there are two possibilities. We see from (21) that

in the case when Dsup1 <2max<1max the value *
2 sup1( ) 0X D  . When 2max <Dsup1<

1max the value *
2 sup1( ) 0X D  . In both cases sup2 sup1 sup3D D D  .

Hence we conclude that sup2 sup( )inf [ ], 1, 2, 3iD D i  .
The analytical results, obtained from steady state investigation of the open loop

system, could be summarized as follows:
Theorem 1. Consider the above presented dynamical model of the AD. There

exists a nontrivial  equilibrium for this model if and only if  D < Dsup2. This equilibrium
is unique whenever it exists.

Fig. 2. Graphical presentation of the function
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Our numerical example (model (4), …, (9)) is in agreement with the general
results from Theorem 1. We obtain the following values for Dsup(i): Dsup1 = 0.192,
Dsup2 = 0.187, Dsup3 = 0.229.

Next we provide similar analytical investigations of the function Q*=Q(D),
described by (19). The graphics of this function  is shown on Fig. 3.  In this case we
assume that 1max<2max.

Further we investigate only in the first branch when 1max> D and 2max>D,
otherwise washout will appear.

For the maximal equilibrium state we obtain the following values for all variables:
Dmax = 0.14, * * * *

1max 1max 2max 2max0.7; 1.015; 1.05; 0.73S X S X   , Qmax = 0.4456.

Fig. 4. Input-output characteristics of Q (l/d) and COD (g/l) in time (d–1)

On Fig.4 input-output characteristics Q=Q(D) (for 0
1inS  at 5-11 (g/l)) and

COD=f(D) are presented.
The second order model (1), …, (3) is a particular case with: Dsup = 0.267,

Dmax =0.17957, Smax = 2.43, Xmax = 0.742, Qmax = 2.238. Full investigation of this
model is presented in S i m e o n o v [7].
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3.3. A peak seeking control via the dilution rate
The peak seeking feedback scheme is shown on Fig. 5. Its basic idea is to employ

periodic excitation signal asint, wich is added to the signal ?D . If this exitation
signal is slow, then the AD process appears as a static map Q=Q(D) and its dynamics

do not interfere with the peak seeking scheme. If ?D  is on either side of Dmax , the
excitation signal asint create a periodic response of Q, which is either in phase or
out of phase with asint. The high passe filter s|(s+n) eliminates the “DC component”
of Q. Thus, asint and {s|(s+n)Q will be (approximately) two sinusoids, which are:

in phase for ?D < Dmax  or out of phase for ?D > Dmax. In either case, the product of two
sinusoids will have a “DC component” , that can be argued to be approximately the

sensitivity function 2 ?( / 2)[ ( )]( )a Q D D .  Then the integrator ? ( / )D k s   is
approximately the gradient update law:

(22)                                     2? ?( / 2) [ ( )]( )d dD k a Q D D
dt dt

 ,

driven by the sensitivity function, which tunes ?D  to Dmax .

Fig. 5. The peak seeking feedback scheme

The tuning parameters in this scheme must be chosen as follows (W a n g,  et al.
[8]; K r s t i c, W a n g [2]):
(23)  Speed of non-linear dynamics = (1) , ,hO a k   .

Thus, the overall feedback system has three time scales:
1) fastest  the process (with the stabilizing controller);
2) medium   the periodic excitation signal;
3) slow – the filter in the peak seeking scheme.
As a result this peak seeking control is model – free and able to automatically

tune the dilution rate in the right direction. The scheme shown on Fig. 3 guarantees
the stability result outlined in the following:
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Theorem 2. Consider the feedback system on Fig.3 and assume that the AD
dynamic model has the following properties:

1) for D in the interval [D', D"] there is an isolated one – dimensional manifold
of equilibria E(D) which depends smoothly on D;

2) each of the equilibria in E[D', D"] are exponentially stable with an O(1) rate
of decay;

3) the equilibrium value of the output Q on E[D', D"] is a smoth function of D
with a maximum at D = Dmax;

Then there exists a ball of initial conditions around the equilibrium corresponding
to D = Dmax and a positive constant 1   such that for all (0, )   and all

, , ha k   , the solution converges to an O() neighurhood of that equilibrium.
This theorem is an interpratation for AD process of the more general result for

continuous type of biotechnological processe (W a n g  et al. [8]) with detailed proff
in (K r s t i c, W a n g [2]).

3.4. Simulation results

For the 2nd and 4th order models of the AD we know that the peak (Qmax) occurs at
the above presented values of Dmax  Our purpose is to tune D to Dmax. We implement
the peak seeking scheme with the following choice of parameters: h = 0.04;
 = 0.12; a = 0.01; k = 0.25. First, we start from an initial dilution rate lower than the
optimum rate (D(0)=0.025). The time responses of the output Q are shown on Figs. 7
and 9 (for 2nd and 4th order models, respectively) and the time responses of the
tuning parameter D are shown on Figs. 6 and 10. The maximum seeking process with
initial dilution rate D0 = 0.04 (with 2nd order model) is shown on Fig. 8. In the scond
simulation study we start from an initial dilution rate larger than the optimum value.
In both cases the peak seeking approaches the appropriate peak.

The convergence to the peak can be made faster by tuning the parameters of the
scheme and by introducing an appropriate phase shift in the form the perturbation
sinusoid. However, if we choose parameters, which makes the convergence left side
of the peak faster, they are too aggressive for the right side of the peak and may lead

Fig. 6. Time response of D (with 2nd order model) in time t (d)

6



8 2

to instability. As we do not assume to know the location of the peak, the adaptation
must proceed cautiously. In the thirld simulation study (with the 4th order model) we
start from an initial dilution rate larger than the optimum value (D(0) = 0.15 ), and in
the 600th day a step variation of S0i occurs (from 7.5 at 9.0 (g/l), e.g. increase with
20%). By the same step cise variation in the 1100th day S0i obtains its previous value.
The time response of the output Q is shown on Fig. 11. In both cases of variation of
the perturbation S0i the peak seeking approaches the appropriate peak. In the 4th
simulation study (with the 4th order model) we start from an initial dilution rate

Fig. 7. Time response of Q (with 2nd order model) in time t (d)

Fig. 8. The maximum seeking process in the phase plane
with initial dilution rate D0 = 0.04 (with 2nd order model)

Fig. 9. Time response of Q (l, d) (with 4th order model) in time t (d)
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Fig. 10. Time response of D (l/d) (with 4th order model) in the time t (d)

Fig.11. Time response of Q (l/d) with variation of S0i (with 4th order model) in time t (d)

lower than the optimum rate (D(0) = 0.025), and in the 600th day a step variation of
S0i occurs (from 7.5 up at 6.0 (g/l), e.g. decrease with 20%). In the 1100th day by the
same step variation S0i obtains its previous value. In both cases of variation of the
perturbation S0i the peak seeking approaches the appropriate peak. In the 5th simulation
study (with the 4th order model) we have the previous case, however with measurement
noise (with variance 0.001) on the biogas flow rate Q. The time response of the
output Q is shown in Fig.12.

4. Conclusion

Theoretical and experimental studies have proven that it is possible to obtain
appropriate values for some coefficients of nonlinear models of the AD measuring
only Q.

Theoretical and simulation studies have proven that with the extremum seeking
control law (22) we can optimize the operation of anaerobic digesters (maximization
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the biogas production) in the realistic case of strong variations of the influent organic
matter. The control law (22) doesn’t depend of the process model and it is much more
simple for practical realisation than the result in (M a r c o s, G u a y, D o c h a i n [4].
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