
4 5

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 7, No 1

Sofia 2007

An INFRAWEBS Approach to Dynamic Composition
of Semantic Web Services#

Gennady Agre*, Zlatina Marinova**
* Institute of Information Technologies, 1113 Sofia
** OntoText Lab. Sirma Group Corp.
E-mails: agre@iinf.bas.bg zlatina.marinova@sirma.bg

Abstract: The present paper considers an important problem related to the further
development of the semantic Web service technology – the dynamic composition of
semantic Web services. It is proposed an approach, in which the process of finding an
appropriate service composition is guided by the algorithm for run-time decomposition
of the user goal into sub-goals and discovering the existing services able to satisfy
these sub-goals. Compatibility of services participating in the composition is achieved
by using the consistent description of the composite goal template, prepared by the
service application provider in design-time. Using only implicitly provided information
about the desired order of execution of services in the composition, the proposed
algorithm is able to find a proper orchestration of services in the composition as well
as to discover the appropriate service substitutions when some of the services in the
composition can not be executed due to some physical reasons.

Keywords: Dynamic service composition, Service orchestration, Service
choreography, Service discovery, Semantic Web services, INFRAWEBS Framework,
WSMO.

1. Introduction

The desired state for the current software and services is the so called third generation
services [12] – these are context-determined, consumer-driven and dynamically
composed services. Development of tools, techniques and methods for creating such
services will allow for building more flexible service-oriented systems. One of the
most challenging problems in designing third generation services is how to compose
The research was partially supported by IIT – BAS, Project No 010079 “Methods and Tools for
Processing Semantic Information”.

4 6

services dynamically, on demand. Dynamic composition requires that existing services
are combined in run-time (on-the fly) to fulfil the user request, when none of the
existing services is able to do this alone. In dynamic composition location of services
is based on their capabilities, also used to identify those services that can be combined
to create a composition. The full automation of this process is still an ongoing research
activity.

This paper presents a data-driven approach to dynamic service composition,
developed in the frame of the IST research project INFRAWEBS1 that was successfully
completed in the beginning of 2007. One of the project results is a Semantic Service
Engineering Framework, called INFRAWEBS Integration Framework (IIF), enabling
creation, maintenance and execution of WSMO-based semantic Web services (SWS),
as well as supporting SWS applications within their life-cycle. Being strongly
conformant to the current specification of various elements of the WSMO Framework
[22], the IIF hides the complexity of creation of WSMO descriptions by identifying
different types of users of Semantic Web Service Technology; clearly separating
different phases of the Semantic Service Engineering process, and developing a user-
oriented software toolset supporting all phases of this process [2].

The basic assumption for the INFRAWEBS model for dynamic service
composition is that this process is realized in the INFRAWEBS IIF environment, which
means that:

 all existing services are described as WSMO-based semantic services;
 all services to be used for service composition are published in the

P2P-connected INFRAWEBS Repositories (DSWS-R) [17] and can be found by means
of the INFRAWEBS Discovery component [19];

 each published service can be executed by means of INFRAWEBS Executor
component [24].

In general, semantic service composition is based on using service capabilities,
which can be seen as abstract, static descriptions of service functionality. However,
in the case of dynamic service composition we do not know in advance what services
need to be composed. In order to avoid this problem we consider each user request
(expressed as WSMO goal) as an abstraction of all services, whose capabilities can
match this goal.

The next step is to assume that if a goal can not be matched to any known
service, it can be decomposed into several sub-goals, for each of which matching
services could be found. Thus, dynamic composition of services can be seen as a
process guided by the dynamic goal decomposition.

Relating service composition to goal decomposition allows us to make the next
constructive step towards an algorithm for dynamic service composition –we assume
that each specific user goal can be seen as an instance of an existing, more general,
abstract goal, known to the system responsible for satisfying user goals. Generally,
such an assumption is too strong. However, it perfectly fits the IIF design principles,
since in INFRAWEBS dynamic composition is used to serve a special type of users –
Service Application Providers, who are responsible for creating concrete service
applications. In INFRAWEBS, the functionality (or capability) of a service application
can be fully described by:

1 http://www.infrawebs.-eu.org

4 7

1. A set of abstract goals (or goal templates), which, on the one hand express all
general requests the user can send to the application, and on the other provide
abstractions of all services that can be used to fulfil these goals. Goal templates are
prepared by application providers in design-time (by means, for example, of such IIF
components as SWS-D [1] or SWS-C [6]) and published (stored) in the IIF repository
(DSWS-R).

2. A procedure allowing end-user requests to be represented as instances of
corresponding abstract goal templates prepared by the service application provider.

The first assumption is still rather demanding to the application provider, since
it requires goal templates to be prepared in advance for all possible user goals. Being
not able to further reduce this demand we, however, are able to facilitate the service
provider in satisfying it. In order to do this we assume that:

 each goal may be represented either by an atomic goal template (representing
basic functionality of the application) or by combination (composition) of atomic
goal templates;

 the IIF provides the application provider with necessary and easy-to-use tools
both for goal template creation and for goal combination. Such tools are already
available in the IIF – they are SWS-C and SWS-D.

Assuming that the service application capability (represented as described above)
is available, the INFRAWEBS approach to dynamic service composition can be
sketched as a run-time process consisting of the following steps:

1) representation of the user request as a WSMO goal, based on a particular
abstract goal template;

2) decomposing the user goal to a set of sub-goals (if needed);
3) discovering a compatible set of existing services – candidates able to satisfy

each sub-goal;
4) selecting (done by the user of the application) one concrete service for each

sub-goal;
5) execution of the selected services.
In the next sections of the paper we will consider all steps (tasks) of the proposed

approach to dynamic service composition in more details. The last section discusses
the advantages and drawbacks of the approach and compares it with the related work.

2. Goal decomposition

In order to better understand the methodology for goal decomposition, we firstly
present the representation and usage of goals in INFRAWEBS.

2.1. Representation of goals

According to the WSMO specification [24] a goal is represented by:
 A set of imported ontologies used for logical description of the goal;
 A set of logical expressions (WSML axioms) forming the goal capability.

Such expressions may have different roles (assumption, precondition, postcondition
and effect) describing what the user requires from services able to satisfy the goal, as
well as some input data that the user is willing to provide to a service. It is assumed

4 8

that only postcondition or/and effect forms the compulsory part of a goal description
– other parts of a goal capability are optional;

 A (optional) set of shared variables specifying which variables used in different
axioms of the goal capability are global for the whole capability;

 an Interface specifying what interaction the user expects to have with a service
able to satisfy the goal. Since the role of this element of the goal description is not
fully specified, we do not use it in INFRAWEBS.

As already mentioned, in INFRAWEBS all WSMO goals used in a concrete
semantic service application are split to two types:

 Goal templates – representing abstract goals describing the application
functionality (service application capability). These goal templates are created by the
Application Service Provider in design time.

 User goals – representing specific request that the user can send to the
application. User goals are created in run-time as instances of the corresponding goal
templates.

Even though both types of INFRAWEBS goals are represented as WSMO goals,
the representation of goal templates is slightly different. In order to implement the
mechanism for run-time instantiation of goal templates, it is necessary to mark in
advance which variables (parameters) of the goal template are allowed for instantiation
(i.e. be replaced by some concrete values) when formulating a concrete user goal.
Such “input” variables in the goal templates are marked by extending the list of
attributes of a concept, used in the goal description, by a special attribute (“slots”)
identifying such variables. Marking of such variables is very easy and is graphically
implemented in the SWS-D.

A user goal (as instantiated goal template) has the same WSML representation
as the corresponding goal template except that some of the input variables (slots) are
replaced by concrete values (instances)

Another dimension that should be reflected in a goal description is whether the
goal can be decomposed (to some “smaller” sub-goals) or not. In the first case the
goal is considered a composite goal, and in the second – an atomic goal. An approach
for automatic recognition of the composite nature of a goal via analysis of the logical
structure of its capability description is very hard to implement, due to the rather
complicated syntax of WSML language [7]. That is why we have applied a significantly
simpler implementation approach – in the IIF a composite goal template can be created
only by composition of other already created goal templates2. This composition can
be accomplished by means of such IIF design-time tools as the SWS-C or the SWS-
D. In practice, the process of constructing the description of a composite goal is
implemented as creation of a new goal, whose capability axioms are built by copying
the corresponding axioms from the several goals playing the roles of “sub-goals” of
the composite goal under construction. In our implementation such “copy-paste” way
of construction of the composite goal is extended by an additional (hidden to the
user) operation marking “the source goal”, from which the original axiom has been
taken. More precisely, each axiom copied from a goal template (source) is pasted to
its new (target) place in the capability description of a composite goal along with an
automatically created non-functional property (NFP) (dc#relation) pointing to the
IRI of the source goal. In this way, all axioms (which can play different roles in the

2 The composite user goal is created automatically in run-time as an instance of the corresponding
composite goal template.

4 9

capability description of the composite goal) having the same value of the NFP
dc#relation form a single sub-goal of the composite goal.

Of course, we do not claim that the proposed solution is generally applicable out
of the INFRAWEBS context. However, having in mind that there is no generally
accepted definition of a composite goal, as well as that the IIF provides easy-to-use
tools for graphical, semi-automatic creation of composite goals, we consider the
proposed operational definition of a composite WSMO-based goal as appropriate
and feasible for our run-time decomposition purposes.

2.2. The algorithm for goal decomposition

The main task of a goal decomposition algorithm is to split the composite goal to a
set of sub-goals. If we consider a composite goal as a set of atomic sub-goals
G={G1, ..., Gn}, then in general case this task is equivalent to the task of finding all
possible subsets of a given set. As it is well known, the number of such subsets is the
power set of G – 2|G| (|G| is the size of G).

Even though an approach for finding all possible combination of sub-goals of a
given composite goal is feasible for some practical applications that use a small set of
atomic goals to be composed, in the general case it does not provide the user with
some special advantages. In its simplest variant the decomposition algorithm splits
the composite goal G exactly into n atomic sub-goals. For example, such a solution is
implemented in the design-time composer prototype GOBAC [3] developed in DIP
project.

The main disadvantage of such a solution is the ignorance of existing composite
services that, in principle, are able to satisfy more than one of sub-goals at once3. The
multifunctional character of the INFRAWEBS ideology assumes a special type of IIF
user – a service composition provider (or a service broker), who can use the framework
(by means of SWS-C) to creating semantic services by means of design-time
composition of existing semantic services. In order to allow using such composite
services in run-time compositions, we have selected a more complicated solution to
the goal decomposition problem formulated above. Informally, the INFRAWEBS
goal decomposition algorithm can be described as follows:

The user goal is sent to the discovery component for finding a set of matching
services, each of which is able to satisfy the goal. If such services are found – no
decomposition of this goal is done no matter of whether the goal is composite or not.

If no services have been found to match the goal and the goal is a composite
goal, an attempt to decompose the goal is done. The goal is recursively split into two
parts (sub-goals) – the first is an atomic goal, and the second is comprised of the rest
of the goal under decomposition. The first sub-goal is constructed by all axioms
belonging to the composite goal capability having one specific value of dc#relation.
The concrete value of this property is obtained from the first axiom found in the
postcondition description of the composite goal. If the composite goal has no
postconditions (or any postcondition axioms with such non-functional property), the
axioms playing the role of effects are used.

At the next step of the decomposition, both sub-goals are used by the
INFRAWEBS discovery component in attempt to find services exactly matching these

3 More precisely, they could be used if a discovery method is equipped with a special mechanism for
ranking such composite services higher than “ordinary” atomic services.

4

5 0

sub-goals. Inability to discover any services matching an atomic goal leads to failure
of the whole goal decomposition process, while the absence of existing services able
to satisfy a composite sub-goal leads to the next step of the recursive decomposition
algorithm in which a new attempt to split this composed sub-goal into two “smaller”
sub-goals is done.

The implemented algorithm for goal decomposition is a restricted variant of a
general algorithm for full combinatorial generation of all possible subsets of a given
set. The restriction heuristic of the proposed algorithm may be formulated as “select
a possible splitting of a goal to sub-goals according to the order in which atomic sub-
goals were used by the application provider in the process of composing that goal”.
In other words, we assume that application providers usually begin to construct a
composite goal with the most important (from their point of view) sub-goal, and
continue this process by sequentially adding other sub-goals according to the degree
of their importance for realization of the whole goal.

3. Discovery of compatible services

The main problem in the service composition task is to ensure the compatibility of
services participating in the composition [4]. In the general case this is done by
analyzing the correspondence between the requirements (or constraints) imposed to
the services by means of the service orchestration language and the capabilities and
interfaces of these services (describing what services can do and how to communicate
with them).

As it has been already mentioned earlier, in the dynamic composition of services
we do not know in advance what services will participate in the composition. However,
in the same way as we have reduced the problem of finding service composition to
the problem of goal decomposition, we can narrow the problem of service compatibility
to the problem of goal compatibility. In other words, if we can ensure that all sub-
goals forming a composite goal are compatible, we will also ensure that all services
that exactly match these sub-goals will be compatible too.

The compatibility of semantic services may be considered on two levels:
 Static or functional compatibility, which means that services should describe

their functionality by means of compatible ontology terms. In the WSMO framework
[25] the general responsibility for such kind of service compatibility falls on ontology-
to-ontology mediators (OO-Mediators).

 Dynamic or behavioural compatibility, which means that communication
interfaces between services, should be compatible. In the WSMO framework the
general responsibility for such kind of service compatibility falls on service-to-service
mediators (WW-Mediators).

Currently, mediation is an active field for research in the WSMO community
and it was considered too broad area to be tackled in the scope of INFRAWEBS. For
this reason, no mediators are supported into the current version of the IIF. Instead, we
assume that all services and goals used by a particular application provider are
constructed from a common set of ontologies.

However, the problem of static compatibility of services still exists at the level
of necessity to provide a mechanism enabling restriction of possible range of different
service parameter values, when such services participate in a composition rather than

5 1

when used as stand alone services. For example, if a rent-a-car service should be used
in a composition with a flight reservation service, usually only rent-a-car services
which are located near the airport of the flight destination or are at least in the same
city can be used in the composition.

It is clear that the discovery of such compatible services can be achieved
automatically if the corresponding restriction is represented as an integrity constraint
(or a set of such constraints) in the given composite user goal. Moreover, since in the
IIF each user goal is an instance of a goal template, it is enough to put such constraints
only in the corresponding composite goal templates. Actually, composite goal templates
are a very natural place to do this, since the application provider is the only person
who knows what basic functionalities the service application should provide and
how to guarantee the consistency of a complex application functionality composed
from available services.

Having in mind the concrete form, chosen for representing composite goal
templates in INFRAWEBS, we need to define how the application server provider
can add such constraints into a composite goal description. Since the representation
of all types of goals in the IIF is the same and consists of logical axioms, the general
answer to this question is “by modifying the axioms describing the sub-goals of the
composite goal”.

This answer is absolutely correct since the goal decomposition algorithm does
not require that descriptions of sub-goals produced as a result of the decomposition
should be the same as the descriptions of existing goals (or more precisely, goal
templates) stored in the application repository. That is why, by appropriate modification
of axioms of a composite goal template, it is possible to ensure the compatibility of
all services, that will comprise compositions satisfying user goals instantiated from
this goal template.

In summary, it is possible to conclude that: the INFRAWEBS approach for
discovery of services, which can participate in the dynamic service composition, is
based on the use of the consistent description of a composite goal template, created at
design-time, which specifies some integrity constraints restricting possible
compositions.

4. Selection of services to be used in composition

Service selection is a run-time process in which the user of the application selects a
concrete service that should be executed in order to satisfy the user goal. The user
selects the desired service from the list of the discovered services, each of which is
able (independently) to satisfy the goal. The existing functionality of the Service
Access Middleware (SAM) component of the IIF proposes a set of different methods
for ranking the service discovery result list according to several criteria which help
the user to make more adequate choice [19]. The user selects a service, through the
GUI provided by the specific application and then the selection method of SAM is
called.
In order to be used effectively during the run-time service composition process, the
selection process is extended by two simple functionalities that:

1) Allow the end-user to cancel all services proposed for selection;
2) Keep internal cache of the discovered services as alternatives for the service

that has been selected by the user.

5 2

The first functionality allows to start the procedure for finding service
composition not only in cases when no service satisfying the goal has been discovered,
but also when the user prefers to find a composition of new services able to fulfil the
goal rather than to use the proposed (composite) service, because of, for example,
some “negative” previous experiences with this service.

The second function facilitates run-time service substitution (see next section)
and allows reusing of already discovered services if some problems with execution
of the selected services occur.

The service selection process results in the creation of a list of services, each of
which can satisfy a sub-goal of the composite goal. For each selected service an
additional list of alternative services is also cached in order to minimize the time for
service substitution in case of failure.

5. Execution of service compositions

Up to now, we have shown how the user goal can be used for finding a set of compatible
services, which in combination can (potentially) satisfy this (composite) goal. The
evaluation of the overall usability of the discovered services is based only on the
static description of service functionalities, represented by their capabilities, and the
consistency of the user goal, used to provide integrity constraints for service
composition. However, this unordered set of services can not be considered yet as a
service composition because of lack of any information about how the execution of
these services should be carried out in time (i.e. what is the orchestration of these
services). In general, this information should be provided by means of an orchestration
description provided in the composite goal (which is not yet specified, see the
corresponding notes in Section 1). On the other hand, even if the orchestration of
goals has been fully specified, in most cases the composite goal designer is unaware
of the particular interfaces of services that could match the composed sub-goals. This
is due to the fact that services with the same capability might have different interfaces
and hence the goal designer cannot be aware of all possibilities. Therefore, we use a
different approach – data-driven execution of the service composition, instead of the
orchestration-driven one.

We have developed a method for finding the proper order of execution of services
selected for composition (i.e. a concrete service orchestration), which can guarantee
the overall satisfaction of the user goal. This method is described in details in the
next subsection.

However, even if we are able to properly orchestrate services, there is a possibility
that some of them are not executed successfully because of some physical reasons,
for example interactive errors, timeout errors, security errors etc. (For classification
of different types of errors – see [15]). That is why, in order to complete the description
of our approach to dynamic composition of semantic services we have also defined a
mechanism for substitution of failing services (see 5.2).

5.1. Orchestrating services

Orchestrating services is the task of finding the proper order of execution of services
participating in a dynamic composition. This process depends on the functional

5 3

capabilities of the engine that will execute the services (in our case it is the
INFRAWEBS SWS-E component [24]). The execution of a WSMO service is guided
by its choreography description. The choreography is based on ASM model [23] and
consists of a State Signature, describing ontological concepts, used for representing
the state of the world in which the service is executed, and Transition Rules,
representing how these states are changed. In the IIF the communications between a
service application and the SWS-E are carried out through the SAM component,
which sends to the SWS-E the IRI of the service to be executed and the current
context of the execution. The context is a set of instances of the ontological concepts
reflecting the state of the “world” at the current stage of service execution. The result
of service execution is sent back to the application through SAM as an updated context
(state of the world after the service execution) extended by a status of execution (i.e.
whether the execution of the service was successful or there were problems). The
choreography engine – the part of the SWS-E responsible for executing the service
transition rules - interprets these rules as a monolithic block, which means that it tries
to execute the rules until no rules can be fired and executed. It is also assumed that
the engine is able to indicate error situations such as impossibility to continue its
work because of:

1) the lack of the necessary data in the current state;
2) some physical problems occurring during communication with the Web service

(for example the service can not be found in the specified end point or there is no
Internet connection with this service at the moment).

While the second case clearly indicates the error situation, the first one should
be further analyzed to understand whether the “problem” situation can be “repaired”
by asking the user to provide missing information. The SWS-E is enhanced with a
mechanism for determining whether user input (in the form of an ontology instance)
is missing, based on analysis of the transition rules that cannot be fired. In such case
the choreography engine operation is stopped until necessary data is provided by the
user. Execution can also be permanently stopped, in which case the corresponding
error status meaning “incomplete state of the world” is issued. The decision how to
proceed next should be taken by the module for composition execution based on the
evaluation of the current situation in which the service is executed.

This module is the composition execution engine (CEE), and the algorithm for
recognizing and processing the situations when user input is required can be formulated
as follows (see [24] for details):

 if the requested input matches an output concept of some other service
choreography, then this value should be acquired as a result of execution of another
service;

 otherwise, the user is asked to provide a value for this input concept.
The implementation of this approach has allowed us to reformulate the problem

of finding the proper order for execution of a service composition (known in advance
before the execution) as a process for dynamic reaching this order according to the
following algorithm (inspired by [14]):

1. Create the initial context for service execution from the composite user goal.
2. Try to execute the first service from the composition. If the SWS-E cannot

complete the service execution – analyze the situation:
a) if the missing information can be obtained from the outcome of another service

– add the “blocked” service to a “waiting list” and continue with Step 4, it execution
will continue when this output becomes available;

5 4

b) if the missing information cannot be obtained from another service – forward
the request to the application user (through SAM) and upon reception, continue
execution; the user input is also added to the composition context, in order not to ask
the user again, if it is necessary.

3. When service execution is completed, update the composition context by
adding the service outputs.

4. Select the next service from the list of services prepared for execution and
send it to SWS-E along with the current context.

5. If all services have been executed successfully – check the waiting list:
a) if the list is empty – stop the execution and report “success” of the service

composition, else
b) select a service from the waiting list and send it to the SWS-E with the

current context,
c) if no service in the waiting list can continue with the current context - stop

the execution and report “failure” of the service composition.
6. Repeat the cycle until all services are executed or the composition fails.

5.2. Finding service substitutions

As it has been already mentioned, the problem of necessity to find a proper substitution
to a service participating in a service composition, occurs when the initially selected
service can not be executed because of some technical reasons, for example interactive
errors, timeout errors, security errors etc. It is naturally to assume, that the new service
should be equivalent to the “failing” one in the sense that it can fulfil the same sub-
goal, which is part of the initial goal that required dynamic composition. According
to our approach, the ability of a new service to satisfy the concrete sub-goal will
guarantee that the corresponding service will be functionally compatible with the
other services already selected as part of the service composition.

The simplest and the most efficient way to find such a service is to use the list of
alternative services able to satisfy the same sub-goal. Such matching services have
already been discovered and cached in the phase of user goal decomposition. That is
why, our approach for finding a substitute of a failing service can be formulated as
follows:

1) ask the application user to select a service for substitution from the list of
alternative services, previously discovered as able to satisfy the same sub-goal. Report
on “substitution failure” if the list is empty;

2) keep the rest of services as alternatives for the selected service;
3) execute the newly selected service instead of the failing one.

6. Implementation
The main steps involved in our approach to dynamic service composition, described
in the previous sections, can be logically separated into two tasks: constructing the
list of services that together can satisfy the user goal, and executing these services to
actually fulfil the goal. In accordance to this separation we have designed the module
for dynamic composition (the Run-time Composer) to comprise of two subcomponents:

 service Composition Finder (SCF) – performing goal decomposition and
construction of the list of services that together can fulfil the user goal;

5 5

 composition Execution Engine (CEE) – responsible for execution of the
composed services, as well as for possible error handling.

These two sub-components have been designed to be loosely coupled, in order
to enable IIF users to easily substitute one of them if necessary. From the INFRAWEBS
architecture point of view, the Run-time Composer is a virtual component because it
uses the functionality of other INFRAWEBS components to achieve its task.

As an output, this component provides an execution context which can either
provide the user with the results of execution of all the services or specifies that the
user goal cannot be fulfilled for some reason. The Run-time Composer functionality
is provided as extensions of two other INFRAWEBS components. The SCF provides
an extension of discovery (provided by SAM) towards finding a combination of
services fulfilling the goal, instead of a single match. Since there is no distinction
between composite and atomic goals neither in WSMO nor in the INFRAWEBS
approach, no need of changes to the SAM interface was necessary. The SCF
functionality is only internally used by SAM in order to enable the user to achieve its
goal even if there is no single service that matches.

The Composition Execution Engine, on the other hand, manages the execution
of a set of services and was realised as an extension of the SWS-E.

The SCF logic diagram is presented on Fig. 2. Its operation for finding appropriate
compositions of services includes:

 Matching of a given goal or sub-goal and providing the list of appropriate
services

 Selecting one of the services found as a preferred one to be used for achieving
this goal (sib-goal)

 Storing the alternatives as backups in case of service failure
 Recursive decomposition of the current goal into sub-goals in case no matching

services were found, or none of the found services was selected.

Fig. 2. Service composition finder logic

The CEE is acting as a dynamic orchestration environment able to:
 Coordinate the process of execution of dynamic compositions of services –

having no explicit orchestration, but acting in a common context;
 Invoke a service included in the dynamic composition – using the

corresponding methods of the SWS-E;
 Support data flow between composed services by means of sharing a common

context;
 Provide error handling mechanisms so that alternative compositions can be

used in case of service failure.

5 6

Composition execution is initiated by the user, through SAM, and the set of
selected services (using the SCF) together with their alternatives is given as input.
SAM also creates the necessary Context in which the execution will be carried out.
This context is created on the basis of the initial user goal, in the same way in which
context is created for single service execution. The logic of work of the Composition
Execution Engine is schematically presented on Fig. 3.

7. Discussion and related work

The proposed approach for dynamic service composition was adopted for the
preparation of the first prototype application of the INFRAWEBS Framework – the
STREAM Flows! System (SFS) [20]. SFS aims at overcoming such shortcomings of
existing Frequent Flyers Programs as impossibility of their users to contract services
or combination of services using asynchronous, real-time, anywhere and anytime
system. The owner of the SFS is STREAM Airlines, which can obtain points from
purchasing services of the STREAM group. These services might be an airline ticket,
a hotel booking, a car rental and many others. The customer purchases services (paying
for them in any kind of money transfer) for many companies (engaged with the SFS
program), which collect the information of the customer and send it to the SFS program,
adding the counterpart of the service in points of the SFS program. The SFS program
collects all the information and stores them into its own databases. The main
functionality of the SFS allows the user to create or select travel packages - the choice
of a complex package triggers the selection of an appropriate composite goal template
allowing the dynamic composition of services (e.g. flight + hotel + car rental) during
the execution.

The main advantage of the proposed approach is that it enables finding the
smallest possible set of services able, in combination, to satisfy the user goal. The
user actively participates in the process of dynamic composition, so that the
composition does not involve services the user does not approve of. In this way a
quick response time is achieved, as the set of all possible goal decompositions is not

Fig. 3. Composition execution engine logic

5 7

explored. A general drawback is that the decomposition success, as well as the run-
time composition success, heavily depends on the initial structure of the user goal,
and more precisely on the used goal template. But since in INFRAWEBS goal templates
are created by the application provider, it is expected that they have the right structure.

7.1. Scalability and applicability of the approach

The first aspect that has to be discussed is the degree of the dynamism of the proposed
approach. In some papers the term “dynamic service composition” is used in the
sense that the creation of the service composition is done without any human
intervention. In our approach we use the service application user for two tasks –
selecting a preferred service to be executed for each sub-goal, and selecting a preferred
service for substitution of a service that fails during execution.

Involvement of the user for solving these tasks depends on the concrete
application using the IIF, and is not imposed by the approach. It is easy to see, that the
human factor can be fully eliminated by replacing the act of the user choice by an
automatic procedure for selecting the “best” service based of some criteria, preliminary
defined by the service application provider. Such criteria may be the quality of service
along with some other parameters, which can be extracted from the user profiles.
These criteria may be used to rank the list of discovered or alternative services. The
concrete ranking of services in this list can be done by means of different methods
provided by the SAM component (for details, see [19]).

Another aspect that has to be discussed is the scalability of the proposed
INFRAWEBS approach for semantic service composition, considering the term
“scalability” as a possibility to be reused in other (non IIF) environments. From this
point of view we consider that our approach is rather scalable since:

 All other approaches assume usage in some specially designed environment
providing the proper means for semantic service discovery and execution. From this
point of view we also rely on all functionalities provided by the INFRAWEBS
Integrated Framework. However, the main functionalities needed for the
implementation of the algorithm – service discovery and service execution exist in
all other environments relying on the WSMO Framework. Out dynamic composition
approach is not bound to any specific implementation of these components. Therefore,
the INFRAWEBS Discovery module can be exchanged by the discovery module
developed in DIP, or the WSMX execution environment [30] can be used instead of
the INFRAWEBS Executor (SWS-E).

 The representation of composite goals used in the INFRAWEBS can also be
seen as fully reusable since it completely conforms to the agreed and accepted WSMO
specification and does not require any new additions to the “standard” WSML
language.

 Moreover, the description of such goals can be constructed by means of other
(different from the INFRAWEBS Goal Editor) Editors (for example by the text-based
Goal Editor of WSMO Studio [28] or by the corresponding editor from the Web
Service Modeling Toolkit (WSMT) [16]).

The last aspect to be discussed is the applicability of the INFRAWESB Run-
time Composer, having in mind the amount of restrictions the approach imposes on
services to be used in the service composition.

 The most restrictive assumption of the proposed approach is the use of a
common set of ontologies for describing both the goals and services. However, this

5 8

restriction is caused by the current status of the work on ontology mediators in WSMO
community and will be easily relaxed in the future.

 Another drawback of our approach is the impossibility to explicitly specify
the desired control flow for execution of services in the composition. However, this
deficiency of the approach can be avoided by more effective use of the goal interface
description, when the goal orchestration language is fully specified.

The current implementation of the Composition Execution Engine invokes
services in a sequential order. However, this is not a restriction of the algorithm but
an implementation decision based on the current implementation of the Executor
component. The principle of the blackboard architecture, which is intensively used
by the algorithm, allows parallel execution and synchronization of services. Of course,
it is assumed that there is no interference between the services participating in the
composition.

7.2. Related work

Service composition is part of a more general research area - automated workflow
composition, which is a field of intense activity, with applications in at least two
wide areas: Business Process Modelling and (Semantic) Web Services. A detailed
overview of methods for automated workflow composition can be found in [5].
Tentative techniques to address this problem are experimented using many formalisms
and techniques, among which: situation calculus [18], Logic programming [25], type
matching: [9], coloured Petri nets [29; 10], Linear logic [21], Process solving methods
[6; 13; 27], AI Planning [8], Hierarchical Task Network (HTN) planning [26], and
Markov decision processes [11].

It is interesting to see how the same problem is solved in other approaches for
service composition. For example, a similarly implemented approach for WSMO-
based service composition (but in the design time) is the one developed in the DIP
Integrated project [3]. There, service composition is considered as a goal-oriented
process, which at a glance can be described as follows:

1) the user defines his request to the composer in the form of a composition
goal involving atomic goals plus constraints;

2) atomic goals present in the request are used to discover matching semantic
Web services;

3) the choreographies of matching SWS are used as input to the composer, as
elementary bricks of the solution;

4) the composition goal is fed to the composer as constraints that restrict the
possible constructions;

5) the composer calls a configurator to produce a valid orchestration from the
available choreographies under the specified constraints;

6) the result is then exported as a SWS description involving a valid orchestration
description, in the WSML-AD extension.

As it can be seen, the service selection step is not explicitly mentioned in this
schema, however its results are explicitly used at the step 3, when the choreographies
of selected (not of all matched) services are used for producing a valid orchestration.

Another example is a prototype service composer, which is based on the
OWL-S paradigm for representing semantic services [26]. In this approach called
“composition-driven filtering and selection of semantic Web services”, “the service

5 9

composition requires a human in the loop. A human who has the domain knowledge
for the task should guide the overall composition process where the composer aids
the operator by providing the relevant choices at each step”. In other words, the user
operates explicitly with services rather then with goals. She composes the chain of
services one by one, using the system for filtering services which are not compatible
with the description of the services already selected to be part of a composition. It is
clear that such a process can be seen neither as a run-time composition nor as a
dynamic one and, it is more appropriate only for static, design-time composition of
services.

7.3. Conclusion

The INFRAWEBS approach to dynamic composition of WSMO-based services
composition can be summarized as follows:

The process of finding an appropriate service composition is guided by the
algorithm for run-time decomposition of the user goal into sub-goals and discovering
the existing services able to satisfy these sub-goals

Compatibility of services participating in the composition is achieved by using
the consistent description of the composite goal template, prepared by the service
application provider in design-time.

Compensation of the lack of special control and flow constructs in the service
orchestration language by an algorithm for data-driven execution of the composition
of services and means for exchanging data between services, which are fully based
on the existing specification of WSMO services and goals.

The proposed approach for dynamic service composition has been implemented
as the INFRAWEBS Run-time Composer - a conceptual sub-component of the IIF
run-time environment. Using only implicitly provided information about the desired
order of execution of services in the composition, the Run-time Composer is able to
find a proper orchestration of services in the composition as well as to discover the
appropriate service substitutions when some of the services in the composition can
not be executed.

The Run-time Composer is implemented as two separate sub-modules – Service
Composition Finder and Composition Execution Engine. The first one is integrated
with INFRAWEBS Service Access Middleware (SAM) component of the IIF, and the
second – with INFRAWEBS Execution component. Both components are accessible
as Web services.

R e f e r e n c e s

1. A g r e, G. INFRAWEBS Designer – A Graphical Tool for Designing Semantic Web Services. – In:
AIMSA 2006, LNAI 4183, Springer Verlag Berlin Heidelberg, 2006, 275-289.

2. A g r e, G., T. P a r i e n t e, Z. M a r i n o v a, H-J. N e r n, A. L o p e z, A. M i c s i k, A. B o y a n o v,
J. S a a r e l a, T. A t a n a s o v a, J. S c i c l u n a, O. L o p e z, E. T z a f e s t a s, I. D i l o v.
INFRAWEBS – A Framework for Semantic Service Engineering. – In: E. di Nitto, A-M.
Sassen, P. Traverso, A. Zwegers (Eds.). At Your Service: An Overview of Results of Projects
in the Field of Service Engineering of the IST Programme. MIT Press Series on Information
Systems, 2007 (in press).

6 0

3. A l b e r t, P., C. de S a i n t e M a r i e, L. H e n o c q u e, M. K l e i n e r. Goal-oriented SWS
composition prototype. DIP Deliverable 4.22, December 14, 2006.

4. B u d a k A r p i n a r, I., B. A l e m a n-M e z a, R. Z h a n g, A. M a d u k o. Ontology-Driven Web
Services Composition Platform. – In: Proc. of IEEE International Conference on E-Commerce
Technology (CEC’2004), San Diego, USA, 2004.

5. A t a n a s o v a, T., H. D a s k a l o v a, V. G r i g o r o v a, D. G u l e v. Design & Realisation of Case-
Based Composition of SW Services in Design Time (Design-time Composer). INFRAWEBS
Deliverable D5.4.2, September 2006.

6. B e n j a m i n s, V. R., D. F e n s e l. Special Issue on Problem-Solving Methods. – International J.
of Human-Computer Studies (IJHCS), 49, 1998, No 4, 305–313.

7. B r u i j n, J., H. L a u s e n, R. K r u m m e n a c h e r, A. P o l l e r e s, L. P r e d o i u, M. K i f e r,
D. F e n s e l. D16.1 – The Web Services Modeling Language (WSML). WSML Draft, October
2006.

8. C a r m a n, M., L. S e r a f i n i, P. T r a v e r s o. Web Service Composition As Planning. – In: Proc.
of ICAPS03 International Conference on Automated Planning and Scheduling, Trento, Italy,
9-13 June, 2003.

9. C o n s t a n t i n e s c u, I., B. F a l t i n g s, W. B i n d e r. Large Scale, Type-Compatible Service
Composition. – In: Proc. of IEEE International Conference on Web Services (ICWS 2004),
San Diego, USA, 2004.

10. D i j k m a n, R., M. D u m a s. Service-Oriented Design: A Multi-Viewpoint Approach, CTIT
technical report series No 04-09. Technical report, Centre for Telematics and Information
Technology, University of Twente, Netherlands, February 2004.

11. D o s h i, P., R. G o o d w i n, R. A k k i r a j u, K. V e r m a. Dynamic Workflow Composition Using
Markov Decision Processes. – International J. of Web Services Research, 2, January-March
2005, No 1, 1-17.

12. Fitzgerald, B., C. Olsson (Eds.) The Software and Service Challenge. Contribution to the preparation
of the Technology Pillar on “Service, Grid, Security and Dependability” of the 7th Framework
Programme, Ver. 1.1., 30 January 2006.

13. G o m e z-P e r e z, A., R. G o n z a l e z-C a b e r o, M a n u e l L a m a a. A framework for Design
And Composition Of Semantic Web Services. – In: Semantic Web Services, 2004 AAAI Spring
Symposium Series, 22-24 March, 2004.

14. H u n t, J. Blackboard Architectures. JayDee Technology Ltd., 2002.
15. K a v a n t z a s, N., D. B u r d e t t, G. R i z i n g e r, T. F l e t c h e r, Y. L a f o n. Web Service

Choreography Description Language Version 1.0, 2004.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

16. K e r r i g a n, M. Developers Tool Working Group Status. Version 1, Revision 4.
http://wiki.wsmx.org/index.php?title=Developer_Tools.

17. M a r i n o v a, Z., G. A g r e, D. O g n y a n o v. Final Dynamic DSWS-R and Integration in the IIF.
INFRAWEBS Deliverable D4.4.3, February 2007.

18. M c I l r a i t h, S., T. S o n. Adapting Golog for Composition Of Semantic Web Services. – In: Proc.
of Conference on Knowledge Representation and Reasoning, April 2002.

19. M i c s i k, A., L. K o v a c s, Z. T o t h, P. P a l l i n g e r, J. S c i c l u n a. Revise after final
Specification & Realisation of the Discovery Component. INFRAWEBS Deliverable D6.2.2.
August 2006.

20. P a r i e n t e L o b o, T., A. L o p e z P e r e z, J. A r n a i z P a r a d i n a z. Demonstrator.
INFRAWEBS Deliverable D10.8.3, February 2007.

21. R a o, J., P. K u n g a s, M. M a t s k i n. Logic-Based Web Service Composition: From Service
Description to Process Model. – In: Proc. of 2004 IEEE International Conference on Web
Services, ICWS 2004, San Diego, California, USA, July 6-9 2004.

22. Roman, D., U. Keller, H. Lausen (Eds.) Web Service Modeling Ontology, 2006, WSMO Final
Draft.

23. S c i c l u n a, J., A. P o l l e r e s, D u m i t r u R o m a n, D. F e n s e l. D14v0.2. Ontology-Based
Choreography and Orchestration of WSMO Services. WSMO Final Draft 3 February 2006.

24. S c i c l u n a, J., Z. M a r i n o v a, G. A g r e. D7.4.3 Final SWS-E and Running P2P-Agent.
INFRAWEBS Deliverable D7.4.3, February 2007.

25. S i r i n, E., J. H e n d l e r, B. P a r s i a. Semi Automatic Composition Of Web Services Using
Semantic Descriptions. – In: Proc. of ICEIS-2003 Workshop on Web Services: Modeling,
Architecture and Infrastructure, Angers, France, April 2003.

6 1

26. S i r i n, E., B. P a r s i a, D. W u, J. H e n d l e r, D. N a u. HTN Planning for Web Service
Composition Using SHOP2. – J. of Web Semantics, 1, 2004, No 4, 377-396.

27. T h a k k a r, S., C. A. K n o b l o c k, J. L. A m b i t e, C. S h a h a b i. Dynamically Composing Web
Services From On-Line Sources. – In: Proc. of AAAI-02 Workshop on Intelligent Service
Integration, Edmondon, Canada, July 2002.

28. http://www.wsmo.org/
Last accessed May 2007.

29. Y i, X., K. K o c h u t. A Cp-Nets-Based Design And Verification Framework For Web Services
Composition. – In: Proc. of 2004 IEEE International Conference on Web Services, July 2004,
San Diego, California, USA, July 6-9, 2004.

30. Z a r e m b a, M., M. M o r a n, T. H a s e l w a n t e r, H o-K y u n g L e e S u n g-K o o k H a n.
D13.4v0.3 WSMX Architecture. WSMX Working Draft 12-10-2005.

