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Abstract:  The paper discusses the presentation in the multidimensional Hough space
of a contour set and also the presentation of the two sets external and internal, to
which this contour divides the convex hypersurface, which is determined in the object
space. Each point of these sets is represented by an indirect transform in the Hough
space, i.e. by means of the supporting hyperplane (maybe not unique), related to the
convex hypersurface in this point.

The results of the theoretical research indicate, that in this representation, the
basic properties of the sets are preserved. In the given case this means that in the
object space the connected sets, which are the contour and the generated by it external
and internal sets, correspond to the connected sets in the Hough space. These sets
are parts of the convex hypersurface with the same mutual disposition, i.e. the contour
set in the object space corresponds to a contour set in the Hough space. Analogously,
the external and internal sets in the first space correspond to an external set and an
internal one in the second space.

Keywords: Multidimensional Hough transform, contour sets, convex sets, theory of
sets, topological spaces.

1. Introduction

If we define in the n-dimensional Euclidian space En two compact and not mutually
crossing sets, then in the most general form their shape can be presented by their
convex envelopes. It is clear that if the sets are linearly inseparable, then these

1 This research is supported by the Institute of Information Technologies, BAS, project No  0100 85,
“Neuroinformation systems for classification and identification“.
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envelopes will be crossed. Presented in this way the initial sets can be considered as
two compact, convex and mutually crossing sets, and at all of their border points
there exists at least one supporting hyperplane, related to the corresponding set.

In the case considered, the interesting item is the set  Z obtained by the boundary’s
section of these two convex sets. The hyperplanes which are supporting, related to
the corresponding convex set in the points of this section Z, have characteristic
properties, which can be used for the initial construct of the optimally classificating
hyperplane. Although the classificating hyperplane will cross the two given sets
(if they are compact, but not convex) it can be considered as a first approximation of
the optimal separating hypersurface for these sets. Each such hyperplane, defined in
the space E n, may be uniquely presented in the Hough space: Ln where n << . This
presentation will be an uniquely reversible transform, where each hyperplane in En,
corresponds to a certain point in space Ln, like the straight lines in the 2-dimensional
Hough transform or the planes in the 3-dimensional similar transform [1, 2]. The
images of the supporting hyperplanes in the space Ln, to the corresponding convex
sets, will define a set of points HZ , which will have also characteristic properties
that are discussed in this paper.

In the general case, the investigation aims at ascertaining a correspondence
between the basic  properties of the set Z in En and the properties of its “indirect”
transform  HZ , in the space Ln. In this case under the notion ”indirect” transform,
we shall imply the representation of the points from Z  En by this mapping  in the
space Ln of the supporting hyperplanes in these points to the corresponding convex
set. In every point of the boundary of the convex set in E n there exists at least one
supporting hyperplane. Then it is obvious that if the supporting hyperplane is unique
then at its boundary point from the convex set in En will correspond to an unique
point in Ln. Respectively if the supporting hyperplanes form a set, then the
correspondence to their common (unique) supporting point in the convex set in En,
will be a set of points in the space Ln. It is clear from these facts, that unlike the
multidimensional Hough transform which is homeomorphic [3], the representation
in such way of the boundary points from some convex set S  En in the space Ln, will
not always be unique, i.e. it will not be a homeomorphism. For example as it is
established in [4], if the border of two mutually crossing convex and compact sets
defined in E n are indirectly mapped (by their supporting hyperplanes) in the space
Ln,  then their images will be the borders of two not mutually crossing convex, closed
and infinite sets. This means that the intersection Z of the borders of both sets in En,
i.e. their common and unique set will be (indirectly) represented by two sets in the
space Ln; the one set will belong to the first boundary surface and the other set – to
the second one.

In spite of these disparity in the case of an indirect mapping, as it is evident from
Theorem 1 [4], some properties of the border of the convex set in En will be preserved
in its representation in the space Ln. According to this theorem, if we examine the
border of S  as a convex hypersurface PS  then we shall establish that this hypersurface
in the space  Ln will correspondingly be a border of a closed and convex (unlimited)
set, i.e. this border will be convex (though unlimited) hypersurface HS  and this will
mean that in this representation the “connectivity” property  will be preserved. This
fact allows us to set up several questions. For example if we define the contour set
– Z over the hypersurface PS  and represent this set in Ln  by the supporting (in the
contour points) hyperplanes, then will this representation also be a contour over the
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hypersutface HS  Ln? Another interesting point is: will the correspondence be
preserved between the  internal and the external subsets of PS  toward the contour Z
for their representation in Ln , where these two subsets correspond to two parts of the
hypersurface HS .

The answer to these and other questions concerning the properties of this
representation is the kernel of the theoretical research in the present paper. For greater
clarity of the exposition and simplifying the theoretical research for the analysis of
the cases of two mutually crossing convex and compact sets we shall assume about
the type of the second convex set that it is a cone in En , which is a convex and
supporting to the first (convex) set, without violating the generality of the theoretical
results.

2. Defining and investigation of the problem in the object space E n

Let us define in the n -dimensional Euclidian space E n  the convex, compact set S and
point x0, such that x0  S and lying on one of the axis – Y of the space E n. If we
assume that this point is an axis of a bunch of hyperplanes H0, then we may define the
set

00 0 0 0: In t ( ) =    ;{ }n SH H H    xH E .
The boundary Hz  of the set  H0 , which is denoted with Fr(H0), may be specified

in the following way:
Hz = Fr(H0) = {Hz : H z  Fr(S)  ; Hz  H0}

and obviously will define the boundary of a supporting cone to S with an apex at the
point x0, formed by the sections of [Hz]k, where [Hz]k are the corresponding half-
spaces of the supporting hyperplanes Hz to S, for which S   [Hz]k, k = {+}, as it is
shown in Fig. 1.

Fig.1. Set S and supporting to S cone C z

Let us assign the set  Z, consisting of all points at which the hyperplanes  Hz  are
supporting to S:  Z = {z : z   Hz   Fr(S); Hz  Hz}. As by condition the set  S  is limited
(because is compact) then Z will be a limited set too. Besides, further we ascertain
the fact, that  Z is a connected set at each one of its points.
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Let us in the Euclidian space En separate the (n – 1)-dimensional subspace
X n 1  En  and the axis Y  En . Then the boundary of the convex set  S can be
considered as a section of two functions F1: X n 1   Y  and F 2: X n1   Y, determinated
by n 1 arguments belonging to X n 1:  F1 (x1, x 2 , …, x n – 1 )  and  F 2(x1, x 2 , …, x n – 1),
where one of  them is convex and the other concave in relation to the axis Y. These
two functions will specify the hypersurfaces PS1 and PS2 representing the two parts of
boundary of  the set  S: Fr(S). Let us specify the close and a convex region XS Xn1 so
that for xXS the condition will be satisfied: F2(x)=F2(x), where: F2(x) is a concave
function and x = (x1, x 2 , …, x n – 1). Let besides XZ   XS , where XZ = PrX(Z) is the
projection of the set Z on the subspace X n 1. The set  Z will have the following
property:

Property 2.1. The set Z  is connected.
P r o o f. Since by condition the set  Z  is specified in the following way:
Z = { z : z   Hz   Fr(S); Hz   Int(S) = }, then Z  C z = 

i
 [ z

iH ], where Cz  is
the supporting cone to S with an apex at the point x0  S, and [ z

iH ] the half spaces
of the hyperplanes z

iH  Hz, [5]. Obviously the set C z  will be unlimited, close and
convex (since [ z

iH ] are convex and close sets: z
iH  [ z

iH ]). In the region
XZ  XS , the boundary of  S – Fr(S) can be defined analytically, by the concave
function F 2(x), which is obviously continuous for x  XZ , i. e. Fr(S) = {x = (x, y):
xXZ , y = F2(x)} will be a connected set in the region  XZ , where XZ  is a connected
subset of the metric subspace Xn1. Since Fr( Cz) can be represented in the following
way: Fr(Cz) = 

i
 [ z

iH ], i = 1, 2, … , and by condition zi Fr(Cz), then Z  Fr(Cz).
But by condition, we also have: zi  Fr(S)  Z  Fr(Cz)  Fr(S)  . It is clear that
since Cz = zC  and S = S  are connected sets, then Z will also be a connected set (since:
Z  zC , Z  S ) and in this way Property 2.1 is completely proven 

Let us define by means of the set Z, the set representing the hypersurface
Pz  PS2, specified in the region XS  Xn1 in the following way: Pz = {xz {x, F(x)}:
F(x)  F(xa) + (1) F(xb); xa, xb  XZ  XS}, where: [xa, F(xa)] = za  Z, [xb, F(xb)]
= zb  Z; x = xa + (1 )xb,  = [0, 1]. If the set Pz   is denoted by P, then for the
projection of  this set on the subspace  Xn1,  the  following property will hold:

Property 2.2. The projection  PrX(P) of  P on the subspace  X n1  is a convex set.
P r o o f.  Let us consider again the cone Cz = i

 [ z
iH ]. Since [ z

iH ] are convex
sets then C z  is a convex set too. It is clear, that P  Cz, since P  S  and S = S Cz.
Along with this hypF2(x) is a convex set, because by condition F2(x) for x  XS is a
concave function. Let us take two points xa, xbXZ  XS. Then for x = xa + (1)xb,
 = [0, 1] we will have: F(x)  F(xa) + (1 )F(xb)  x = [x, F(x)]  PCz.
Since these conditions are fulfilled for every projection x of the point x, where
{x} hypF(x), then the set {x} = PrX (P) is obviously convex and Property 2.2 is
completely proven 

If  we juxtapose the sets P and  Z,  then Z  may be viewed as a contour set of  P,
according to the following definition:

Definition 2.1. Let a set G  be given as well as its subsets: A, B and C   G. We
will call C a contour set of  A and B (for shortness  contour of  A and B), if  these sets
fulfill the following conditions: 1) Fr(A) = C = Fr(B); 2) The set G \ C consists only
of  two sets: Int(A) and Int(B), i. e. A–B– = G.
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From this definition the following property of the contour C can be derived [3]:
each arc �ab , defined by the points aInt(A) and  bInt(B)  will be such that �abC,
or which is the same:  ( �ab C  ) = , where an arc is each set, which is
homeomorphous to the close interval [0, 1]. Then for Z,  we can prove the following
property:

Property 2.3. The set  Z  is a common contour of the sets P and sP , where: P,
sP  PS2  and Ps = PS2 \ P ; P = P , Ps = Int( sP ).

P r o o f.  Let us consider the hypersurface P   PS2   in Fig. 2 and  denote its
projection on the subspace X n1 in the following way: PrX(P) = Xp. According to
Property 2. 2, this projection is a convex set, for which we have:  Xp  XS.

Fig. 2. The hypersurfaces P,  PS  and PS2  and their projections on the subspace X n 1

Since XS may be chosen so that, X p  Int(XS), where X p   is a close set because the
set  Z participates in the definition of  P, from where: Fr(Xp) = XZ = PrX (Z): Fig. 2,
then  X Z   Int(XS). The set  XZ   will be a connected set, because it is a boundary of the
convex set Xp. Then, for each of its points xZ  XZ  there will be a surrounding area
O(xZ) XS  such that O(xZ)  Int(Xp)   and O(xZ)  Int(Xs)  , for Xs = XS\Xp. If
in this surrounding area we take two points  xa, xb  O(xZ), xa, xbXZ, where
xa  O(xZ)  Int(Xp), and xb  O(xZ)  Int(Xs), then the arc � bax x (xZ 

�
bax x ),

determined by these points, will obviously cross XZ in the surrounding area
O(xZ):� bax x XZ = xZ. Since for each point xZ XZ  we can construct such a surrounding
area with the same properties, then according to previous definition, the set XZ will
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be a contour of Xp in the space Xn1. Obviously, for the concave hypersurface PS2 =
[xS, F(xS)], xS  XS, a uniquely reversible mapping F will exist: PS2   XS   such that
each point of  the hypersurface PS2 will correspond to a certain point of the set XS and
vice versa. Let us specify the set Os(xZ): Os(xZ) = O(xZ)  XS = O(xZ)  (XS\Xp) =
[O(xZ)  XS] \ Xp = O(xZ) \ Xp; (O(xZ) XS) and the image F[Os (xZ)]:

F[Os(xZ)] = F[O(xZ)\Xp] = F [O(xZ)] \ F(Xp) =  F [O(xZ)] \ P  .

Since Os(xZ)  Xs, then F[Os(xZ)] F(Xs) = Ps, where Ps = F(XS)\F(Xp) = PS2\P.
If we come back to the  points xa  and xb, then xa  Xp  F(xa) = xaF(Xp) = P and xb
 Xs  F(xb) = xb  F(Xs) = Ps. Since the points  xa  and  xb are chosen in such a way
that xa, xb  XZ, then  xa ,xb  Z  and from the condition PS = PS2 \ P  it follows that
xa  Ps, xb P. Let us define in the space En  the arc � bax x  = F(� bax x ). From the
condition xZ  � bax x  we will have F  (xZ) =  z  � bax x , i. e. this arc will contain a
point of the set Z  � bax x  Z , where xa  Int(P) (because xa  Pxa  Z =
Fr(P), P = P– ) and  x b  Int(Ps) (because Ps = PS2\ P  is an open set). This means, that
the arc � bax x  will fulfill the condition of Definition 2.1. and taking into account that
for each point of the set  Z  such an arc can be defined, then according to this definition,
Z will be a common contour of the sets P–  and P–s. In this way Property 2.3. is completely
proven  

By means of  the contour Z, we can represent the two sets P and Ps as covers
compounded by arcs. Let us take two points za  and zbZ and give the line Lab  P
starting at point za  and ending at point zb: Lab() = [x , F(x)], where x = xa +
(1) xb,  = [0, 1], xa = PrX (za), xb = PrX(zb). Obviously, each such line Lab(), will be
homeomorphically represented on the segment line baz z = (x, F), where F = F(xa)
+ (1) F(xb), and so on the close interval  0    1, i. e. Lab() will be an arc in  P.
For the connected set Z  we will have an unlimited number of pairs of points zi

a and zi
b,

whose arcs LiP will form a cover of  the set P [6; 7, Vol. II.]: P =
=1

i
i

L

 = Lp. Since

each arc begins at some point  zi
a  and ends at some point zi

b, where zi
a  and zi

b  Z  (Z
= Fr(P)), then  Lp  and P  will also be compact sets, whence we will call P an internal
set in relation to the contour Z.

By analogy we can determine the arcs  Lcd   Ps  beginning at point  z c  Z  and
ending at point  xd, where xd  = [xd, F(xd)], xd  Fr(XS)  Xn1,  i. e. the xd is an end
point for the region XS, in which the hypersurface Ps  PS2 is defined. Such pairs of
points will also be unlimited in number and we can form the covering of Ps of their

arcs Lj = Lcd  Ps, in the following way: Ps =
= 1

i
i

L

 = Ls. In contrast to Lp  the covering

Ls may be continued [7, Vol. I.]. Setting the regions XS  in the following way:  XS
1 XS

2

 …  XS
m = XS   (in the space Xn–1)  we will obtain in the space E n a sequence of

embedded covers: LS
1  LS

2   …   LS
m = Ls , where Ls = Ps  for the region XS, i. e. if
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the region  XS  is not a compact set in  Xn1  then  Ls and Ps also will not be compact sets
in En (unlike P). Because of this we will call the set Ps external set toward the contour
Z. For this reason, it is clear that the contour Z  will divide the hypersurface PS2
(considered as a set) in to two subsets – P  and  Ps which will be two and only two
components of the set PS2\Z, where: Fr(P) = Z = Fr(Ps ).

Let us define in the space En  the set Hp, compound of  the subset of  the supporting
to S  hyperplanes in the following way:

Hp  = {Hp  {xp}: {xp}  P ; xp = Hp  Fr(S)  ,  Hp  Int(S) = }.

Then for this set we can formulate the following properties, which will be further
used in the research:

Property 2.4. Let for the hyperplane  Ht  in the space  En  the following conditions
be satisfied: Ht Fr(S)   and H t Int(S) = . If the axis Y intersects
Ht in the point  xt

y = ( 0, yt)  ys  yt   y0, where for P  Fr(S): xs = (0, ys) = P  Y  and
x0 = (0, y0)Y, (x0 apex of the cone Cz, x0  S), then for the set of points t = Ht  Fr(S)
the inclusion t  P will be valid.

The following property will be opposite to Property 2.4:

Property 2.5. Let Ht  En be a supporting hyperplane to the compact set S so
that with the exception of the points {xt}= t = Ht  Fr(S) will be fulfilled the condition
S  [ tH  ], where [ tH] is the negative half space of  the hyperplane Ht. If  the set
t (which can consist of only one point xt) is such that t  P, then for the cross point

y
tx = (0, yt) = Ht  Y we will have: ys  yt  y0, where xs = (0, ys), ys = P  Y; P Fr(S)

and x0  = (0, y0)Y, x0  S (x0apex of the cone Cz).
Accounting Property 2. 4 we can formulate and prove the corollary:

Corollary 2.4.1. If  for the compact set S  En two supporting cones Ca and Cb

are given to it, which apexes x0a  = (0, y0a) and  x0b = (0, y0b),  belong to the axis Y and
such that  ys  y0a  y0b, where xs = (0, ys),  ys = Pa  Y; Pa  Fr(S), then for the set Za  of
the supporting points of the cone Ca to S and Pb the internal set of the set Zb, where
Zb is the set analogous to Za (for the cone Cb)), will be valid the condition: Za  Pb.

P r o o f.  Let the hyperplane i
aH  be such that i

aH  Hza,  i. e. xoa
i
aH , where:

Hza = {Ha xoa: Ha  Fr( S)  , Ha  Int(S) = }. Then for the set i
az  = i

aH 
Fr(S) according to Property 2.4 we will have i

az   Pb. Since the set Za  is a connected
set:

Za = { i
az : i

az  i
aH   Fr(S)  ; Hi

a  Int(S) = },

then it can be defined in the following  way: Za = 
i
a

i
z , from where directly the

condition follows:  Za  Pb and Corollary 2.4.1 is completely proven  
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3. Investigation of the problem in the  Hough space Ln

Let in conjunction with Hz  and Hp, the sets HS2  and Hs, are considered, the compounds
of all hyperplanes, which are supported to the hypersurfaces PS2  and  Ps:

HS2 = {HS2: HS2  xS2, xS2 PS2; HS2  Fr(S)  , HS2  Int(S) = };
xS2XS,

xS2 = [xS2, F(xS2)], and Hs = {Hs: Hs  xs,xs Ps; Hs  Fr(S)  , Hs  Int(S) = }.
For the images T(Hz), T(Hp), T(HS2) and T(Hs) of these sets in the space Ln, the

following theorem will be correct:
Theorem 3.1. Let in the space Ln the sets Hz, Hp and Hs HS2  En are mapping:

H z = T(H z),  H p = T(H p), H S2 = T(HS2), H s = T(H s). Then the set Hz will be a
common contour of the sets Hp and Hs in the space Ln, where:
          Fr(Hp) = H z = Fr(H s), and HS2  = Hp   H z  H s.

P r o o f: See Appendix A.
From Theorem 3.1. we can formulate the corollary:
Corollary T.3.1.  The contour Hz  separates  the sets Hs = T(Hs) and Hp =

T(Hp) in the space Ln.
P r o o f .  The proof is obvious, bearing in mind the condition of  Theorem 3.1.

and  Definition 2.1.
From this corollary and from a Theorem 3.1 it is clear, that since the contour Z

which, in the space En, separates the hypersurface PS2  in two parts external Ps  and
internal P, then the contour Hz  will separate (in the space  Ln

 )  the hypersurface
HS2  in two sets – external and internal too. These sets are  Hs and  Hp  according to
the previous notations in Theorem 3.1. and Corollary T.3.1., but the question: which
of them will be an external and correspondently  internal set towards the contour
Hz, must be considered additionally.

This correspondence is determined from the following statement:
Statement  3.1.  The set  Hp = T(Hp) will be internal and the set Hs = T(Hs) –

external, towards the contour Hz  in the space Ln
  .

P r o o f.  See Appendix B.

4. Conclusion

The theoretical results obtained in the article will be valid for the more common
cases too, where, instead of the set S, two compact, convex and mutually intersecting
sets S1 and  S 2  may be considered.  For example, the set Z :  Z  = Fr(S1)  Fr(S2)  
will be a common  contour for both hypersurfaces 1

2sP  and 2
2sP ,  which are the

boundaries of the sets S1 and S2 . The contour Z will separate each of these hypersurfaces
into two subsets – external ones: 1

2sP , 2
2sP ,  and internal ones: P1, P2. In this case the

connectivity of the set Z  is proved analogously  to Property 2.1, since by condition
S1  and  S2  are closed and convex (and so connected ) sets.
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Theorem 3.1 as well as Statement 3.1 will be also valid for the cases of two
crossing one another and convex sets S1 and S2 . From this, we conclude that the
obtained results preserve in this aspect their universality, in spite of the simpler
theoretical presentation of  the simplified task considered in this paper.

The results of this paper are applied to investigate the learning process of a
classifying neural network (NN). The coefficients of the NN, which are subject to the
optimization, form the Hough space. Some basic properties of this space are identical
with the properties of the object space. Their usage can substantially facilitate the
theoretical researches of the NN in many different aspects.

Appendix  A

P r o o f   of  Theorem 3.1. Let us suppose that in the space Ln , the set Hz  is not a
contour in HS2, i.e. the set  Hz  does not separate HS2 in two subsets Hp and  Hs
. Then, since H S2 is compound of  the connected sets H p , H z   and  H s  (the
homeomorphic transforms T of  the connected sets are connected sets too), then
HpHs will be a connected set, in which an arc � bah h  can be given  such that, the
points ha and hb are not separated from  the set Hz  i.e.: Hz  � bah h =  . Let us give
in the set HS2  two sections  H1  = H1  HS2    and H2 =H 2   HS2   , of the
set HS2 with the hyperplanes H1 = {h1: h1 = (c1, L1), L1 = const} and H2 = {h2: h2 =
(c2, L2), L2 = const}, i.e.H1| |H2| |C n1, where C n1 is (n–1)-dimensional subspace in
Ln. If we choose L1 and L2 such that L1 > sup{hz (c, Lz): hzHz} and L1 < inf{hz (c, Lz):
hzHz}, where L1 > L2 and the points ha  and hb are such that: haFr(H1), hbFr(H2),
then for the reverse transformations of  these points in the space En we will have:
T1(ha) = Ha  T1[Fr(H1)] = H1 and T1 (hb) = Hb  T 1 [Fr(H2)] = H2. In the given
case, the sets H1 and H2 will be the borders of  two cones x01 = (0, y1)Y and x02 = (0,
y2) Y, for which, by condition we will have y1 > y2, where y1 = L1 and  y2 = L2. Besides,
from the two conditions L1 > sup{hz} and  L1< inf {hz} it is clear  that for each hyperplane
Hz where Hz  T 1 (Hz) = Hz, the point of  its intersection with the axis Y:  x z0  = (0,  yz)
= Hz  Y will belong to the following set: {xz(0, yz): y2 < yz < y1, yz = Lz}. {xz(0, yz):
y2 < yz < y1, yz = Lz}. Let us denote the sets, which are composite of the supporting
points of the hyperplanes {H1} = H1 and {H2}= H2 to the set S, with {xa}= Za and
{xb}= Zb.

Similar to the set Z, the sets Za and Zb  will be contours, everyone of them
separates the hypersurface PS2 in  two parts – external and internal, with respect to
the corresponding contour. Let us  denote with Pa  the nternal set, in relation to the
contour  Za and with Pb the external set, in relation to contour Zb . Then according to
Corollary 2.4.1 we will  have  P  Pa , from which: Z   Pa and  Zb  P (P is an internal
set to the contour Z). Since H 1 may be chosen such that for H 1 the set
Za will satisfy the condition: Za  Z = , then Z  Int(Pa)  and evidently

aP = PaZ a  will be a closed neighborhood of the set Z. Since Z  is a contour and it is
contained in aP ,  then Z  will separate this set in two parts – internal P and external

'aP = aP \ P , from which: P Int(Pa). Then from the conditions aP  PS2 and P  PS2,
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follows the evident inclusion: PS2 \ Int(Pa)   PS2 \ P, i. e.  s
aP  Ps, where s

aP  =
PS2\Int(Pa) (in this case the formula: C \ (AB) = (C \ A) \ B C \ A is used, where for
AB: C \ (AB)= C\B  C \ B  C \ A ). From the inclusion Za 

s
aP , it follows:

Za   Ps. Since Zb  P, then the contour Z  evidently will separate (besides that 
strictly) the two sets Za and Zb. It is clear that as soon as Ha  H1 and Hb  H2, then for
their supporting points {xa}= Za  and {xb}= Zb to the set S, we will have: {xa} Ps  and
{xb} P.

Let us consider again the arc � bah h  in the space  Ln. Since this arc by definition,
is a connected set, then for each point ht 

�
bah h  we will have: lim

i  
|hi ht| = 0,

where h1, h2, … , hi, … � bah h . Then in the space E n, in view of  homeomorphic
transform T, we will have for i = 1, 2, … , : lim

i  
| T 1(hi)  T 1(ht)| = 0   Hi   Ht,

from where for the supporting points xi and xt of the hyperplanes Hi and Ht to the set S,
we will obtain: xi  xt (which directly follows from the evident equation: Hi  Fr(S)
= Ht  Fr(S), for Hi  Ht and so from the fact, that in every point  of the convex set S,
there exists a supporting hyperplane to it). This means, that  T1(� bah h ) = Hab will be
a set of supporting hyperplanes to S, which gives in En a connected set of their
supporting points: Xab={xt: xt Ht Fr(S)  , Ht  Int(S) = ; Ht  Hab}. But by
assumption the arc � bah h  Ln does not contain points of the set Hz = {hz}: {hz} 
�

bah h = ,  i.e.
T1(Hz)  T1(� bah h ) =   Hz Hab = .

But as soon as Hz Hab = , then no hyperplane Hz exists  such that, the point
xz Hz will fulfill the condition xz  Xab, where xz(xz  Z) is a supporting point for the
hyperplane Hz to the set S. Evidently, the connected set Xab is (or in the more common
case  holds) the arc � bax x , where xa  Ps, xb  P and should fulfill the condition:
�

bax x  Z  = . This condition will contradict to the Property 2.3, because Z is a
common contour of the sets Ps and P, which means that the initial assumption:
Hz � bah h = , in the space Ln, is incorrect  i.e. the condition Hz  � bah h  
will be fulfilled. Then according to Definition 2.1, the set Hz will be a common
contour of the sets Hs and Hp in the space Ln, which completely proves Theorem
3.1. 

Appendix  B

P r o o f  of  Statement 3.1. Let in the space En, the axis Y crosses the hyperplane P in
the point x0 = (0, y0)Hz, which defines the hyperplanes {H0}, supporting to P in this
point: {H0} = H0 ={H0  En: H0 xo; H0  Fr(S), H0 Int(S) = }. The set H0 may
consist of only one hyperplane and evidently: H0 Hp. The transform T(H0) in the
space Ln will be the set H0 (which may consist of  only one single point too). Since
in En all the hyperplanes {H0} cross the axis Y in any of the same points x0 = y0, then
the image T(H0) = H0 in the space  Ln, according to Lemma 1 [8], will be a set in the
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hyperplane H0, which is parallel to the subspace C n1, bearing in mind the equation:
x0 = (x1 = 0, x2 = 0, …, xn–1 = 0) = 0. Besides that, by condition we have:           x0 = P
Y    x0  P. This means that in Ln we will have H0  HS2 H0 = H0  HS2
and since H0  consists completely of  supporting hyperplanes to P,  then:
H0  Int(HS2) = ,  i.e. the set H0  will be a part of the hyperplane  H0, supporting
to HS2, which is parallel to the subspace Cn1. From this it follows, that H0 consists
completely of the points of the extremum {h0} = {h0: h0  = [c0, f0 (c0)]: f0(c0) = min

c
f(c)},

where f(c) is the function specifying the hyperplane HS2, f0(c0) = L0, (h0 = (c0, L0)).
Let us consider the set Hz  = T(Hz) too. Since the set Hz  En is composed of the
supporting hyperplanes Hz, setting the boundary of  the cone  with an apex at the
point xz0  = (0, yz0)Y(xz0P), where for each hyperplane Hz  Hz we have Hz  Y = xz0,
then the set Hz  in the space Ln will be the cross-section: Hz = z

'H HS2, which is

in the hyperplane z
'H , parallel to the subspace Cn1 and situated in this subspace at

a distance Lz = yz0. It is clear that for the convex function f(c), the set Cz = {cz C
n1:

f(cz)   Lz}= PrC(Ip) will be convex too, where Ip is an internal set related to the
contour Hz  Ip. From the condition, which determines the set Cz, i.e. L0 < Lz, for
every extreme point c0 we will have: c0 Cz  {c0} Cz.

Let us consider a given point 0
*c  in the set of the extreme points {c0} and define

the intercept of a straight line 1 2c c  0
*c  with borders  the points c1, c2Fr(Cz).

Obviously (in view of the convexity of the set Cz) will be obtained: 1 2c c  Cz.
Then, bearing in mind, that the function f (c) is convex, for the intercept of the straight
line 1 2c c  the inequality:  f  [c1 + (1)c2] f(c1) + (1) f (c2) may be written,
where by condition: 0

*c = *c1 + (1*)c2, * { :   [0, 1]}. It is clear, that the
intercept of the straight line 1 2c c will correspond to the intercept of the straight line

1 2h h   epi[f (c)], for   (0, 1) and h1 = [c1, f (c1)], h2 = [c2, f (c2)], which will define
the arc �1 2h h   0h*  = [ 0

*c , f ( 0
*c )], where �1 2h h = { 12h  : 12h   = [c, f (c)],   [0, 1]},

for c = c1 + (1)c2. Since for the border points h1 and h2 we have h1, h2 Hz

(because: c1, c2  Fr(Cz)), then �1 2h h  Ip and obviously 0h* Ip (more accurately:

0h*Int(Ip), because 0h*Hz). Then the set of the arcs 
�

1 2i i
i

h h , with border points
h1i and h2i will form a covering of  the internal set Ip, towards the contour Hz :
�

1 2i i
i

h h = Ip.
Let us take an internal random point hi  Int(Ip) and define the arc �0 ih h* , for

which we obviously have: �0 ih h* Int(Ip), i.e.  �0 ih h*  Hz = . Then T1( �0 ih h* )=

0i
*H will be a set of hyperplanes, whose supporting points will not cross the contour

Z in the space En,  i.e.  0i
*H  Int(H p) or 0i

*H   Int(H s).  Since for

0H * = T1 ( 0h* )  we have by condition: 0H *  H0  and H0  Int(Hp), where 0H * H0,
then for the whole set 0i

*H  we will have  0i
*H  Int(Hp) . Obviously for their images
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in Ln we have �0 ih h*  Int(Hp), i.e. �0 ih h*  H p I p  . Let us assume that
Hz Hp in the space En, from where in  Ln  we have: Hz    Hp. Then, for the set  Hp

there will exist the arcs �1 2i ih h , each of which contains the point: 0h* : 0h* �1 2i ih h
and it is such that �1 2i ih h  Hp, which means that for Hp we can form the covering:
�

1 2i i
i

h h = Hp. Since for the border points 1 ih and 2 ih we have (by condition):

1 ih , 2 ih Hz, then obviously (as was specified above) the arcs  
�

1 2i i
i

h h will also
form the covering of the internal set Ip, toward the contour Hz:  

�
1 2i i

i
h h = Ip ,

from where it immediately follows that Ip  =  Hp ,   i.e. Hp  is an internal set toward
the contour Hz. It is clear, that if the contour Hz  partitions the hyperplane HS2,
only into two sets Hs  and  Hp , in the space  Ln

 , then for  Hs we have the equation
H s  = H S2 \ Hp which means, that H s will be an external set in relation to H z,
where Hs  = T(Hs). In this way the  Statement 3.1 is completely proven 
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