
29

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 7, No 2

Sofia 2007

An Analysis of Applicability of Genetic Algorithms for Selecting
Attributes and Examples for the Nearest Neighbour Classifier

Gennady Agre1, Parvan Gioshev2

1 Institute of Information Technologies,1113 Sofia
E-mail: agre@iinf.bas.bg
2 Faculty of Mathematics and Informatics, Sofia University
E-mail: parvan_83@abv.bg

Abstract: The paper discusses the problem of applicability of genetic algorithms for
selecting examples and attributes for the Nearest Neighbour classifier. The emphasis
is on the importance of the proper choice of the fitness function and the method for
constructing new generations. Some improvements to the existing algorithms are
proposed and their fruitfulness is experimentally proved on sixteen benchmark
datasets. The empirical evaluation has shown that the increase in the classification
accuracy of the modified algorithm is statistically significant.

Keywords: Genetic algorithms, nearest neighbour classifier, feature selection.

1. Introduction

The classical nearest neighbour (NN) algorithm is a very simple and effective classifier.
Being initially developed for the purposes of pattern classification [7], it then has
been used as a base for implementing several powerful case-based classification
systems [12]. The algorithm avoids a lack of background knowledge by storing all
training examples as an extensional description of the target categories (classes) and
classifies an unseen example by the class of the nearest training example. The main
problems with NN are its high classification cost and strong dependence of its accuracy
from the number of irrelevant attributes. It has been shown, that the number of examples
that have to be stored to achieve certain classification accuracy grows exponentially
in the number of irrelevant attributes. Several experimental studies (e.g.[3]) are
consistent with this result.

The first problem is often attempted to be solved by pre-processing the training
examples aiming at generating a new example representation facilitating more efficient
search. An example of such representation is k- d trees ([8]), that are able to reduce

30

the classification cost to O(log2 n), where n is the number of training examples. k–d
trees have inspired the development of a set of new powerful point access and spatial
access methods that are successfully used in advanced database systems [19].

The prototype-based learning (or prototype selection methods) is another
approach for solving the problem with high classification cost of the NN method.
The main idea is to reduce the size of stored examples by selecting only such of them
(called “prototypes”) that represent the class in “the best” way. That means that the
classification accuracy of such reduced or edited dataset should be (at least) comparable
with the classification accuracy of the original database (i.e. containing all training
examples). The nearest neighbours methods that use for classification only a part of
training examples are often called edited or reduced nearest neighbour classifiers.

Prototype selection methods can be split on redundancy reduction, noise removal
and hybrid algorithms combining previous two ones. The redundancy reduction
algorithms aim at eliminating training examples that do not contribute to classification
competence (e.g. examples from the interior of a densely packed class cluster). These
algorithms can produce significant training set reduction but tend to preserve noise
examples as apparent exceptions. In contrast, noise removal algorithms aim at
eliminating noisy examples from the training set. These algorithms tend to a less
dramatic size reduction (depending on the level of training set noise) and can also
mistakenly remove important exceptional examples that are difficult to distinguish
from the true noise. A comprehensive review of the prototype selection methods can
be found in [1].

The task for selecting relevant attributes (or features) is to find such a subset of
the original attributes that allows an inductive algorithm, running on data described
by only these attribute subset, to generate a classifier with as highest as possible
accuracy [9]. There are a number of different approaches to attribute subset selection
that can be roughly spit on the filter approach and wrapper approach. The filter methods
select features using a pre-processing step. They do not take into account the biases
of the induction algorithms and select feature subsets independently of the inductive
algorithms used. The best examples of such approaches are FOCUS [4], ReliefF [10]
and feature filtering using decision trees [6]. In the wrapper approach, the feature
subset selection is done using the induction algorithm as a black box. The wrapper
conducts a search for a good feature subset using the induction algorithm itself as a
part of the evaluation technique. The main problem of the wrapper approaches is that
they are too slow since exploit very intensively the cross-validation procedure [9].

The task of prototypes and attribute selection may be also seen as a search problem
and this point view is the basis for some techniques applying genetic algorithms
(GA) to reduce the size of the NN classifier. In the approach of [14] the length of the
chromosome is made equal to the size of the training set, and each allele is represented
by Boolean number indicating whether the associated example is used or not. The
authors in [11] have extended this approach in their solution each bit of a binary
chromosome represents one of the original training examples and attributes. It is
obvious that both approaches are impractical in domains with many training examples
and attributes.

A more scalable approach [16, 17] is to use a variable-length encoding. In this
approach each allele contains an integer that points to a training example. It is worth
to mention that this approach allows to reduce not only the size of the training set, but
to remove irrelevant attributes as well. Since it is reported that the algorithm has

31

achieved comparatively good results in both directions we have decided to analyze it
in more details in order to understand the reasons of its success. The present paper
proposes the detailed analysis of this approach and suggests some directions for its
improvement.

The structure of the paper is as follows: the next section is devoted to a detailed
description of the approach proposed by Rozsypal and Kubat. Section 3 describes
our modifications to the mentioned above algorithm. Section 4 considers the expe-
rimental evaluation of the modified algorithm on fifteen benchmark data sets, and the
last section is conclusions and our plan for future research.

2. Genetic algorithm of Rozsypal and Kubat

Before describing the details of the GA proposed by Rozsypal and Kubat, we will
briefly present a general idea and structure of a genetic algorithm.

2.1. A general genetic algorithm
Genetic algorithms are intended for searching a space of possible solutions to identify
the best one. The “best” solution is defined as the one optimizing a predefined
numerical measure called the solution fitness. Although different implementations
of the genetic algorithms vary in their implementation details, they usually share the
following structure [13]:

The algorithm works by iteratively updating a set of possible solutions, called
population. On each iteration, all members of the population are evaluated according
to the fitness function.

A new population is generated by probabilistically selecting the most fit
individuals from the current population.

Some of the selected individuals are carried forward into the next population
intact. Others are used as the basis for creating new offspring individuals by applying
genetic operations such as crossover and mutation.

The described above genetic algorithm performs a randomized, parallel beam
search for solutions that perform well according to the specified fitness function.

2.2. Description of the technique
A main element of a genetic algorithm is the population, which consists of so called
specimens alternative solutions of the problem to be solved. The authors in [17]
represent each specimen by two chromosomes – the first one encodes training examples
to be stored and used for classification and the second – example attributes to be used
for calculating distances between a test example and stored training examples. In
other words each allele (an element of the chromosome) contains an integer that
points to a training example or to an attribute in GA literature such encoding is
usually referred to as value encoding.

The distance d(x, y) between a stored training example <x, c>, x = {xi1, …, xip}
and a training example y = {y1, …, yn}, ik {1,…, n}, p n, is calculated as

(1) ,),(),(
1

pi

ik
kk yxdd yx

32

where

(2)
2() , when attribute is continuous,

(,) 1, when and attribute is nominal,
0, when and attribute is nominal.

k k

k k k k

k k

x y k
d x y x y k

x y k

In GA the survival chances of individual specimens are quantified by a fitness
function. Having in mind, that the proposed algorithm should try to reduce both the
size of the stored examples and the size of the attribute set without compromising the
algorithm classification accuracy, the authors proposed the following fitness function:

(3)
1 R 2 E 3 A

1Fitness
 c N c N c N

 ,

where:
NR is the number of training examples erroneously classified by the NN classifier

using the sets of examples and attributes specified by a specimen,
NE is the number of examples in a specimen used for classification,
NA is the number of attributes in a specimen used for classification.
The function is controlled by three user-supplied parameters c1, c2, and c3 that

weigh the user’s preferences. For instance, if c1 is high, emphasis is placed on the
classification accuracy; if c2 or c3 are high, emphasis is placed on minimizing the
number of retained examples or the number of retained attributes, respectively.

A new population is created as a result of three operations: recombination,
selection and mutation. The recombination is implemented by means of a two-point
crossover operator applied to a pair of probabilistically selected specimens (“parents”).
The algorithm starts with selecting two pairs of integers using the uniform distribution
 one pair from the closed interval [1, N1], and another pair – from [1, N2], where N1
and N2 are correspondently the chromosome length of the first and second parent.
Each of the selected pairs defines a substring in the respective chromosome (the first
allele and the last allele are included in the substring). The crossover operator then
exchanges the substring from the first chromosome with the substring from the second
chromosome. The process is applied separately to the chromosome containing the
list of examples and to the chromosome containing the list of attributes. The probability
of selecting a specimen S for recombination from a current Population is calculated
according to the “traditional” formula:

(4)

Population

Fitness()()
Fitness()

S

SP S
S

 .

The selection method determines the final structure of a new population
(generation) defining the percentage of children and parents in the population. The
approach proposed by Rozsypal and Kubat does not use such a parameter – instead,
the percentage of the surviving parent specimens depends both on the overall quality
of the previous and new generation. Let n is the size of the population. The algorithm
firstly creates n children using the recombination method described above and adds
all these children to their parents, creating in such a way a temporary set of specimens

33

of size 2n. Then this set is sorted by the fitness function, and the worst n specimens
are removed.

The last step in the process of creation of a new population is the mutation. The
mutation operator prevents degeneration of the population’s diversity and guarantees
that the population represents a sufficiently large part of the search space. The authors
explain the work of their mutation operator in the following way: “Our mutation
operator randomly selects a prespecified percentage of the alleles in the newly created
population and adds to each of them a random integer generated separately for each
allele. The algorithm then takes the result modulo the number of examples/attributes.
For illustration, suppose that the original number of examples/attributes is 100 and
that the allele chosen for mutation contains the value 85. If the randomly generated
integer is 34, then the value in the allele after mutation will be (85 + 34) mod 100 =
19”.

As one can see, the cited passage needs additional interpretation in order to re-
implement this mutation operator. First of all we consider that a parameter of mutation
is a percentage of the population specimens rather than of alleles. Then for each
selected specimen (or for each chromosome of the specimen) a random integer defining
a concrete specimen (or chromosome) allele should be generated. Then for each
selected allele a random integer defining new, mutated value of this allele (according
to the described above original algorithm) should be selected.

The last element of a GA is the termination criterion. The authors of the original
algorithm use the simple termination criterion – a fixed (user-supplied) number of
generations. When the search has stopped, the specimen with the highest value of the
fitness function defines both the set of the retained training examples and the set of
retained attributes.

2.3. Important implementation details
An important aspect of the analyzed algorithm, in our opinion, is a method for
initialization of the first population. At the beginning, all specimens have the first
chromosome with the length equal to 10 and the second chromosome with the length
equal to NA the number of attributes. All chromosomes are then filled by uniformly
distributed random numbers.

The original article [17] does not explain whether the repetition of numbers is
allowed in such initialization so we have assumed that the numbers are randomly
generated without repetitions. This means that all specimens in the initial population
start with the full set of attributes.

Other important details influencing on the evaluation of the algorithms efficiency
are related to the experimental setting. First of all it should be taken into account that
such experimental setting includes some pre-processing of data used in experiments:

1. All examples with missing attribute values are removed, and
2. All values of continuous attributes are normalized in such a way that the

mean value of each attribute becomes 0 and its standard deviation becomes 1.
The second important aspect is a schema selected for evaluating the classification

accuracy of the algorithm – it was used 5-fold cross-validation repeated 10 times for
different partitionings of the data, and then the results were averaged.

3

34

3. Our modifications to the algorithm

Our main objectives were to analyze the original algorithm proposed in [17] and to
try to increase its accuracy based on the analysis done. To achieve these objectives
we have made some modifications to the algorithm and developed a special
environment for the algorithm experimental evaluation.

3.1. The algorithm modifications
The first modification concerns the way for processing nominal attributes. It is a well
known fact that the classification accuracy of several algorithms, which are based on
calculating the similarity between objects, can be improved by application of MVDM
metrics [2]. That is why, instead of formulae (1) and (2) we use:

(1') ,),(),(
1

2

pi

ik
kk yxdd yx

where

(2')
MVDM

| |, when attribute is continuous,(,) (,), when attribute is nominal,
k k

k k
k k

x y kd x y d x y k

and
(5)

MVDM
1(,)
2k kid x y

| |

1

| (|) (|) |, where | | is the number of classes
C

i k i ki
i

P c x P c y C

 .

Introducing MVDM metrics has allowed us to improve also the way of processing
missing attributes. In the original algorithm examples with missing attribute values
were removed. In our implementation we have replaced missing values of continuous
attributes with the average value of the same attribute values of all training examples
belonging to the same class as the example with the missing value. For nominal
attributes we have introduced a special value “?”, which is interpreted as one of
admissible values of such attribute and applied MVDM metrics for handling such a
value.

The second modification concerns the fitness function used. We think that a
number of erroneously solved examples used in the original fitness function does not
allow to have an adequate impression of accuracy of the classifier since it does not
take into account the size of the tested dataset. The same consideration it true for the
numbers of retained attributes and training examples. Moreover, the use of these
values gives no reasonable basis for selecting the “best” parameters c1, c2 and c3, and
may be this is the main reason, why they all were set to 1 in the original implementation.

To avoid the mentioned above deficiency we have decided to change the absolute
values of NR, NE and NA to its relative, normalized values N%

R, N%
E and N%

A,
where:

N%
R is calculated as a number of erroneously solve examples relative to total

examples;

35

N%
E is a proportion of a number of retained examples among the total number of

examples;
N%

A is a proportion of retained attributes relative to the total number of attributes.
The obtained fitness function looks as follows:

(3') % % %
1 R 2 E 3 A

1Fitness .
 c N c N c N

We have also added a simple modification to the procedure of specimens’
comparison when the values of the fitness function of two specimens are equal, the
priority is given to the specimen with greater accuracy (smaller value of N%

R), then
with greater compression rate (smaller value of N%

E); and then – with greater attribute
compression rate.

3.2. The experimental environment

A special experimental system – GenATE (Genetic Algorithm Testing Environment)
has been developed for experiments with different kinds of genetic algorithms used
for solving the classification task. The system allows making experiments on datasets
represented in the traditional “.data” and “.name” text file format (Blake, Mertz,
2007). In the moment the system permits to genetically induce IF-THEN rules
according to the algorithm described in [13], as well as to create the reduced nearest
neighbour classifiers according to the algorithm described in [17] with our modification
described above.

To facilitate the analysis of the algorithm behaviour we have decided to visualize
some of the algorithm parameters – in the case of the our genetic NN algorithm they
are: the greatest values of the fitness function, the classification accuracy, the example
compression and attribute compression rates of the “best” specimen in the current
population as well as the greatest value of the fitness function of the best specimen
from all populations generated till now (Fig. 1).

For more comprehensive visualization, the fitness function is normalized:

(6)
Norm

max

FitnessFitness
Fitness

 ,

where

(7)
max

1 2 3
E E

1Fitness .1 | | 1Cc c c
N N

In other words we consider that in order to reach the maximum of the fitness
function, the “best” specimen must have at least one example per class and each
example should be described at least by one attribute. In order to preserve the influence
of c1 parameter we have decided that the best accuracy is achieved when the specimen
made only one error from the whole data set.

The options available for tuning by the user are split into the following groups:

36

Fig. 1. Visualization of the fitness function and some of its parameters

Basic options of a genetic algorithm:
 Population size – a number of specimens in a population
 Maximum number of generations – a maximum number of iterations the

algorithm can run.
 Crossover speed [0, 1]the fraction of a population to be replaced by the

crossover operation at each iteration. The method for creating the next generation
proposed in (R o z s y p a l, K u b a t [17]) is implemented when the value of this
parameter is set to zero.

 Mutation speed [0, 1] – the fraction of a population to be mutated.
Options specific to the genetic Nearest Neighbour algorithm:
 Metrics for processing nominal attributes {MVDM, Overlay}
 c1 – a greater value punishes a greater inaccuracy
 c2 – a greater value punishes a greater number of examples retained
 c3 – a greater value punishes a greater number of attributes retained
Options for algorithm evaluation methods:
 Evaluation scheme {Hold Out, Cross-validation}
 Sampling method {Normal, Stratified} – defines how each training (and

testing) set will be randomly constructed. “Stratified” option preserves the original
class distribution both in training and testing sets.

 Number of Folds (for Cross-validation scheme)

37

 Test set size (0, 1) – the fraction of examples used for testing when Hold Out
evaluation scheme is used.

 Number of Iterations – defines how much the selected evaluation scheme
should be repeated.

Options for data pre-processing:
 Missing values {Statistic, Removal} – defines whether the missing attribute

values will be processed as it has been described in Subsection 3.1 or all examples
with such values will be simply removed.

 Discretization {yes, no} – defines whether all continuous attributes should
be discretized or not.

 Discretization Methods {Equal width, Equal Frequency} – defines the method
for discretization.

 Number of discretization intervals

4. Empirical study

We carried out an extensive empirical study aimed at comparing performance of the
modified algorithm with the original one and determining the role of different algorithm
parameters. Sixteen benchmark datasets from widely used UCI repository [5] were
used in the study. The main characteristics of these datasets are shown in Table 1.

Table 1. Main characteristics of a dataset used for algorithm evaluation

The classification accuracy of tested algorithms was calculated by using 5-folds
stratified cross-validation repeated 10 times1 (i.e. 105-CV). The accuracy values on
all 50 folds were used for determining the statistical significance of the results by
1 Splitting each database in 4/5 for training and 1/5 for testing was used to allow comparison with the
results reported by Rozsypal and Kubat.

Dataset Code Exs. Atts. Cont. Classes Missing, %
Breast cancer BC 286 9 0 2 0.3
Breast cancer

Wisconsin BW 699 10 10 2 2.2

Mushrooms MU 8124 23 0 2 30.5
Pima diabetes PI 768 8

8 2 0

Glass GL 214 9 9 6 0
Ionosphere IO 351 35 34 2 0

Heart diseases HD 303 13 6 2 0.2
Balance-scale BS 625 5 0 3 0

Hepatitis HE 155 19 6 2 0
Iris IR 150 4 4 3 0

New-thyroid NT 215 6 5 3 0
Liver disease LD 345 6 6 2 0
Tic-tac-toe TT 958 10 0 2 0

Voting records VO 435 16 0 2 5.6
Wine WI 178 13 13 3 0

Zoology ZO 101 16 1 7 0

38

means of p-values calculated according to the one-tailed t-paired test [18]. The overall
behaviour of the algorithms was also evaluated by comparing their average accuracy
across all databases and by means of Wilcoxon matched pair signed ranks test [18].

In order to obtain the results compatible with those reported by Rozsypal and
Kubat, we fixed values of some algorithm parameters to that used in the original
algorithm:

Population size – 30 specimens;
Number of generations – 100;
Mutation rate – 10%;
The crossover phase implemented according to the original algorithm.
The first set of experiments was aimed to test our hypothesis on raising the

algorithm classification accuracy by application of MVDM metrics. Six datasets
containing mostly nominal attributes were selected for testing two versions of our
algorithm (marked as “GenATE” in the tables) – the first one used the “traditional”
overlay metrics and the second – MVDM metrics (see Table 2). In both cases the
parameters of the fitness function (see eq. (3')) were the same (c1=10, c2=c3 =1).

Table 2. Results of experiments with MVDM metrics: average accuracies and standard deviations;
p-values, a number of significant wins against losses and α value of the Wilxocon test

The results of these experiments have proved that the use of MVDM metrics for
processing nominal attributes increases the classification accuracy of the algorithm.
GenAtE algorithm with MVDM metrics has the higher average accuracy on 8 databases
and as a whole is statistically better than the same algorithm with the overlay metric
with 95% confidence value according to the Wilcoxon test. That is why in the rest of
experiments we used MVDM instead of the overlay metrics.

The next set of experiments aimed at analyzing the behaviour of the algorithm
in dependence of the fitness function used. More precisely, we tried to find “the best”
values of parameter c1, c2, c3 (see eq. (3')) determining the influences of the algorithm
accuracy, percent of the retained examples and attributes to the overall behaviour of
the algorithm. The results of these experiments are summarized in Table 3.

As it was expected, the strong emphasis on the importance of the accuracy
component of the fitness function led to the statistically significant increase of the
overall classification accuracy of the algorithm at the expense of an increase of the

Dataset GenATE without
MVDM metrics

GenATE
with

MVDM metrics
p-value

BC 73.25±2.62 73.47±2.61 > 0.05
MU 94.90±0.24 98.60±0.13 0.0005
VO 93.65±1.17 95.57±0.99 0.0005
BS 64.62±1.91 82.07±1.53 0.0005
HE 88.46±2.55 88.72±2.53 > 0.05
TT 69.74±1.48 69.07±1.49 0.01
ZO 88.44±3.17 89.54±3.02 > 0.05

Average 81.87±1.88 85.29±1.76 –
Sign. Wins 1 3 –
Wicoxon – α = 0.05 –

39

percentage of the retained examples and attributes. It has proved that our modification
of the fitness function is more flexible since provides a reasonable basis for selecting
values of the function parameters.
Table 3. Results of experiments with parameters of the fitness function

Table 4. Results of experiments with parameters of the fitness function

c1= 100 c2= 10 c3 = 1 c1= 10 c2= 0 c3 = 0 Dataset

Accuracy
Retained
examples,

%

Retained
attributes,

%
Accuracy

Retained
examples,

%

Retained
attributes,

%

p-value

BC 73.29±2.61 2.84±0.97 40.00±2.85 73.36±2.61 3.21±1.04 50.22±2.85 > 0.05
BW 96.01±0.74 1.25±0.42 44.60±1.87 96.21±0.72 1.33±0.43 67.00±1.76 > 0.05
MU 99.03±0.11 0.11±0.04 32.45±0.51 99.43±0.08 0.16±0.04 71.91±0.49 0.0005
IR 94.73±1.82 8.17±2.23 56.50±3.99 95.53±1.67 8.73±2.30 71.00±3.65 0.05
GL 60.69±3.33 6.99±1.74 53.33±3.31 59.31±3.35 6.74±1.71 60.44±3.27 > 0.05
WI 94.81±1.66 6.70±1.87 53.69±3.70 94.59±1.68 7.66±1.99 59.69±3.54 > 0.05
HD 82.85±2.16 2.98±0.97 71.85±2.50 82.75±2.17 2.84±0.95 72.15±2.51 > 0.05
VO 95.29±1.02 1.69±0.61 25.38±2.08 95.31±1.01 1.94±0.66 34.38±2.24 > 0.05
PI 74.52±1.57 0.88±0.34 29.25±1.63 74.51±1.57 0.95±0.34 35.00±1.69 > 0.05
IO 86.35±1.83 4.07±1.05 24.88±2.25 86.19±1.84 4.47±1.10 32.47±2.48 > 0.05
BS 82.25±1.53 2.03±0.56 100.00±0.00 81.96±1.54 2.21±0.59 100.00±0.00 > 0.05
HE 88.02±2.60 5.82±1.87 24.63±3.41 87.75±2.62 6.75±1.99 27.58±3.58 > 0.05
LD 64.00±2.58 2.60±0.85 40.00±2.62 64.17±2.57 2.71±0.87 41.00±2.62 > 0.05
NT 93.30±1.70 5.98±1.61 59.60±3.30 93.44±1.68 6.13±1.62 66.40±3.21 > 0.05
TT 72.66±1.44 1.63±0.41 86.44±0.99 72.44±1.44 1.78±0.43 87.11±1.04 > 0.05
ZO 90.23±2.94 18.72±3.87 80.75±3.81 90.09±2.95 19.74±3.96 81.63±3.79 > 0.05
Average 84.25±1.85 4.53±1.21 51.46±2.43 84.19±1.84 4.83±1.25 59.87±2.42 –
Sign. wins 0 – – 2 – – –
Wicoxon – – – α > 0.05 – – –

c1 = c2 = c3 = 1 c1= 100 c2= 10 c3 = 1 Dataset

Accuracy
Retained
examples,

%

Retained
attributes,

%
Accuracy

Retained
examples,

%

Retained
attributes,

%

p-value

BC 69.27±2.73 1.23±0.65 11.11±1.86 73.29±2.61 2.84±0.97 40.00±2.85 0.0005
BW 91.83±1.04 0.79±0.33 10.00±1.13 96.01±0.74 1.25±0.42 44.60±1.87 0.0005
MU 98.56±0.13 0.07±0.03 9.09±0.32 99.03±0.11 0.11±0.04 32.45±0.51 0.0005
IR 93.93±1.93 4.78±1.74 25.00±3.54 94.73±1.82 8.17±2.23 56.50±3.99 > 0.05
GL 56.13±3.39 2.40±1.04 11.11±2.15 60.69±3.33 6.99±1.74 53.33±3.31 0.0005
WI 83.95±2.74 3.19±1.31 13.08±2.52 94.81±1.66 6.70±1.87 53.69±3.70 0.0005
HD 73.41±2.53 1.39±0.67 8.00±1.56 82.85±2.16 2.98±0.97 71.85±2.50 0.0005
VO 95.59±0.98 1.26±0.53 12.75±1.60 95.29±1.02 1.69±0.61 25.38±2.08 0.025
PI 73.52±1.59 0.51±0.26 12.50±1.19 74.52±1.57 0.88±0.34 29.25±1.63 0.01
IO 81.83±2.05 1.20±0.58 3.76±1.01 86.35±1.83 4.07±1.05 24.88±2.25 0.0005
BS 59.83±1.96 0.67±0.33 25.00±1.73 82.25±1.53 2.03±0.56 100.00±0.00 0.0005
HE 88.27±2.57 2.82±1.32 5.58±1.84 88.02±2.60 5.82±1.87 24.63±3.41 > 0.05
LD 61.10±2.62 1.02±0.54 16.67±2.01 64.00±2.58 2.60±0.85 40.00±2.62 0.01
NT 90.47±2.00 2.70±1.10 20.00±2.73 93.30±1.70 5.98±1.61 59.60±3.30 0.0005
TT 65.12±1.54 0.26±0.16 11.11±1.02 72.66±1.44 1.63±0.41 86.44±0.99 0.0005
ZO 58.72±4.89 6.29±2.41 13.63±3.39 90.23±2.94 18.72±3.87 80.75±3.81 0.0005
Average 77.59±2.17 1.91±0.81 13.02±1.85 84.25±1.85 4.53±1.21 51.46±2.43 –
Sign. wins 1 – – 13 – – –
Wicoxon – – – α = 0.05 – – –

40

In most cases, the main objective of selecting the most representative training
examples and relevant attributes is to raise the classification accuracy of the
NN-algorithms. Therefore, the presence of such unrepresentative examples or
examples described by irrelevant attributes will automatically reduce the classification
accuracy of a specimen constructed from such examples. In other words, this implicit
dependence between specimen classification accuracy and the quality of examples
representing the specimen may be simply modelled by a fitness function, which
penalizes only the loss of specimen accuracy. In our case, such fitness function can
be easy achieved by setting parameters c2=c3=0. Table 4 presents results of experiments
with such fitness function. It should be mentioned, that we still preserve an evolutionary
way for selecting representative examples and attributes in each specimen of the
population, but evaluate the quality of such specimens only based on their classification
accuracy.The results show that a more simple fitness function leads to practically the
same average classification accuracy of the algorithm. Although this increase is not
statistically significant from the Wilcoxon test point of view, we can see that in 2
databases the tested fitness function has achieved statistically significant increase in
the classification accuracy. It is interesting to see that the better classification accuracy
has been achieved with practically the same percent of the retained examples and
comparatively low increase of the retained attributes.

In the next experiments we tested the dependency of the classification accuracy
of the algorithm from the method used for selecting specimens for new generation. In
the approach proposed by Rozsypal and Kubat the percentage of the surviving parent
specimens depends both on the overall quality of the previous generation and on the
quality of the new specimens – children (see Section 2). We have compared this
method with another popular selection method [13], which determines the final
structure of a new generation by defining a fixed percentage of children and parents
in it. Table 5 presents the results of such a comparison. Both versions of the algorithm
were tested by using the same fitness function with parameters c1 = 100, c2 = 10 and
c3 = 1. In the second selection method 60% of specimens2 from the old generation
were randomly selected (based on their values of the fitness function) to become
members of the next generation, and the rest 40% of the new generation was populated
by children of specimens from the previous generation.

The results have shown that this “traditional” method for constructing new
generations (with a fixed proportion of parents and children) is significantly better
from Wilcoxon test point of view than the method used by Rozsypal and Kubat. It is
worth to be mentioned that the average increase of classification accuracy is
accompanied by a slight decrease both in the number of retained examples and
attributes.

Table 6 shows the classification accuracies of our algorithm (GenATE), the
original algorithm (GA-RK) and the Nearest Neighbour algorithm (1-NN). Both
GenATE and 1-NN used the same distance function (Euclidian – for processing
continuous attributes and MVDM – for nominal attributes) and were tested on the
same folds in the GenATE environment. GenATE algorithm used the method for
creating new generations according to that described in [13] and parameters of the
fitness function were c1 = 10, c2 = 0 and c3 = 0.

2 These are the most frequently used values for such parameters.

41

The values of GA-RK accuracies have been taken from [17]. Unfortunately these
accuracies can not be used directly for comparison with the results of our algorithm
since they were achieved on the datasets described by artificially extended sets of
attributes (see [17] for details).

The results have shown that GenATE algorithm is able to achieve practically the
same classification accuracy (in average) as the nearest neighbour classifier, which is
known as one of the most accurate classifier. Moreover, this very high classification

Table 5. Results of experiments comparing different methods for selecting specimens for new generations

 Table 6. Classification accuracies of GA-RK, GenATE and 1-NN algorithms
GenATE (c1 = 10, c2 = 0, c3 = 0) Dataset GA-RK

Accuracy Retained
examples, %

Retained
attributes, %

1-NN p-value

BC N/A 73.18±2.62 3.15±1.03 50.44±2.93 69.52±2.72 0.0005
BW 95.9±1.2 95.88±0.75 1.25±0.42 60.20±1.84 95.48±0.79 0.05
MU 99.4±0.4 99.52±0.08 0.13±0.04 60.36±0.53 100.00±0.00 0.0005
IR 94.5±2.3 94.53±1.85 9.47±2.38 67.50±3.80 95.27±1.73 > 0.05
GL 57.3±5.4 60.70±3.33 6.67±1.70 66.67±3.16 69.07±3.16 0.0005
WI 90.4±3.1 95.37±1.55 7.08±1.92 57.54±3.67 95.01±1.63 > 0.05
HD 77.9±5.4 82.19±2.19 2.88±0.96 67.08±2.67 79.28±2.33 0.0005
VO 61.9±5.7 95.24±1.02 2.19±0.70 40.25±2.31 94.07±1.13 0.0005
PI 74.9±2.6 74.73±1.57 1.00±0.36 30.00±1.64 70.75±1.64 0.0005
IO 84.0±4.6 87.47±1.77 4.52±1.10 23.71±2.24 86.44±1.83 0.05
BS N/A 83.00±1.50 1.88±0.54 100.00±0.00 84.18±1.46 0.05
HE N/A 87.03±2.69 5.90±1.89 26.21±3.50 87.63±2.64 > 0.05
LD N/A 64.03±2.58 2.73±0.87 41.00±2.61 61.54±2.62 0.025
NT N/A 94.42±1.55 5.56±1.56 58.00±3.33 96.33±1.27 0.0005
TT N/A 72.06±1.45 1.69±0.42 83.78±1.16 93.80±0.78 0.0005
ZO N/A 91.06±2.81 20.73±4.02 75.00±4.29 92.34±2.65 > 0.05
Average – 84.40±1.83 4.80±1.24 56.73±2.48 85.67±1.77 –
Sign. wins – 7 – – 5 –
Wicoxon – α > 0.05 – – – –

Selection based on
[17]

Selection based on
[13]

Dataset

Accuracy
Retained
examples,

%

Retained
attributes,

%
Accuracy

Retained
examples,

%

Retained
attributes,

%

p-value

BC 73.29±2.61 2.84±0.97 40.00±2.85 73.68±2.60 2.85±0.98 43.33±2.90 > 0.05
BW 96.01±0.74 1.25±0.42 44.60±1.87 95.84±0.75 1.36±0.44 46.20±1.88 > 0.05
MU 99.03±0.11 0.11±0.04 32.45±0.51 99.23±0.10 0.13±0.04 36.27±0.52 0.01
IR 94.73±1.82 8.17±2.23 56.50±3.99 94.47±1.86 8.08±2.22 59.50±4.00 > 0.05
GL 60.69±3.33 6.99±1.74 53.33±3.31 61.30±3.32 6.19±1.64 49.11±3.35 > 0.05
WI 94.81±1.66 6.70±1.87 53.69±3.70 95.12±1.59 6.07±1.79 45.69±3.71 > 0.05
HD 82.85±2.16 2.98±0.97 71.85±2.50 82.12±2.20 2.90±0.96 65.38±2.65 > 0.05
VO 95.29±1.02 1.69±0.61 25.38±2.08 95.47±1.00 1.87±0.65 26.75±2.11 > 0.05
PI 74.52±1.57 0.88±0.34 29.25±1.63 74.94±1.56 0.84±0.33 27.50±1.60 > 0.05
IO 86.35±1.83 4.07±1.05 24.88±2.25 86.64±1.81 3.95±1.03 18.53±2.04 > 0.05
BS 82.25±1.53 2.03±0.56 100.00±0.00 82.72±1.51 1.98±0.55 100.00±0.00 > 0.05
HE 88.02±2.60 5.82±1.87 24.63±3.41 88.31±2.58 5.22±1.78 19.37±3.07 > 0.05
LD 64.00±2.58 2.60±0.85 40.00±2.62 64.41±2.58 2.59±0.84 39.00±2.62 > 0.05
NT 93.30±1.70 5.98±1.61 59.60±3.30 93.77±1.63 5.58±1.56 56.40±3.37 > 0.05
TT 72.66±1.44 1.63±0.41 86.44±0.99 72.30±1.45 1.72±0.42 79.78±1.27 > 0.05
ZO 90.23±2.94 18.72±3.87 80.75±3.81 92.01±2.69 19.63±3.95 75.13±4.20 0.025
Average 84.25±1.85 4.53±1.21 51.46±2.43 84.52±1.83 4.44±1.20 49.25±2.45 –
Sign. Wins 0 – – 2 – – –
Wicoxon – – – α = 0.05 – – –

42

accuracy is achieved by using, in average, less than 5% of training examples and less
than 60% of attributes.

 In the last set of experiments we tried to understand the roles of explicit
(evolutionary) and implicit (initialization) parts of the tested genetic algorithm. In
order to do this we have measured the classification accuracy of the first population3

randomly created in accordance with the original algorithm initialization procedure
(see Section 2.3) and compared it with the final accuracy of the algorithm achieved
after applying the described above evolutionary search method. For these experiments
we have slightly changed the original initialization procedure by applying a stratified
random method for selecting examples, which guarantees that each specimen in the
initial population will contain at least one training example per class. Table 7 shows
the accuracy of such “only-one-population” method in comparison with the results
achieved after completing the evolutionary search. The last column shows the increase
in the algorithm accuracy caused by applying the evolutionary approach. The
parameters of the fitness function were c1= 10, c2 = 0 and c3 = 0.
Table 7. Results of experiments evaluating the role of the evolutionary mechanism used in the tested
algorithm

The results of these experiments are very interesting – although the use of the
evolutionary techniques has led to creating the statistically more accurate classifier,
the average impact of these techniques is less than 3% in average on 16 benchmark
datasets! Thus the rest 97% of the overall classification accuracy of the classifier is
due to the implicit mechanism used for its initialization.

In other words, a rather accurate edited nearest neighbour classifier (we will
call it “randomized nearest neighbour”) can be created by means of a very simple
procedure:
3 This value is calculated as the accuracy of the “best” (i.e. with the highest value of fitness function)
specimen in the initial population.

1 generation 100 generations Data-
set

Accuracy
Retained
examples,

%

Retained
attributes,

%
Accuracy

Retained
examples,

%

Retained
attributes,

%

p-value Acc.
Δ(%)

BC 70.07±2.71 4.37±1.21 100.00 73.18±2.62 3.15±1.03 50.44±2.93 0.0005 4.44
BW 95.88±0.75 1.79±0.50 100.00 96.47±0.70 1.25±0.42 60.20±1.84 0.005 0.61
MU 98.99±0.11 0.15±0.04 100.00 99.52±0.08 0.13±0.04 60.36±0.53 0.0005 0.53
IR 94.53±1.85 8.33±2.26 100.00 95.60±1.65 9.47±2.38 67.50±3.80 > 0.05 1.12
GL 52.59±3.41 5.84±1.60 100.00 60.70±3.33 6.67±1.70 66.67±3.16 0.0005 15.43
WI 93.72±1.79 7.02±1.92 100.00 95.37±1.55 7.08±1.92 57.54±3.67 0.025 1.76
HD 82.19±2.19 4.13±1.14 100.00 82.58±2.18 2.88±0.96 67.08±2.67 > 0.05 0.47
VO 94.71±1.07 2.87±0.80 100.00 95.24±1.02 2.19±0.70 40.25±2.31 0.025 0.56
PI 71.14±1.63 1.63±0.46 100.00 74.73±1.57 1.00±0.36 30.00±1.64 0.0005 5.04
IO 84.08±1.95 3.56±0.99 100.00 87.47±1.77 4.52±1.10 23.71±2.24 0.0005 4.03
BS 81.24±1.56 2.00±0.56 100.00 83.00±1.50 1.88±0.54 100.00 0.005 2.18
HE 82.82±3.02 8.06±2.19 100.00 87.03±2.69 5.90±1.89 26.21±3.50 0.0005 5.08
LD 59.19±2.64 3.62±1.01 100.00 64.03±2.58 2.73±0.87 41.00±2.61 0.0005 8.18
NT 92.51±1.79 5.81±1.60 100.00 94.42±1.55 5.56±1.56 58.00±3.33 0.001 2.06
TT 71.66±1.46 1.30±0.37 100.00 72.06±1.45 1.69±0.42 83.78±1.16 > 0.05 0.56
ZO 91.06±2.81 12.38±3.28 100.00 91.31±2.78 20.73±4.02 75.00±4.29 > 0.05 0.27
Ave-
rage 82. 27±1.92 4.56±1.24 100.00 84.54±1.81 4.80±1.24 56.73±2.48 – 2.76

Sign.
wins 0 – – 12 – – – –

Wilco-
xon – – – α = 0.05 – – – –

43

Step 1. Randomly select a small set of training examples with size k<<n including
at least one training example per class (n is the number of all training examples)

Step 2. Repeat the previous step m << n times and create m candidate classifiers.
Step 3. Test m candidate classifiers on the whole training dataset.
Step 4. Select a classifier with the highest training accuracy as the final edited

nearest neighbour classifier.
Having in mind, that the genetic algorithms implement a randomized beam search

the experiments have shown that the initial width of the beam is more important (in
our case) than the evolutionary strategies used for the search.

It is also interesting to see what are the main resources used by the tested genetic
algorithm for improving the classification accuracy of the randomized nearest
neighbour classifier. Table 7 has shown that such an improvement is achieved mainly
by removing irrelevant attributes – the final classifier uses (in average) less than 60%
of all attributes while the number of the retained examples remains practically the
same.

5. Conclusions and future trends

In this paper we have considered the applicability of genetic algorithms for the problem
of selecting representative examples and attributes for edited nearest neighbour
classifiers. We have analysed in details one of the best such algorithms reported in
the literature - that proposed by Rozsypal, Kubat, 2003. We have empirically proved
that this algorithm can be improved by using MVDM metrics, modifying the fitness
function and changing the method for creating new generations.

We have confirmed that the application of genetic algorithms allows creating
very effective edited nearest neighbour classifiers which classification accuracies are
comparable with the accuracy of the classical nearest neighbour algorithm using for
classification the whole training set of examples. Based on experiments with 16
benchmark datasets we have shown that such edited nearest neighbour classifiers
use, in average, less that 5% of training examples and less than 60% of attributes.

Our analysis of the algorithms constructed based on the approach proposed by
Rozsypal and Kubat has also shown that although the application of genetic algorithms
allows creating more accurate edited nearest neighbour classifiers, the average impact
of such an application is less than 3% in average measured on 16 benchmark datasets.
Thus the about 97% of the overall classification accuracy of such a classifier can be
explained by the implicit non-evolutionary mechanism used for the algorithm
initialization.

We are going to continue our research in several directions – first of all we plan
to test our modified algorithm on a more wide range of datasets. Since the benchmark
datasets used in the experiments are known to have comparatively small number of
irrelevant attributes, we are going to repeat the experiments described by Rozsypal
and Kubat with datasets described by artificially extended sets of irrelevant attributes.

We are also going to continue experiments with the randomized nearest neighbour
algorithm in order to understand its potential and limitations.

44

R e f e r e n c e s

1. A g r e, G. An Integrated Prototype-Based Learning Algorithm. – Cybernetics and Information
Technologies, Vol. 1, 2001, No1, Sofia, Bulgarian Academy of Sciences, 56-70.

2. A g r e, G., S. P e e v. On Supervised and Unsupervised Discretisation. – Cybernetics and Information
Technologies, Vol. 2, 2002, No 2, Sofia, Bulgarian Academy of Sciences, 43-57.

3. A h a, D. A Study of Instance-Based Algorithms for Supervised Learning Tasks: Mathematical,
Empirical, and Psychological Evaluations. Doctoral Dissertation, Department of Information
and Computer Sciences, University of California, Irvine, 1990.

4. A l m u a l l i m, H., T. D i e t t e r i c h. Learning Boolean Concepts in the Presence of Many Irrelevant
Features. – Artificial Intelligence, 69 (1-2), 1994, 279-306.

5. A s u n c i o n, A., D. J. N e w m a n. UCI Machine Learning Repository. Irvine, CA: University of
California, Department of Information and Computer Science, 2007.
http://www.ics.uci.edu/~mlearn/MLRepository.html

6. C a r d i e, C. Using Decision Trees to Improve Case-Based Learning. – In: Proc. Tenth Intern.
Conference on Machine Learning, Morgan Kaufmann Publ., 1993, 25-32.

7. C o v e r, T., P. H a r t. Nearest Neighbour Pattern Classification. – IEEE Transactions on Information
Theory, IT-13, 1967, 21-27.

8. F r i e d m a n, J., J. B e n t l e y, R. F i n k e l. An Algorithm For Finding Best Matches in Logarithmic
Expected Time. Transaction on Mathematical Software, Vol. 3, 1977, No 3.

9. K o h a v i, R. Wrappers for Performance Enhancement and Oblivious Decision Graphs. Doctoral
Dissertation, Department of Computer Sciences, Stanford University, 1995.

10. K o n o n e n k o, M. R o b n i k-S i k o n j a, U. P o m p e. Relief for Estimation and Discretization
of Attributes in Classification, Regression, and ILP Problems. – In: Artificial Intelligence:
Methodology, Systems, Applications. Ramsay (Ed.). IOS Press, 1996, 31-40.

11. K u n c h e v a, L., L. C. J a i n. Nearest-Neighbor Classifier: Simultaneous Editing and Feature
Selection. – Pattern Recognition Letters, 20, 1999, 1149-1156.

12. M c K e n n a, E., B. S m y t h. Competence-Guided Case-Base Editing Techniques. – In: Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2000, 186-197.

13. M i t c h e l l, T. M. Machine Learning. The McGraw-Hill Companies, Inc., 1997.
14. M u r e s a n, D. A. Genetic Algorithms for Nearest Neighbor.1997.
15. www.cs.caltech.edu/~muresan/GANN/report.html
16. R o z s y p a l, A., M. K u b a t. Using the Genetic Algorithm to Reduce the Size of a Nearest-

Neighbor Classifier and to Select Relevant Attributes. – In: Proc. Eighteenth International
Conference on Machine Learning, Williamstown, Massachusetts, 2001, 449-456.

17. R o z s y p a l, A., M. K u b a t. Selecting Representative Examples and Attributes by a Genetic
Algorithm. – Intelligent Data Analysis 7(4), 2003, 291-304.

18. S i n c h i c h, T. Statistics by Examples. Dellen Publishing Comp., 1990.
19. Z a n i o l o, C., S. C e r i, C h. F a l o u t s o s, R. S n o d r g r a s s, V. S u b r a h m a n i a n,

R. Z i c a r i. Advanced Database Systems. Morgan Kaufmann Publ., 1997.

