
3 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 7, No 1

Sofia 2007

Enabling Architecture for Third Party Applications
in Intelligent Network

Hristo Froloshki, Evelina Pencheva

Department of Telecommunications, Technical University – Sofia
e-mail: hef@tu-sofia.bg enp@tu-sofia.bg

Abstract: Intelligent network (IN) is well known architecture for delivering value-
added services. In conventional telephony networks with IN functionality no other
party than network operator or the vendor of the IN platform can deploy new services.
The Parlay/OSA (Open service architecture) concept opens network interfaces for
3 rd parties so that others than network operator can create and deploy services. The
research concerns applicability of Parlay/OSA generic call control interface, toward
fixed circuit-switched IN network. Mapping between Parlay/OSA and IN call models
is performed with the purpose of achieving common view of a call. Two scenarios are
proposed for realization of the application initiated call functionality. The scenarios
use signaling supported by the IN.

Keywords: Intelligent network, Open service architecture, Parlay/OSA applications.

1. Introduction

Intelligent network (IN) is well known and mature software architecture capable of
delivering value-added services in circuit-switched telephone networks [1]. The
cornerstone of this concept is decoupling of call control from service control. This
means that a computer program can interfere and control the behavior of the network.
Such capability provides the network operator an opportunity to offer content rich
services in addition to traditional ones.

During the 90ies most operators invested heavily and upgraded their circuit-
switched networks to intelligent ones. However, the growth of both IT industry and
the Internet led to new business requirements and deregulation of the telecom sector.
Unfortunately, the IN concept is restricted to circuit switched networks and is not

3

3 4

applicable in packet environment. The centralized approach of service control assumes
that the network is governed by a single operator and does not allow 3rd party control.
It became clear that new evolution path should emerge.

One of the initiatives that pave the way for evolution of the IN is Parlay/OSA
(Open Service Access). Parlay/OSA is service architecture defined for 3rd generation
mobile networks [2] but it is also applicable to next generation networks also. The
idea is to provide services in a unique way independent from underlying networks.
This is achieved by open interfaces that hide network specifics and protocol complexity
from service developers. 3rd party service developers can create new attractive
application having access to network function through application programming
interfaces.

As a new service concept, Parlay/OSA should provide interworking capabilities
with the existing architectures. IN services are related to call events. It is really
important to map an abstract Parlay/OSA call model onto the IN call model in order
to allow Parlay/OSA applications control network resources. There exist some
mappings between OSA/Parlay multi-party call control and call models defined in
Java call control [3] and Session Initiation Protocol (SIP) [4]. Further in [5] a possible
interaction between IN enabled resources and Session Initiation Protocol (SIP) entities
is considered. Still the proved IN basic call state model is not integrated in the vision
of Parlay/OSA abstract model.

The present research concentrates on capabilities of Parlay/OSA applications to
control resources in IN structured networks. Here we investigate the applicability of
Parlay/OSA generic call control interface for calls occurring in IN enabled circuit
switched network. Scenarios for application initiated IN calls are considered.

First in the paper we explain in a simplistic way the IN and Parlay/OSA
service control and suggest possible architecture for interworking between IN and
Parlay/OSA. Then a mapping between call models of IN and OSA is established.
Different call flows for accessing Parlay/OSA applications from IN networks are
considered.

2. Interworking architecture for IN and Parlay/OSA

Fig. 1 shows a simplified IN architecture, where the telephone switches are called
Service Switching Points (SSP) and there are also dedicated nodes for service control
called Service Control Points (SCPs). SSPs and SCPs are connected via signaling
system No 7 network and the dialog between them is based on Intelligent Network
Application Protocol (INAP). The call control between switching nodes is based on
ISDN user part (ISUP) protocol.

At some points the call can be interrupted and the SSP transfers control to SCP
where the service resides. The SCP controls service execution sending instructions to

SSP how to proceed with the call. The
service control is separated from call
control but it is still in the network
operator domain.

SSP SSP
Call Control

Service Control

INAP INAP

ISUP

Fig. 1. Operator-centric decoupling of service
control in Intelligent Network

3 5

Fig. 2 shows the new vision where the service control is exported outside the
network boundaries. Service logic resides on so called application servers. External
applications access network resources by application programming interfaces (API).
The APIs provide programmability of telecommunication resources by defining these
resources in terms of objects and methods, data types and parameters that operate on
those objects. Using APIs methods, the application server receives event notifications
for the calls it is interested in, and sends instructions for particular procedures (dial a
number, release call, activate user interaction, etc.). The access to network resources
is through a gateway. In terms of Parlay/OSA this gateway is regarded as service
capability server (SCS) providing functions for call control.

Fig. 2. Exporting service control outside the operator network in Parlay/OSA

To access Parlay/OSA applications from IN structured network the SCS has to
integrate functions of SCP and call control API. On the side of the network the SCS
has to “talk” INAP, and on the side of application the SCS has to support methods of
call control interface. Further, the SCS has to provide both IN and Parlay/OSA call
models. Such OSA-enabled SCP, operating in synchrony with the events occurring at
IN level and interacting with Parlay/OSA applications, is depicted in Fig. 3.

Fig. 3. IN enabled call control SCS

The Parlay/OSA application registers its interest for call events occurring in the
IN layer. Event notifications are passed to OSA layer for further application-based
processing. The OSA layer proceeds through its states for call object and sends
notifications to the application waiting for further instructions for call treatment.

SCC

SSF SSF
Call Control

Application Server
(Service Logic)

ISUP
INAP

INAP

API
API

Application

IN Layer

OSA Layer

Requests in

Requests out (after
applying OSA

application control)

Call Control
API

3 6

Once the call treatment has been determined, the IN layer is informed and processes
the transaction accordingly.

To allow this kind of control, translation between call control APIs methods and
INAP procedures is needed. Not all interface methods map directly to INAP procedures.
Some methods require functional mapping since the SCS is required to track states
and provide polymorphic behavior for some interface methods.

3. Parlay/OSA generic call model against IN basic call state model
In order to maintain active control association between the application server and IN
network, the SCS must keep the application view of call states for calls of interest.

Parlay/OSA defines rather high level model [6], representing application’s view
of the call. This model does not consider the network’s view of the call, since the
Parlay/OSA interfaces by design are open and network-agnostic. Call control API
methods need to be translated into protocol messages in underlying network, with
specific view of the call.

Parlay/OSA generic call control model consists of 4 states:
Network released – in this state the call has been ended and the SCS collects

the possible call information
Finished – in this state the call has ended and no call related information is to

be send to the application
Application released – in this state the application has requested to release the

call object and the SCS collects the possible call information
Active – in this state a call between two parties is being setup or present. This

state is divided in two substates. The call is in 1 party in call state when the calling
party is present. The call is in 2 parties in call when a connection between two parties
has been established.

To access Parlay/OSA application the SCS must provide both call control manager
and call object classes. The call control manager is responsible for starting and
managing of an instance of call object. The call control manager is used to request
call-related event notifications like address information is analyzed or called party is
busy. The call object offers methods to control resources in the network. The call
object is a simple call control interface, which allows the setup only of traditional
two-party telephone calls.

When the Parlay/OSA application lifecycle manager creates a new call control
manager it enters active state. In this state a relation between application and the call
control service has been established. As depicted in Figure 4, the application uses
enableCallNotifications() method to subscribe for events of interest such as arrival
of call related events. In case such event occurs, the call control manager creates a
call object and informs the application by invoking callEventNotify() method on
callback interface. The application can also indicate it is no longer interested in certain
call related events by invoking disableCallNotification() method. In this case the call
control manager moves to notification terminated state where event will not be
forwarded to the application.

On the side of IN, the SCS must be capable to react to events occurring in the
telephony network. To allow control on originating and terminating calls, the SCS
has to talk with SSPs at both ends of the network (Fig. 5). To control originating calls
an originating basic call state model (O_BCSM) is started. A terminating basic call
state model (T_BCSM) is to provide terminating side services.

3 7

O_BCSM and T_BCSM models implement the idea of half-call, associated with
each party in a two-party conversation [7]. Each of the models represents finite state
machine which includes break points that allow the call routing to be paused for
originating calls and terminating calls correspondingly. Each one of these triggers is
separately settable either statically or dynamically by service logic, to allow call
process to be interrupted as various stages in call processing (called points in call
(PICs)).

When an originating call attempt is detected in SSP, an O_BCSM is started.
O_BSCM involves the following 11 PICs:
O_Null: initial state; no call exists, supervision is being provided.
Auth_Orig_Attempt: initiation of desire to place outgoing call is detected.
Collect_Info: information is being collected from originating party.

Call control Service Capability Server

Call control manager Call

IN Layer

1.
 e

na
bl

e
ca

ll
no

tif
ic

at
io

ns

2. call-related
event 7. call handling

Application Server

Callback
Call control manager Callback Call

3. creates

4.
 e

ve
nt

 n
ot

ify

5.
 a

pp
lic

at
io

n
ca

ll
co

nt
ro

l

6.
N

ot
ifi

ca
tio

ns
,

re
su

lts

8.
 d

is
ab

le
 c

al
l

no
tif

ic
at

io
ns

Call Control

O_BCSM T_BCSM

IN Layer

OSA Layer

Application
Server

Call Control
API

INAP
IN

AP SCC

ISUP

SSP
SSP

Fig. 4. Interaction between call related objects and their callbacks objects

Fig. 5. Application control of IN originating and terminating calls

3 8

Analyze_Info: information is analyzed and routing address and call type are
determined.

Select_Route: routing address and call type are being interpreted and the
route is selected

Auth_Call_Setup: authority of originating party to place this particular call
is being verified.

Send_Call: call is being processed by the terminating half BCSM.
O_Alerting: the terminating party is being alerted
O_Active: connection is established between originating and terminating

parties; call supervision is being provided.
O_Disconnect: connection is torn down.
O_Exception: an exceptional condition is detected.
Special treatment might be applied for terminating call also. For terminating

calls a T_BCSM is started.
T_BSCM involves the following 9 PICs:
T_Null: initial state; no call exists, supervision is being provided.
T_Auth_Term_Attempt: given an indication of an incoming call received

from O_BCSM, authority to route this call to the terminating party is being
verified.

Select_facility: a particular available resource is been selected.
Present_call: terminating resource is informed of incoming call.
Select_Route: routing address and call type are being interpreted and the
T_Alerting: the terminating party is being alerted
T_Active: connection is established between originating and terminating

parties; call supervision is being provided.
T_Disconnect: connection is torn down.
T_Exception: an exceptional condition is detected.
The next section provides mapping between Parlay/OSA generic call state

machine and O_BCSM and T_BCSM of IN.

4. Application control on IN originating calls

By making initial subscription for call notifications, the application can set detection
points in O_BCSM. In case of originating call, the application is notified and takes
control over the call in order to fulfill application logic. The interworking architecture
between IN and OSA for originating calls is shown in Fig. 6.

The call control manager at OSA layer creates a new call object and notifies its
callback call control manager at application side about the originating call. The
application creates the corresponding callback call object. Control shuttles between
O_BSCM and OSA generic call state machine while the call is being serviced.

When a call request arrives, call object is being initialized in 1 Party in call
state. The 1 Party in call state accommodates the following O_BCSM PICs:

3 9

Auth_Orig_Attempt, Collect_Info, Analyse_Info, Select_Route, Auth_Call_Setup,
Send_Call and O_Alerting as illustrated in figure 7.

Interruption of the call in Auth_Orig_Att PIC allows an application to verify the
right of the user to access network resources. This step could include a query to
external database. A possible reason to deny access could be a report indicating unpaid
bill or administratively forbidden subscriber.

If the authentication is positive, the Collect_Info PIC is entered. The waiting
time for this point in ISDN networks is zero (the dialed destination address is encoded
in the Setup message). Still the point may be used in a “Hotline” service, where a user
picks up the hook and waits for a few seconds until a timer set by the application
expires and Setup message with predefined (by the user) destination address is sent.

In the Analyse_Info PIC the application can affect routing address for example
to determine a new destination.

The Select_Route PIC provides the application with the ability to set alternative
route for the call in case the one chosen by the telephone switch fails.

The application can verify the authority of the subscriber to place the particular
call in the Auth_Call_Setup PIC. This check is performed to ensure that the subscriber
is allowed to dial international numbers, premium services, etc. Typically it also
includes database lookup.

The Send_Call PIC is used to send the call to the terminating party. At this PIC
a message might be received indicating that the called party is busy, which opens the
possibility for implementation of the service like “call completion on busy” or “call
forwarding on busy”.

In the O_Alerting state the calling party is notified with audio signal that the
called party’s equipment rings. Potential services making use are “call completion on
no answer” and “call forwarding on no reply”.

When the called party answers the O_Active PIC is entered and the application
is notified. The application is notified by routeRes() method and the call object moves
to 2 parties in call state. In this state the application can monitor the call.

Exceptions in the IN layer leading to the O_Exception PIC are reported to the
application by invoking its CallFaultDetected() method.

Call Control

O_BCSM

IN Layer

OSA Layer

Application
Server

Call Control
API

IN
AP SCS

ISUP

SSP

Fig. 6. OSA application control of originating calls

4 0

In case the application has explicitly requested routing toward certain destination
address and that routing failed, the application is reported by routeErr() method.

In case the call ends, the application is notified and enters the Network Released
state. In this state the application has the ability to collect call information for purposes
of charging, logging etc. using getCallInfoReq() and/or superviseCallReq methods.

The Application Released state is entered when certain criteria for the call are
met (e.g. not enough debit in a pre-paid card) and application logic issues a release()
method to release the call. In this state the application also can request possible call
information.

5. Application control on IN terminating calls

In case of terminating call, the application control is being associated with the
terminating party. The application has to register its interest for specific events related
with the terminating party in advance. Control shuttles between T_BSCM and OSA
generic call state machine while the call is being serviced. The interworking
architecture between IN and OSA for terminating calls is shown in Fig. 8.

When an IN terminating call arrives in the SSP, the T_BCSM is started. The call
control manager creates a new call object and initiates it in 1 party in call state.

The 1 party in call state in the OSA layer includes functionality for
Auth_Term_Att, Select_Facility, Present_Call, and T_Alerting PICs in the IN layer
(Fig. 9).

Potentially Auth_Term_Att PIC can be used by applications to check whether
the address of the caller is not on a black list, defined by the terminating party, or by
served network operator.

Network Released

2 Party Call

1 Party Call
Active

2 Party Call

Answer

Network Released Application
Released

Finished

1. O_Null

17

15

13

12

10

8

6

4

2

18

18

20

21

2. Auth_Orig_Att
1

3. Collect_Info
3

4. Analyse_Info
5

5. Select_Route
7

6. Auth_Call_Setup
9

7. Send_Call
11

8. O_Alerting
14

9. O_Active
16

10. O_Disconnect
19

11. O_Exception
Orig_Attempt

O_Calling_Party_Disc &
O_Abandon

O_Conn_Failure

O_No_Answer

O_Called_Party
_Busy

Route_Failure

Auth_Failure

Route_Select_
Failure

Invalid_Info

Collect_Timeout

Orig_Denied

O_Disconnect

O_Answer

O_Term_
Seized

Orig_Auth

Route_Selected

Analysed_Info

Collected_Info

Orig_Attempt_
Auth

O_Disc_Complete

O_Mid_Call

1 Party Call “call supervision

event”

“call supervision

event”

“c
on

ne
ct

io
n

to

ca
lle

d
pa

rty

un
su

cc
es

sf
ul

”
“r

ou
tin

g
ab

or
te

d
or

 in
va

lid

ad
dr

es
s”

deassignC
all

release

deassignCall

calling party
disconnects

calling party
abandoned

no

re
po

rts

re
qu

es
te

d

in
fo

rm
at

io
n

re
ad

y

fa
ul

t i
n

re
tri

ev
al

 o
f

in
fo

rm
at

io
n no

rep
ort

s

re
qu

es
te

d
in

fo
rm

at
io

n
re

ad
y

fault in
retrieval of
information

release

“arm
trigger”

“arm

trigger”

18

Fig. 7. Mapping between OSA generic call control model and O_BCSM model

4 1

After positive authentication T_BCSM enters the Select_Facility PIC, where
status of the terminating party is examined. This is particularly useful for services
such as “call waiting”.

Present_Call PIC is entered when the called party is not busy and there are
resources to terminate the call. Terminating resources are informed of incoming call.

T_Alerting PIC is the point where indication is sent to O_BCSM, that the
terminating side is being notified for the call. Services may use a timer in this PIC
and on its expiration to forward the call to a voice mailbox or a mobile number.

The T_BCSM moves to T_Active PIC when the terminating party answers. The
application is notified and the call object moves to active 2 Parties in call state.

Call Control

T_BCSM

IN Layer

OSA Layer

Application
Server

Call Control
API

INAPSCS

ISUP

SSP

Network Released

2 Party Call

1 Party Call

12. T_Null
Term_Attempt

19. T_Exception

35

23

25

27

29

31

34

32

32

T_C
alling_Party_D

isconnect
& T_Abandon

Term_Seized

T_Called_Party
_Busy

Presentation_
Failure

T_No_Answer

T_Conn_Failure

T_Mid_Call

T_Disconnect

T_Answer

T_Term_Seized

Term_Res_Avail

Term_Auth

“call supervision event”

“call supervision
event”

22
13. Auth_Term_Att

14. Select_Facility
24

15. Present_Call
26

16. T_Alerting
28

18. T_Disconnect
33

Active

2 Party Call

Answer

Network Released Application
Released

Finished

1 Party Call

“c
on

ne
ct

io
n

to
 c

al
le

d
pa

rty
 u

ns
uc

ce
ss

fu
l”

“ro
ut

in
g

ab
or

te
d

or
 in

va
lid

ad

dr
es

s”

deassignCall

release

deassignCall

calling party
disconnects calling

party
abandoned

no

re
po

rts

re
qu

es
te

d

in
fo

rm
at

io
n

re
ad

y

fa
ul

t i
n

re
tri

ev
al

 o
f

in
fo

rm
at

io
n no

rep
ort

s

re
qu

es
ted

inf

or
m

at
ion

re

ad
y

fa
ul

t i
n

re
tri

ev
al

 o
f

in
fo

rm
at

io
n

release

“arm trigger”

“arm trigger”

17. T_Active
30

Fig. 8. OSA application control of terminating calls

Fig. 9. Mapping between OSA generic call control model and T_BCSM model

4 2

Transition to T_Disconnect PIC is induced when disconnect event in the network
occurs. The call object in OSA layer enters the Network Released state. The application
can collect the possible call information.

6. Application Initiated Call

In Parlay/OSA, 3 rd party call is possible, for example alarm call.
In case of application initiated call, the application requests from call control

manager to create a new call object. Using routeReq() method the application requests
the call to be routed to each of the parties in call. Both parties in call are treated as
terminating sides. INAP capable network elements, on the other hand use the
InitiateCall procedure, issued by the SCP toward SSP in the IN [8]. However the IN
assigns O-BCSM and T-BCSM, even though the call is established by the network.

The SSP creates an instance of O_BCSM and suspends its processing, until an
explicit Continue procedure is called to actually route the call between originating
and terminating parties.

Here we consider two approaches. The first one assumes that in addition to
INAP, the SCS “talks” ISUP protocol as well. This approach is suitable for IN networks
where just simple call control is possible and call party handling is not allowed. The
other approach relies only on INAP enabled SCS but assumes more complex call
handling including manipulation of individual parties in call.

6.1. Simple call handling with INAP and ISUP signaling

An example dialogue between SCS and SSP is given in figure 10. It represents
simplified INAP message exchange needed for implementing the first approach. The
application invokes routeReq() method on the SCS which starts InitiateCall procedure
for the first party. Since both parties are terminating sides of the call, in this case we
replace the traditional naming convention A and B with B1 and B2.

At least one event detection point, needed for further execution of the service
(T_Answer) is also set. An event is generated when B1 answers – it is reported to the
SCS so it must determine if B2 has answered as well. If B1 is the first to answer the
call from the network the SCS puts the call on hold with the ISUP CallProgress(held)
message [9].

When the SCS detects a second event report indicating that B2 has picked up
the phone it sends an ISUP CallProgress(resume) message is sent, indicating the
establishment of connection between B1 and B2.

In this scenario it is essential to notice the necessity of direct interaction between
the SCS and the SSP, which bypasses the functionality provided for service logic,
provided by INAP.
6. 2. Complex call handling with INAP signaling
Fig. 11 represents the dialogue based solely on INAP. The application invokes
routeReq() method to establish connection with B1. The SCS issues an InitiateCall
request toward the SSP with address of B1. The SSP only creates an instance of
BCSM for B1 and suspends call processing until explicit Continue message is sent
by the SCS.

4 3

Then control is transfered to the SSP. When B1 answers, the application is notified
by routeRes() method.

The application requests establishing connection toward B2. The SCS receives
creates a call segment association and sends InitiateCall request with the address of
B2. When B2 answers, the SCS merges the two call segments sending
MergeCallSegments() and invokes a Continue procedure for B2. Both parties are
now in active session.

This approach is more elegant than the first one, since it does not introduce
additional requirements on the protocols, supported by the call control function of

OSA

I N A P

Called party B2

I S U P

6)
 IN

A
P

: E
ve

nt
R

ep
or

t(“
A

ns
w

er
”)

5) ISUP: (“Answer”)
Called party B1

4) ISUP: “Alerting”

7) ISUP: CallProgress (“Held”)

2) INAP: InitiateCall(B1)

3) INAP: ReportRequest(B1)
7) ISUP: CallProgress(“Held”)

12) ISUP: (“Answer”)

11) ISUP: “Alerting”

13) INAP: EventReport(“Answer”)

15) ISUP: CallProgress (“Resume”)

SSF SSF
7)

 IN
A

P
: I

ni
tia

te
C

al
l(B

2)
10

) I
N

A
P

: R
ep

or
tR

eq
ue

st
(B

2)

OSA/Parlay
gateway

1) routeReq(B1,null)
9) routeReq(B2,null)

8) routeRes()

15) ISUP: CallProgress (“Resume”)

14) routeRes()

Application Server

OSA

SCF

Calling party Called partySSF SSF

1) routeReq(B1,null)
7) routeReq(B2,null)

6) routeRes()

5)
 IN

A
P

: I
ni

tia
lD

P
(“

A
ns

w
er

”)

11
) I

N
A

P
: I

ni
tia

lD
P

(“
A

ns
w

er
”)

9) INAP: InitiateCall(B2,null)
10) INAP: ReportRequest(“Answer”)

12) INAP: MergeCallSegments(B1,B2)
13) INAP: Continue()

2) INAP: InitiateCall(B1,SRF)
3) INAP: ReportRequest(“Answer”)
4) INAP: Continue()
8) INAP: CreateCallSegmentAssociation()

OSA/Parlay
gateway

Application Server

Fig. 10. Application initiated call using simple call control

Fig. 11. Application initiated call using simple call party handling

4 4

the SCS. The problem is with the more complex call control not supported by traditional
intelligent networks [10].

7. Conclusions

Research conducted for this article shows that mapping can be done between OSA/
Parlay generic call control and basic call state machines of IN. This mapping is needed
in order to allow 3rd party control for calls in networks structured as intelligent ones.
The IN concept provides a way of decoupling call control from service control but it
is operator centric. With Parlay/OSA network interfaces are open for external service
providers.

The call control Parlay/OSA interface is quite suitable for services, requiring
event reports and minimal routing intervention on behalf of the application server. In
addition to control of originating and terminating IN calls, Parlay/OSA allows
application initiated calls. Two scenarios are proposed with the aim of illustrating
guidelines on solutions for different call handling function supported by IN nodes.

R e f e r e n c e s

1. ITU-T Rec. Q.1218. Interface Recommendation for intelligent network Capability Set 1.
2. 3GPP TS 29.198-1. Open Service Access, Application Programming Interface. Overview, V. 6.3.2.
3. T a n a k a, S., H.S h i n a, T. Y a m a d a, S. S h i r a i s h i. High Performance Platform for multiple

OpenAPIs. – In: 10th International Conference on Telecommunications, 23 February-March
2003. ICT 2003, Vol. 2, 1259-1263.

4. RFC3261 SIP: Session Initiation Protocol. J. Rosenberg, H. Schulzrinne et al., June 2002.
5. RFC3976 Interworking SIP and Intelligent Network (IN) Applications. January, 2005.
6. 3GPP TS 29.198-4-2 Open Service Access, Application Programming Interface, Generic Call Control,

V. 6.4.1.
7. ITU-T Rec. Q.1224, Distributed functional plane for intelligent network Capability Set 2.
8. ITU-T Rec. Q.1228, Interface Recommendation for intelligent network Capability Set 2.
9. ITU-T Rec. Q.733.2 Description For Call Completion Supplementary Services Using SS No 7.
10. Z u i d w e g, J. Next Generation Intelligent Networks, Artech House Inc., 2002.

