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Abstract: An automatic system identification cycle (ASIC) for generation of
multivariate dynamic models is designed. The reasons for modeling some multiple
input multiple output (MIMO) systems without human intervention are discussed.
The problems arising during the identification due to removing the manual actions
and using unsuitable datasets are investigated. Appropriate solutions are suggested.
The implemented preprocessing techniques, the set of model types and structures and
the set of estimators are described. The automatic MIMO identification approach is
used for modeling of market dynamics. To decrease the number of factors in the
considered MIMO system, a procedure which determines a subset of only significant
input-output relations is proposed. The MIMO models are compared with another
dynamic approach, where the demand model contains a multivariate static and single
input, single output (SISO) dynamic parts.
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1. Introduction

Many real phenomena are related to each other and it is often hard or impossible to
isolate particular signals relation from the whole set of interacting processes. On the
other hand, taking into account the multivariate character of such kind of systems
leads to more accurate representation of their behavior. In this paper an identification
approach, based on a decomposition of the MIMO structure to a set of multiple input
single output (MISO) subsystems is considered. The enormous number of inputs and
outputs makes difficult the human intervention during the MISO models determination.
To obtain a model, if there are hundreds of observed processes, it is necessary to
avoid the manual actions and to have an automatic models generation.
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The augmentation of the system inputs and outputs leads to increasing of the
computational burden of the identification procedure. Also, as the number of models
parameters grows, the subsequent procedures employing the model become more
complicated. And finally, accounting for inputs that have no significant effect on the
system behavior, may deteriorate the models accuracy. In order to decrease the
influence of such problems, it is reasonable to determine the number of significant
input-output relations before running the estimation procedures and then to take into
account the resulting subset of input signals in the MISO models.

In some applications apriori information is not available or it is not enough to
make assumptions for the correct models types and structures. A proper practical
solution, when it is not possible to deduce initial mathematical descriptions, is to
choose simple relations between the inputs and outputs. This is especially true for
time-varying systems where an accurate model for a given time period is not necessary
to be applicable for another period of time. In such case the convergence rate of the
estimated parameters may not be enough to maintain a suitable representation. Because
of these reasons we designed automatic system identification cycle (ASIC), which is
based on linear regression models. The theory is well developed for these
representations and it makes them easy to be applied in many practical cases. By a
manipulation of the factors in the regression functions these models can also describe
some types of non-linear behavior [10].

An additional requirement for ASIC is to have an open structure with respect to
the sets of models types and structures and the set of estimators. If any apriori
information is available, it may be useful to specify these sets in advance.

Sometimes the accomplishment of real experiments for the aim of system
identification is connected with significant economic losses. Hence, it is important to
take into account the available data for the system behavior and not to assign any
additional experiments. Therefore ASIC should be able to manage with problematic
observations, such as unrealistic values, missing data, short observation intervals or
when the system is not excited enough. As the manual actions are removed from the
identification process, it is necessary to design initial tests upon the datasets that
reveal such problems. The irregular data has to be isolated and the datasets to be
automatically repaired by appropriate preprocessing techniques in order to decrease
the influence of such data records. When the problematic or missing data is replaced
by posteriori determined values, an error remains, which in some cases becomes
significant. To account for this kind of disparity and to provide a robust solution,
suitable estimators modifications and their numerically stable realizations are used.

2. Data preprocessing

ASIC starts with an observation of the data size and quality. If the length of the
observation interval is less than a certain limit, ASIC is stopped. This limit depends
on the signal to noise ratio and the concrete model type and structure. Also the input
processes are tested for satisfaction of the persistency of excitation condition. The
improper inputs are removed from the consideration. After these checks, the following
data preprocessing techniques are run:

Filling empty records – introducing values in the dataset, if there is missing
data;
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Resampling – if the sample time is not constant, the input-output data and the
time instants are updated in such way that the time intervals between two observations
are constant (this action is added to preserve the correct work of ASIC for the marketing
system, described in section 4);

Realistic values check – it consists of a shaving procedure, which determines
the artifacts (spikes) in the datasets and replaces them by linearly interpolated values.
Also, if apriori data is available, additional restrictions on the data can be defined.

Detrending and deseasonalizing – a linear trend and seasonality (for the market
identification) are identified preliminary and then removed from the available
observations. Subsequently the obtained model from ASIC is combined with the trend
and seasonality models.

Scaling – the datasets are scaled by their standard deviations, so that the modified
processes have unit variances.

The missing input-output observations may cause problems, which in some cases
lead even to impossibility to accomplish the process of identification. In industry
such cases are due to incorrect sensors work or problems with transferring the data.
In  market systems it is possible that a product is not on the market for a period of
time; or the lack of data may be caused by database failures.

The MIMO identification requires complete information about the system
behavior for the whole observation
interval. If there are periods of
time when parts of the
observations do not exist, some
values should be assigned. This
incomplete information is a
serious problem if the data length
is short and experiments for the
purposes of identification cannot
be made. Thus it is important to
take into account all the available
information about the investigated
behavior, but not to skip periods
of time when the data is not full.

To discover the spikes in the
data, we  apply   the following  shaving procedure, based on [19]. At first a low-pass
filter determines the trend ktx ,  of the investigated process kx . After that, the standard
deviation dtx  of the detrended signal ktkkdt xxx ,,   is computed. It determines
the upper and lower limits, which distinguish the realistic values from the artifacts in
the data. The range between these limits is defined as 

dtxn , where n  is an initial
parameter of ASIC, which is preliminary adjusted. If the processes distribution is
known, n  can be determined appropriately. For instance the confidential interval

dtxktx 3,  encloses 99.73% of the Gaussian distribution and the upper and lower
limits of the process kx  could be chosen as

                           upper, , 3
dtk t k xl x   , lower, , 3

dtk t k xl x   .
After the determination of these constraints, the process is checked for spikes. If

incorrect values are found outside the limits, they are replaced by linear interpolated
values (Fig. 1).
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Fig. 1. Removing of unrealistic records
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For instance, wrong records in the retail industry may be due to incorrect data
aggregation.

The values added in the dataset only to provide appropriate work of the estimators
are accounted with lower weight during the parameters estimation and cross effects
determination.

3. MIMO model determination

There are different approaches to obtain MIMO representations. One of them is
subspace identification [15, 17, 18], which is a powerful tool for modeling of
multivariate systems. The subspace methods estimate state space models. They provide
good initial estimation of the system behavior which does not depend on initial
conditions. Usually to improve the estimates, these methods are combined with another
procedure (based on minimization of the output error or the prediction error). Another
way is based on estimation of regression models. The SISO system identification is
considered in details in [10]. The presented ASIC is related to the second approach,
since it is a continuation of [7], where we reduce the dynamics of a multivariate
system to sets of MISO static and SISO dynamic models. A possible way to obtain
MIMO representation of given dynamics, is to use one MIMO regression model, but
in this case a problem connected with the choice of the model structure occurs. Also
numerical problems can arise, which is a serious disadvantage, when the identification
is applied automatically. To avoid this, it is possible to run l  times the estimation
procedure for MISO models that gives the relation between a given system output
and all input processes. This approach avoids or decreases the influence of the problems
above mentioned, which is the reason the MISO identification to be implemented in
ASIC.

3.1. Set of estimators

The estimation procedures that we implemented in  ASIC are multivariate versions of
the following algorithms

Least Squares (LS);
Generalized Least Squares (GLS);
Extended Matrix Least Squares (EMLS);
Weighted Least Squares (WLS);
Instrumental Variable (IV);
Prediction Error (PE) applied for Auto-Regressive Moving Average models

with eXogenous input (ARMAX) model;
PE applied for Output Error (OE) model;
PE applied for Box-Jenkins (BJ) model.
Only the LS estimator for MISO models determination is presented in details

below. The other estimators are deducted in a similar way. The standard LS minimizes
the sum of squared residual, which accounts for the presence of measurement noise,
unfitness of the model to the real system behavior and the influence of the environment
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on the system dynamics. The model related to j-th output estimating by LS, is
MISO-ARX (Auto-Regressive model with eXogenous input)

(1)    1 1 1 1
, 1 1, 2 2, , ,( ) ( ) ( ) ... ( )j j k j k j k jm m k j kA q y B q u B q u B q u e        ,

where kiu ,  for mi ,1  and kjy ,  for lj ,1  are the system input and output
respectively, kje ,  is the residual process, 1q  is the unit time delay operator,,

]1;0[  Nk , where N  is the length of the observation interval and

                       1 1
,1 ,( ) 1 ... j

j

na
j j j naA q a q a q    

and

                                    1 1
,1 ,( ) ... ji

ij

nb
ji ji ji nbB q b q b q   

are the model polynomials. The parameter vector jmjj nbnbna
j

 ...1R  is

1 2,1 ,2 , 1,1 1,2 1, 2,1 2,2 2,
T

,1 ,2 ,

[ ... ... ... ...
... ] .

j j j

jm

j j j j na j j j nb j j j nb

jm jm jm nb

a a a b b b b b b
b b b
 

The structure parameters jna  and jinb  are the degrees of the model polynomials.
To simplify the explanation in this section, we will skip the subscript j, but the

presented models will be related to the j-th output.
A generalization of the regression model for all observations leads to the following

matrix form
(2)                             ey   ,

where the column vectors y  and e  contain the last nN   ( ),max( nbnan  ) output
observations and the corresponding residuals and dim nNR  is the data matrix.
The LS criterion related to the j-th output is

                             
Tmin minJ e e 

 , subject to (2).

Actually J  is the 2-norm of the residual vector. So the LS criterion becomes
(3)                  2

2||||minmin yJ  





,

where the residual e  is skipped from the consideration. The standard LS solution is
(4)                     yTT  1)(? .

A generalization of LS is obtained by introduction of different weights for the
residual values in the criterion. This is the idea of WLS. The criterion corresponding
to a given MISO model is

   
2||||minmin WyJ 





 .

The matrix ( )N n N nW   R  is diagonal and contains the residual weights. The
WLS solution is

        WyW TT  1)(? .
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The properties of WLS depend on the choice of the weighting matrix W . For
instance, an optimization procedure, which minimizes the variance of e , when the
residual is not white noise, is considered in [18]. Also WLS is suitable for time varying
systems. Usually in such cases W is diagonal, with entries that decrease exponentially.
WLS is included in the set of estimators where different variants of  that correspond
to concrete forgetting factors are realized.

If the residual is a color noise (in this case it will be denoted as eck), the resulting
estimates are biased. One way to deal with this problem is to modify (2). Another
way is to expand the model with a filter, which represents the residual as filtered
white noise. The remaining algorithms are based on the above approaches and provide
a non-shifted solution for the cases of color residuals.

The IV algorithm provides unbiased estimates by an instrumental matrix V. It is
determined in such a way, that its elements are correlated with the regressors, but do
not depend on the color noise eck. The relation between a given output and the system
inputs in IV is modified as

                      T T T T
cV y V θ V e V θ e      .

When the entries of the instrumental matrix are not correlated with ec, the process
e = VTec   has the character of a white noise. In ASIC, a four-step IV [10], estimating
MISO-ARX models is realized, where V depends on the past input data.

The conversion of the color error ec into a process, which has white noise
characteristics in GLS, is made by the following SISO forming filter

                                 1 1
, ( )c k ke D q e  .

The resulting extended model, related to a given output is MISO-ARARX (ARX
with Auto-Regressive noise model).

1 1 1 1 1 1
1 1, 2 2, ,( ) ( ) ( ) ... ( ) ( )k k k m m k kA q y B q u B q u B q u D q e          .

GLS is an iterative procedure, where LS is running two times at each iteration.
First it is applied to the forming filter i.e. to estimate the parameters of D(q1) and
after that LS is used to estimate A(q1)  and  B(q1)  of the MISO-ARX model.

EMLS implemented in ASIC estimates MISO-ARARMAX (ARMAX with Auto-
Regressive noise model). The filter in this case has the structure

                          1 1 1
, ( ) ( )c k ke D q C q e  

and the extended model is
1 1 1 1 1 1 1

1 1, 2 2, ,( ) ( ) ( ) ... ( ) ( ) ( )k k k m m k kA q y B q u B q u B q u D q C q e           .
EMLS is also an iterative procedure, but in contrast to GLS, all model parameters

are estimated simultaneously.
The above methods minimize the general error, which is a linear function of .

The PE methods are non-linear as the prediction error , /( 1)p k k k ke y y    is not linear

in .  The predicted output /( 1)k ky   is calculated on the basis of the past data by a
model with parameters .  If unmeasured processes determined as functions of  ,
take part in the regression vector, then /( 1)k ky  and the prediction error become non-
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linear with respect to the estimated parameters. Let ep is a vector containing the last N
n values of the prediction error, then the cost function is

                                                 T
p pJ e e  ,

which cannot be minimized analytically. Therefore an iterative procedure should be
used for J minimization. In ASIC we applied Gauss-Newton method. The estimate
of  at (h + 1)-st iteration is

(5)                                  1 1
? ?

? ?
h h

h h hH J       .

?hJ  is the gradient of Jat the current iteration and ?hH  is an approximation of its
Hessian. The cost function gradient and the Hessian approximation are

            pJ e    , TH     ,

where dim ( )N n


  R  is a matrix with columns equal to the gradients of epk with
respect  to . The matrix h  is the step size of the optimization procedure, which is
computed at each iteration [4] to improve the convergence speed and the precision of
the iterative procedure.

Three PE methods are implemented. They are deduced for MISO-ARMAX model

 1 1 1 1 1
1 1, 2 2, ,( ) ( ) ( ) ... ( ) ( )k k k m m k kA q y B q u B q u B q u C q e         ,

MISO-OE model
1 1 1 1 1

1 1, 2 2, ,( )( ( ) ( ) ... ( ) )k k k m m k ky F q B q u B q u B q u e        

and MISO-BJ model respectively

    1 1 1 1 1 1 1 1
1 1, 2 2, ,( )( ( ) ( ) ... ( )) ( ) ( )k k k m m k ky F q B q u B q u B q u D q C q e            .

3.2. Estimators modifications
3.2.1. Numerically stable modifications
To solve the estimation problems in the previous version of ASIC [7], QR
decomposition was used. Here, to obtain numerically reliable solution of the above
methods we present an improved ASIC, in which according to [9, 18] the singular
value decomposition (SVD) is applied to the data matrix . The economy size SVD
is

                             TU V   ,
where  is square and diagonal. Taking into account the properties of the orthogonal
matrices U and V , the LS solution becomes

                             1 T? V U y   .
If  has linear dependent columns, the numerical problems can be avoided by

using the above decomposition. Let rank( ) r   and dimr  . Since  is a diagonal

matrix that contains the singular values of i arranged in a decreasing sequence,
SVD applied to can be presented as



1 0

                                   
T

T1
1 2 1 1T

2

0[ ] 0 0
r

r
VU U U V
V
          

,

where the singular values in r are greater than zero. So the modified LS solution
becomes

                             1 T
1 1

?
rV U y   .

If some columns of  are almost linear dependent, this implies that some singular
values of  r are very small. To avoid this, a regularization of the above modification
can be applied if the singular values i  are restricted from below by introducing a low
limit min 0  . Thus r becomes equal to the number of singular values greater than or

equal to min . The condition number  of r is 1 rк   , so the restriction of the
minimum singular value r  provides a well-conditioned matrix r. In accordance to
the definition of , we compute min  as min 1 dк   with d – a desired  maximum
condition number of r. The advantage of this regularization is that neglecting the
smallest singular values, loosely speaking, we take into account only the dominating
part of  and skip the part that leads to ill-conditioned problem.

To achieve numerically stable solution of PE, it is necessary Hto be a positive
definite matrix. It is possible the model to be insensitive to changes in some parameters
and  to be ill-conditioned. An appropriate solution is to use the Levenberg-Marquardt
regularization [14], where TH I       . Here 0   is the regularization
parameter, which decreases when the procedure converges. Such a modification is
implemented in [7]. A disadvantage of the method is the bias, which appears for

0  . Another way to provide stable estimation is to modify (5) again by using
SVD. According to the above considerations, if rank( ) r  for  dimr   after
applying SVD to   we get

                               
T

1
1 2 T

2

0[ ] 0 0
r VU U

V
         

and (5) becomes

                  1 1 T
1 1

? ?h h h
r pU V e      .

It is possible some rows of  to be almost linear dependent. In these cases the
explained above regularization can be applied, which is also presented in [1].
Appropriate way to determine the low limit min  in the Gauss-Newton modification
is to compute it periodically. In this case the dimension of  r depends on the current
values of min  and i. The advantage is that introducing a limit on the smallest singular
value in r, the updating directions in which the problem is ill-conditioned are skipped.
The Gauss-Newton modification starts with min , large enough to provide numerically
stable behavior of the optimization procedure. After minimizing the cost function,

the corresponding estimates opt
?h  should be closer to the optimal ones than the initial
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estimates. Next step is to decrease min , which leads to more ill-conditioned matrix
r. But approaching the optimum, the procedure has better behavior for ill-conditioned
problems. However, with decreasing of min , the presence of uncertainties in the

observations may cause an increase of ?hJ . Therefore the optimization procedure

stops when ?min hJ  increases and the optimal estimates correspond to min that
provides the best fit.

3.2.2. Modifications for problematic and missing data
Important requirements imposed on ASIC is to handle with lack of data and incorrect
records. In some cases the apriori information is not enough to correct the problematic
datasets. So the procedures repairing the datasets are followed by modifications of
the estimation algorithms that account for the presence of the remaining uncertainty
in the data. To deduce the algorithms we took the idea of WLS, where the residuals
are taken into account in J with different weights. This approach is applied to all
estimators. The weights depend on the number of available data at the corresponding
time instant. For every MISO model a diagonal weighting matrix W is introduced
with elements  wii equal to 1, if all records at the i-th moment are available and less
than 1, if part of the input-output data is missing or not precisely determined during
the preprocessing. If no apriori information is known about these observations, then
a suitable way to compute the weights is to decrease wii proportionally to the number
of the absent input data. If  y at i-th time instant is not available, wii= 0. The last rule
is introduced because in this case the difference between the system and the model
output cannot be formed. Thus the numerically stable solution of the modified LS,
which takes into account the presence of wrong or missing data, is

(6)                       1 T
,1 , ,1

?
L L r LV U Ly   .

Here L = W1/2 and the matrices VL,1, ,L r   and  UL,1,  are determined by SVD, applied
to Ly.

Also, the updating rule (5) in the iterative procedure of the PE methods is modified
to account for the missing data. It becomes

 1 1 T
,1 , ,1

? ?h h h
L L r L pU V Le      .

The matrices VL,1, ,L r   and  UL,1 are determined by applying SVD to L and
performing the regularization technique explained above.

3.3. Validation criterion and determination of the models types and structures
To measure the quality of the models outputs we use a modification of Variance
Accounted For (VAF) that is [11]
(7)                  VAF max(0, 1 var( ) var( )) 100%e y   .
This function takes values between 0% and 100%. It increases when the output
predicted by the model approaches the measured output. In ASIC we account the case
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of wrong or missing data not just during the parameters estimation, but also in the
models validation. Here the criterion, denoted by VAFL , depends on the considered
above weights in the following way

VAF max(0, 1 var( ) var( )) 100%L Le Ly   .
This criterion is more sensitive to time instants with full input-output records in contrast
to the moments with absent or incorrect data. The criterion modification is necessary
since when any data is missing, (7) can decrease not because the model is inappropriate,
but because some missing factors are not precisely determined. This causes incorrect
output forecast.

To determine the appropriate models types and structures, the datasets are divided
into two parts. First part containing 2/3 of the available data is used for parameters
estimation and the remaining 1/3 part – for validation.  For each dataset related to a
given product, the set of estimators is run for a set of models with different structures.
The models’ set is defined by the upper limits of the polynomials’ dimensions. They
are assigned before the run of ASIC. The criterion VAFL  is computed for each model
and the MISO representation with maximum VAFL is chosen.

4. Market system

To present the abilities of ASIC for multivariate system identification we investigate
part of the market, which is the relation between the retailers and the customers. The
retailers use the demand models to increase their profit, by optimizing their actions.
Usually these models are static representations of the connection between the retailers’
actions and the market reaction which is the unit sales. The actions are the prices,
discounts, ads and displays of a given product and its cross-related products.

Attempting to find an adequate demand model, the researchers point their
attention at the dynamic character of the market behaviour.  For instance, a dynamic
model for investigation of the effect of the shocks effect is applied in [12]. It is used
in the analysis of the quality of the stock market and to investigate the asymmetric
shocks behaviour. A dynamic demand model is also used in [5] for different commodity
groups (food, alcoholic drink and tobacco, clothing and footwear, energy, etc.).

The sales behavior caused by a promotion is a dynamic process. It is usually
connected with an initial overstocking during the promotion and later, as an effect of
this overstock people start buying less than usual, despite the promotional price. This
effect cannot be accounted by a static model. For that reason dynamic models are
used to represent the system behavior. Thus our aim is to find a MIMO dynamic
demand model, which will be used to forecast units’ sales from a selected group of
products. The products are collected into categories to decrease the system inputs
under consideration.

The investigated system is subject to different kinds of uncertainties. Usually
they have time-varying character, such as the competitors’ activities, weather and
social effects and so on. Also the products relations that are not accounted in the
multivariate structure lead to uncertainty, which is usually time-varying. As many
factors affect the market dynamics and no relevant apriori information is available, it
is not possible to make preliminary assumptions about the concrete mathematical
representations. In the supermarkets, hypermarkets or chains of stores, there are
thousands of products. This makes impossible to apply manual actions during the
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identification. Hence it is completely necessary the models determination to be realized
automatically.

Another important characteristic of the considered system is the time period for
data collection. Usually the observations are stored weekly, so it is not appropriate to
apply special experiments for the purpose of identification, as they would continue
for a long time. Moreover, such experiments can lead to large economic losses. This
means that the available information has to be used in spite of the possible problems
with the datasets.

4.1. Approaches for market dynamics representation

In this paper we compare two kinds of dynamic models. The first kind is a combination
of a static MISO and a dynamic SISO parts mentioned in Subsection 4.1.1. The other
approach is related to a dynamic MISO demand model described in the next subsection.

A big variety of static demand models exists. The static MISO parts are based
on the following models. The multiplicative model [13] has the form

(8)                     0 1 2
1, 2, ,

m ke
k k k m ky e u u u e    , for 1i  .

Here i are the model parameters and ek is the residual. Taking the logarithm of both
sides of (8), the log-log model [16] is obtained given with the following linear relation:
(9)         0 1 1, 2 2, ,ln ln ln lnk k k m m k ky u u u e         .
This model is widely used in practice to represent the effects of the prices, discounts,
advertisements and other factors on the sales behavior [6, 13]. Problems may arise if
ui,k or yk  is zero (then ln 0   ) or less than zero. To avoid this disadvantage it is
possible such observations to be replaced by a small positive value. Another alternative
is to replace ui,k in (8) with ,i kue . The resulting representation is the general exponential
model

(10)            1, 2, ,0 1 2( ) ( ) ( )k k m k m ku u u e
ky e e e e e    , for 1i  .

Taking the logarithm of both sides of (10) leads to the semi-log model which is again
a linear relation:
(11) 0 1 1, 2 2, ,ln k k k m m k kS x x x e         , for 1i  .

Both demand models estimated by ASIC are dynamic. But the way of accounting
for the processes in the models is a combination between (9) and (11). The sales and
the prices are logarithmized, but the discounts (that can be neglected) and the other
retailers’ actions are not modified.

The concrete data is related to chains of stores where the products type and the
possible types of promotions are known in advance. Thus it is possible to formulate
assumptions about the units’ prices and sales. To avoid the problems with negative or
zero observations, we imposed additional restrictions on the data. They are connected
with the following possible cases and assumptions:

 Zero sales are due to the lack of demand, the lack of products in the warehouses
or to database errors. As the products quantities in the stores and in the warehouses
are not taken into account in the demand models, it is assumed that the zero sales are
errors. So these values should be corrected.
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Negative sales appear when the products returned from the customers are more
than the sold ones or to database errors. As the products quality (which is the main
reason to the returned products) is not taken into account in the model, it is assumed
that the negative sales are due to errors and these values should be corrected.

Zero price is due to a promotion or a database error. As the available datasets
are not related to such promotions, these cases are considered as errors and the values
should be corrected. If that kind of promotions is applied, then the zero prices should
be taken into account (for example by replacing them with small positive values or by
modifying the static MISO part).

Negative price is assumed to be database errors and should be corrected.
The above considerations are implemented in ASIC by the following prices and

sales restrictions introduced for all products:

 1price , price 0price price , price 0
k k

k
k k

   ,   1sale , sale 0,sale sale , sale 0.
k k

k
k k

  

Other problematic observations are the outliers, i.e. when the actions remain the
same or their deviation is not sizable, but the sales are changing significantly. These
situations are due to barcode reading errors or if the data collection is performed for
periods that are not exactly one week or if unaccounted promotions are applied only
for customers with loyalty cards and etc. Another case is database errors due to
technical reasons or errors occurring during the process of data aggregation (when a
number of stores is observed). At present the shaving procedure is used to account for
such problematic observations, but it repairs only the outliers that are outside the
upper and lower limits.

The missing data may be due to database errors, but the usual case is the products
to be not on the market for periods of time. Thus to provide appropriate datasets, the
empty records again are filled with suitable values. Actually if a competitive to a
given product is not on the market, normally the sales of the product increase due to
the cannibalization effect. If a compatible cross related product is absent, the sales of
the available product decrease, because of the complementary effect. The resulting
biases in the sales cannot be determined or appropriately accounted by the demand
models. Normally this uncertainty leads to shifted estimates. To obtain in a more
adequate way the models parameters, the modification introduced in Subsection 3.2.2
is used. The modified estimators are most sensitive to the cases where the input-
output data is full. The sensitiveness decreases when part of the observed processes
are not available (the data is not appropriate for estimation of the concrete model
with the preliminary chosen multivariate structure).

These are the main problems and the corresponding assumptions and
solutions. The two dynamic approaches are considered and compared below.

4.1.1. Demand models containing static MISO and dynamic SISO parts
The automatic approach for obtaining the dynamic part of demand models designed
in [7] contains two parts. The first part is a modification of the model of Blatberg-
Wisniewski, which is a multivariate static representation. It handles the factors
mentioned above gathered by the retailers (Fig. 2) and provides an initial sales forecast.
The second part is a SISO dynamic model (more precisely it is a linear regression
model), with input – the difference between the forecasted sales, computed by the
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static model and the preliminary determined baseline product sales. The output of the
regression model is a dynamic correction of the unit sales forecast. The aim of the
representation on Fig. 2 is to determine if the introduced dynamic part would increase
the model accuracy. ASIC designed for identification of the dynamic part of the demand
models is based on SISO representations. The automatic identification procedure,
which is a generalization of this work, is based on MISO regression models explained
below.

Fig. 2. Model related to the j-th product containing static MISO
and dynamic SISO parts

4.1.2. Dynamic MISO demand models

The combination of two kinds of models complicates the analysis of the market
representation and complicates the application of different techniques from the system
theory, such as stochastic observers for optimal sales forecast in the presence of
uncertainties in the data and in the market behavior [2]. Another disadvantage of the

model is that it represents the whole market
dynamics related to a given product by one
SISO regression model.

To describe the system behavior in a
more natural way and to improve the model
accuracy we choose MISO regression models.
The inputs of such a model are all factors,
related to a concrete product sale and the
output is the forecasted sale.

The information about the different
features and displays is accounted by two sets
of flags. Each flag corresponds to a given
advertisement or display activity. Usually
there are several kinds of ads and displays
related to a product.

Sometimes this leads to enormous size
of the parameter vectors. Also the size is very
sensitive to the maximum degrees of the inputs
polynomials 1( )jiB q . To decrease dim( )j ,
we represent the connections between the flags
and the product sales by relations with

1jinb  (Relations 1 on Fig. 3).

 

Static
Model

prices

discounts

feature ads

displays

sales’ sales  Dynamic
Model

baseline sales

sales 

j j

j j j

 
j

j

j

j

...

j

c1

c1

c1

c1

cs

cs

cs

cs

Relations 1

...

Relations 2

Fig. 3. The j-th dynamic MISO product.
The indices of the s significant cross related
products are denoted as c1, c2, …, cs.
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But since the sales dynamics strongly depends on the prices and especially on
the discounts, the effect  of these factors is modelled by relations with

1jinb  (Relations 2 on Fig. 3).

4.2. Cross effects determination method

As above mentioned, the computational burden and the model accuracy depend on
the number of inputs under consideration. Therefore, to improve the ASIC performance
and results, we suggest a cross effects determination (CED) procedure, which is an
automatic approach, assessing the significant cross effects in multivariate structures.
After CED execution, the identification is applied for MISO systems with sub-sets of
only significant inputs. We developed the method for the considered market system,
but it can be applied for other multivariate systems if the assumptions explained
below are fulfilled:

the main effect of the factors continues on few or several samples,
 the inputs have immediate effect on the output (the delay is one sample for

discrete systems),
 the maximums of the input-output cross-correlation functions correspond to

one sample delay.
Actually the significant part of the market dynamics is the promotion effect. To

avoid the case of overstocking, the retailers run the promotions for two or three weeks,
which leads to spikes in the sales for the corresponding periods of time. So the main
effect of the input actions is few or several samples. Since the data is collected weekly,
practically the second assumption is also fulfilled as the time sample is long enough
and the customers’ reaction starts during the first week of the promotion. If there is a
delay, which is greater than one week a generalization can be made taking into account
the place of the global maximum of the correlation functions discussed below.

The idea of CED is based on estimation of the cross-correlation functions between
a given output and the set of input processes. After preprocessing the observations,

the processes ? ( )ijR   are determined, where 1,i m  , 1,j l  and the lag [1; 1]N   .
With ? ( )ijR   is denoted the estimate of the cross-correlation function between the i-th
input ui,k and the j-th output yj,k. To decrease the influence of the random variations in
? ( )ijR  , they are filtered by a low-pass filter. Because of the discretization, one sample

delay exists between ui,k and yj,k, and if they are correlated, then ? (1)ijR  is (or is near)

the global maximum of ? ( )ijR  . Next  ? ( )ijR  are scaled so that the first value of the

processes becomes ? (1) 1ijR  . If   ui,k and  yj,k  are not correlated, the noise component

in  ? ( )ijR   dominates and after scaling, the deviation of ? ( )ijR   for   >1 increases.
After these modifications it is checked if

lower upper
? ( )ijR R R   for  [ , ]a b  and 1 a b N   .
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If the inequality is fulfilled for preliminary chosen a, b,  Rlower and Rupper , then it is
assumed that the corresponding input has significant influence on the output.
Otherwise, the input is considered as not significant and will be neglected. Adjusting
the parameters a, b,  Rlower and Rupper , we can change the number of significant cross
effects.

During the identification, only a subset of inputs is used to estimate the cross
effects. As the sales are most sensitive to the discounts, these processes are used for
cross effects determination. If the discount of a given product has a sizable effect on
the corresponding output, then all retailers actions related to this product are considered
as significant and are accounted in the model.

5. Test, results, conclusions and future work

5.1. Test description

In the previous work [7] it was shown that introducing a dynamic part after the static
demand model leads to significant increasing of the extended model accuracy. Here
two tests are applied. The aim of the first test is to determine whether the modified
estimators, explained in Subsection 3.2.2, provide better results than the standard
estimators. ASIC generating the MISO demand models is applied. In this test real
data are used  from a products category, containing 14 products, where all of them are
not on the market in different periods of time. The data is collected weekly and the
maximum observation interval for modifying the estimators and VAF criterion will
be given in more details in an additional paper.

The aim of the second test is the comparison between the two ASIC procedures
that generate the demand models (described in 4.1.1 and 4.1.2). The procedures are
applied for identification of real market systems, so again we used real datasets. They
contain the input-output data related to 1200 products, collected in categories and
taken from 65 stores.

The maximum polynomials dimensions are important parameters fixed before
the run of both tests. Since there is a requirement the D(q1) polynomials dimensions
for MISO-ARARX models to be few times greater than the other polynomials
dimensions, in this test it is chosen

              max( ) max( ) max( ) max( ) 3j ij j jna nb nc nd    ,

but for MISO-ARARX, max( ) 6jnd  .
To compare the modified and the standard estimators, as well as the two

approaches, the corresponding values of  VAFL are computed and compared. Also (for
the second test) the applicability of each estimator is assessed. Such aposteriori
information can be used to determine the set of estimators that take part in ASIC, if it
is run again for similar datasets.

5.2. Results, discussions and conclusions

The approach based on static MISO and dynamic SISO parts is denoted as “I approach”
and the dynamic MISO approach as “II approach”. In Table 1 the average values of
VAFL  are compared for both standard and modified estimators, obtained by II approach.

2
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As the sensitivity of the modified estimators decreases when the data is not full (the
data is not appropriate for the chosen multivariate model structure), the bias in the
parameters estimates decreases. The conclusion from the result in the table is that the
models obtained by the modified estimators that account for the presence of unrealistic
or missing records are more accurate compared to the models obtained by the standard
estimators.

Table 1. Criterion values for models related to products
from a category

The results from the second test are shown below. The average values of  for
both approaches are:

           ,average(VAF ) 31%L I  , ,average(VAF ) 65,2%L II  ,
where  VAFL are obtained for I approach and VAFL,I   are corresponding to II approach.

The test results are also presented on Fig. 4 and Table 2. The figure includes
VAFL for all representations, obtained by the two approaches. To observe the
improvement of the models adequateness, when MISO regression models are used,
the  values are sorted. Fig. 4 shows that the MISO dynamic models are significantly
better than the models with dynamic SISO part. It is also obvious from the average
values of the criterion given above. This result is in accordance with the discussion in
Subsection 4.1.2.

Table 2 presents the estimators’ applicability for the concrete market systems.
The percentage ratios give a posteriori information about the applicability of the
estimators that take part in the two approaches. This result can be used to decrease
the computation time. For instance if the approaches are executed again for the same
or similar products categories, it is suitable to remove IV and EMLS from ASIC as
they are most appropriate for less than 5% of the cases. Also EMLS is an iterative
procedure, which increases considerably the computation time.

If the values of max(naj), max(bji),  max(ncj)and max(ndj) grow,  VAFL will
increase, but the computational time will also increase significantly. This is especially
true if thousands of products are accounted for.

Standard 
estimators 

Modified 
estimators 

Validation 
criteria 

 
Demand model VAFL,II VAFL,II 

Product 1 66.88 74.57 
Product 2 71.00 74.19 
Product 3 80.49 81.01 
Product 4 77.94 80.01 
Product 5 68.08 69.61 
Product 6 73.48 76.41 
Product 7 76.83 78.15 
Product 8 74.80 78.00 
Product 9 78.29 81.91 
Average and VAFL 74.20 77.10 
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Fig. 4. Sorted values of VAF for all models:

,VAFL I  – I approach, ,VAFL II  – II approach

Table 2. The number of most appropriate models, obtained by
each estimation procedure in percent

A disadvantage of the second approach is the great number of the models’
parameters, which makes it much slower. As it was mentioned, this is another reason
to choose low maximum values of the polynomials’ orders. A way to avoid this problem
is discussed below.

5.3. Future work

A disadvantage of both identification procedures is the enormous computation time
for models generation (especially for the second approach). To deal with this problem
recursive estimators for SISO regression representations [8] were developed. They
were used to update the dynamic parts of the demand models generated by I approach.
A similar set of recursive procedures was designed for the MISO regression
representations. It is used for weekly update of the demand models generated by II
approach. Additional procedure checks whether the sets of cross effects accounted in
the MISO models are still appropriate for the current system behavior. If for a given
set, new cross effects appear or other become insignificant, then the structure of the
corresponding MISO model is updated. After that ASIC is applied only for the

Criterion

Model number

Applicability [%] Method I approach II approach 
LS 4.2 6.4 

GLS 8.7 58 
EMLS 3.8 4.3 
WLS 12.1 8.9 

IV 4.7 3.1 
PE-ARMAX 30.1 32.8 

PE-OE 25.2 20.2 
PE-BJ 11.2 18.5 
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corresponding model, but not to all MISO models. As the market system is time-
varying, appropriate modifications of the standard recursive estimators are applied.

The state space representation of the market behavior is appropriate for the
considered multivariate system, since usually the number of inputs and outputs is
tremendous. A good solution is to apply subspace methods for MIMO demand models.
Also the resulting models will be further specified for example by state space
optimization based on a project gradient search [17]. As this is an iterative approach,
it is possible to arise a problem with the initial conditions. The combination of subspace
identification and PE state space methods is an appropriate way for automatic MIMO
models generation.

To improve the sales forecast, we will develop Kalman Filters (KF). If aposteriori
information about the constraints upon the observed processes is available, then
Extended KF (EKF) [2] would be designed.

If the promotion effects are compared with the regular cases, it is easy to conclude
that the system behavior varies significantly. Therefore Interacting Multiple Models
(IMM) estimators [3] would be suitable to account the time-varying nature of the
market.
Acknowledgements. The authors would like to thank the company Retail Analytics Ltd. for providing
the real data used in the experimental part of the paper.
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