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1. Introduction

Problems under uncertainty are solved using utility theory (v o n  N e u m a n n,
M o r g e n s t e r n [23]). It assumes that alternatives should be modeled as lotteries,
each being a full disjoint set of events associated with a prize. If the set of prizes and
lotteries are discrete, then ordinary lotteries are defined. If sets are continuous, then
generalized lotteries of I, II or III type apply (T e n e k e d j i e v [17]). In the case of
generalized lotteries of I type (further denoted GL-I) prizes are actually a random
variable, described probabilistically by the cumulative distribution function (CDF).
A utility function u(.) should be constructed over the set of prizes, which increases
with the increase of preferences of the decision maker (DM) (K e e n e y, R a i f f a
[7]). The values of u(.), weighed by their probabilities define the expected utility of a
lottery. The higher this index the more preferred the lottery.

If a problem under strict uncertainty arises, the DM must define which of the
states are possible. The choice of an alternative can then be made using the Wald
(Wa l d [24]), Hurwicz (R a p o p o r t [14]), Savage (S a v a g e [16]), Laplace
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(R a p o p o r t [14]), or the maximax criteria (G r o e b n e r, et al. [7]). The Wald
criterion in particular reflects extreme pessimism and assumes that alternatives should
be ranked in descending order of their worst outcome. The maximax criterion, on the
other hand, reflects extreme optimism and assumes that alternatives should be ranked
in descending order of their best prizes. The Hurwicz criterion  uses the pessimism
index α[0; 1], that measures the pessimism of the DM. Then alternatives are ranked
in descending order of the weighted value of the worst and best prizes by the index α.
As discussed in (F r e n c h  [6]), none of the criteria under strict uncertainty obeys the
minimal requirements of rational choice.

In the condition of risk, the DM must define unique probability estimates
(B e r n s t e i n [4]) and then alternatives are modeled as classical-risky lotteries. In
N i k o l o v a  et al. [13], real DMs are called fuzzy-rational, since their subjective
estimates of probabilities and utilities are in an interval form. Then fuzzy-rational
lotteries are defined, which cannot be directly ranked according to expected utility
(T e n e k e d j i e v  et al. [20]). It is necessary to transform interval probabilities into
point estimates of certain quality.

The problem of ranking alternatives with partially quantified uncertainty has
been discussed in many works (T r o f f a e s [21]; A u g u s t i n [3]). Combination of
techniques under risk and under strict uncertainty is often proposed (U t k i n,
A u g u s t i n [22]). The problem of constructing probability distributions using
probability confidence intervals is also discussed (K o z i n e, U t k i n [9]). In
N i k o l o v a [12] and T e n e k e d j i e v [19], the Laplace and Hurwicz expected
utility criteria are proposed to rank ordinary fuzzy-rational lotteries. Those criteria
are based on the homology between probabilities and degrees of membership. In
T e n e k e d j i e v  et al. [20] the Wald expected utility criterion is proposed to rank
generalized lotteries of I type. The interval probabilities are transformed into point
estimates using three intuitionistic operators that transform intuitionistic fuzzy degrees
of membership into classical fuzzy ones (A t a n a s s o v [1]; A t a n a s s o v [2]).

The work  T e n e k e d j i e v  et al. [20] introduces one-dimensional (1D) ribbon
distribution functions, originating from the interval estimates of quantiles/quantile
indices of fuzzy-rational DMs. These functions are either x-ribbon or p-ribbon
depending on the type of uncertainty (on the quantile or on the quantile index). Fuzzy-
rational GL-I are defined on that basis. The ribbon distribution functions are
approximated by classical ones using the Laplace criterion under strict uncertainty.
Then the fuzzy-rational GL-I are approximated by classical GL-I and are ranked
according to the Laplace expected utility criterion.

This paper proposes algorithms that use the Wald, Hurwicz and maximax criteria
under strict uncertainty to approximate one-dimensional x-ribbon distribution functions
by classical ones. In that way, fuzzy-rational GL-I are approximated by classical
GL-I and the Wald, Hurwicz and maximax expected utility criteria are defined to
rank those.

2. One-dimensional CDFs and the imperfection of elicitation

The linear interpolation of classical CDF function by elicited knots is presented in
the Appendix. Constructing CDF may be performed, for example, if several inner
quantile indices F2, F3, ..., Fz-1 are selected, randomly distributed in the interval [0; 1]
and their corresponding quantiles x̂2, x̂3, ..., x̂z–1are assessed (T e n e k e d j i e v  et al.
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[20]). For each knot, the DM should solve the preferential equation l1(X  x̂l)~
l2(m, n), where l1(X x̂l) is a lottery that gives a huge prize if X takes values lower or
equal to x̂l, and l2(m,n) is a lottery, giving the same prize if a white ball is drawn from
a urn of n balls, of which m are white. For the ideal DM, the preferential equation
l1(X  x̂l)~l2(m, n) has an unique solution x̂l=x*, and m/n=Fl (~ is the binary relation
„equally preferred to” or „indifference”). For the real DM, there exist xb>xa, such that
l1(Xxa)~l2(m, n), l1(Xxb)~l2(m, n), l1(Xxb)   l1(Xxa) (  is the binary relation
“more preferred to”, or “strict preference”). That is why it is necessary to find the
highest x=x̂down, for which l2(m, n)l1(Xx̂down), and the smallest x=x̂up, for which
l1(Xx̂up)l2(m, n). Then the uncertainty interval of the root is x*(x̂down; x̂up) and the
belief of the DM regarding the quantiles takes the form
(1)                                x̂lx̂l

dx̂l
u   l=2, 3, …, z–1.

The extreme quantile indices F1=0 and Fz=1 correspond to quantiles x̂1 = x̂1
d = x̂1

u

and x̂z = x̂z
d = x̂z

u. It is obvious then that the real DM’s preference do not obey transitivity
of ~ and the mutual transitivity of  and ~, which are key assumptions for rationality
(S a v a g e [15]; D e  G r o o t [5]; T e n e k e d j i e v [18]). That is why real DMs are
called fuzzy-rational (N i k o l o v a  et al. [13]). A 1D CDF, linearly interpolated on
knots with quantile uncertainty intervals, is presented in the Appendix. The former is
referred hereafter as 1D x-ribbon CDF (T e n e k e d j i e v  et al. [20]).

3. Ranking fuzzy-rational GL-I

Some alternatives with fully quantified uncertainty can be modeled by 1D classical-
risky GL-I, which are presented in the Appendix. However, when the uncertainty is
partially quantified with 1D x-ribbon CDF – Fi

xR(.) then the resulting 1D GL-I takes
the form (2) and shall be referred as x-fuzzy-rational
(2)                            gi

xfr=< Fi
xR(x); x >,  i=1, 2,…, q.

In T e n e k e d j i e v et al. [20], ranking 1D x-fuzzy-rational GL-I is performed in
two stages:

1) Using a criterion under strict uncertainty Q, Fi
xR(.) is piece-wise linearly

interpolated by a 1D classical-risky CDF – Fi
xQ(.), with knots:

(3)                     {(xl
Q,(i); Fl
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The 1D x-fuzzy rational GL-I (2) is approximated by a 1D classical-risky GL-I,
referred as xQ-generalized (1D xQ-GL-I):
(6)                            gi

xQ=<Fi
xQ(x); x > ,  i=1, 2, …, q;

2) The Q-expected utility of the 1D x-fuzzy-rational GL-I (2) is calculated as the
expected utility of the 1D xQ-GL-I (6), according to (A15):
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The resulting Q-expected utility of the 1D x-fuzzy-rational GL-I shall be referred
as xQ-expected utility. Some decision criteria under strict uncertainty essentially use
the one-dimensional utility function u(.) in the approximation of Fi

xR(.) by Fi
xQ (.).

4. Approximation of 1D x-ribbon CDF

The following task has to be solved in order to approximate a 1D x-ribbon CDF.
a) Setup:
– criterion under strict uncertainty: Q;
– one-dimensional utility function: u(.);
– number of knots for approximation: zi >1;
– quantile indices: Fl

(i), for l=1, 2,…, zi, such that

(8)                               0=F1
(i)F2

(i)… )(
1

i
zi

F   )(i
zi

F =1;
– lower limits of the quantiles: xl

d,(i), for l=1, 2,…, zi , such that

(9)                                 x1
d,(i)x2

d,(i) … )(,
1
id

zi
x   )(, id

zi
x ;

– upper limits of the quantiles: xl
u,(i), for l=1, 2,…, zi , such that

(10)        x1
d,(i)=x1

u,(i) x2
u,(i)… )(,

1
iu

zi
x   )(, iu

zi
x = )(, id

zi
x ,

xl
d,(i)xl

u,(i), for l=2, 3,…, zi–1;
– end quantiles

(11)                                    x1
Q,(i)= x1

d,(i)= x1
u,(i),

)(, iQ
zi

x = )(, id
zi

x = )(, iu
zi

x .

b) Find:
– Inner quantiles xl

Q,(i), for l=2, 3,…, zi–1, such that

(12)                        x1
Q,(i)  x2

Q,(i)  …  )(,
1
iQ
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x   )(, iQ
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x ,
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d,(i)  xl

Q,(i)  xl
u,(i).
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4.1. Approximation of 1D x-ribbon CDF using the Wald criterion (Q=W)

4.1.1. General case

The Wald decision criterion under strict uncertainty assumes that the worst outcome
always occurs. The application of this idea in the case of 1D x-fuzzy-rational GL-I
would assume to choose the quantiles xl

W,(i),  l=2, 3, ..., zi–1, so that to minimize the
xW-expected utility of the lottery:
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,  l=1, 2, 3, …, zi–1.

The variables Il
xW,(i) physically coincide with the expected utilities of hypothetical

1D classical-risky GL-I – gl
h,xW,(i)=<Fl

h,xW,(i)(x); x>, where the 1D classical CDF –
Fl

h,xW,(i)(.), are linearly interpolated on two knots (xl
W,(i); 0) and ( )(,

1
iW

lx  ; 1). The 1D
classical CDF – Fl

h,xW,(i)(.), the hypothetical 1D classical-risky GL-I – gl
h,xW,(i) and their

expected utilities Il
xW,(i) are unknown until the quantiles xl

W,(i),  l=2, 3, ..., zi–1, are
defined, which obey the conditions

xl
d,(i) – xl

W,(i)  0,  l=2, 3, ..., zi–1,
xl

W,(i) – xl
u,(i)  0,  l=2, 3, ..., zi–1,

(15) xl
W,(i) – )(,

1
iW

lx    0,  l=2, 3, ..., zi–2,
x1

d,(i) – x2
W,(i)  0,

)(,
1
iW

zi
x  – )(, id

zi
x  0.

The so-defined (zi–2)-dimensional non-linear optimization task with 3zi–5 linear
constraints can be redefined in a task of lower dimension, using the following
properties:

a) since the weight coefficients ( )(
1
i

lF  –Fl
(i)) of the variables Il

xW,(i) in the function
Ei

xW(u|Fi
xR) are known and nonnegative, then the required quantile estimates should

be found so that to minimize the quantities  Il
xW,(i);

b) let  all quantiles, but the l-th,  be fixed at a certain level, where
l{2, 3, ...,  zi–1}, and assume that for the l-th quantile
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(16)                    xl
W,(i)maxxl

d,(i), )(,
1

iW
lx  ; minxl

u,(i), )(,
1

iW
lx  ,

then the change in xl
W,(i) only influences )(,

1
ixW

lI   and Il
xW,(i);

c) let for some l{2, 3, …, zi–1} the utility u(.) be
– monotonically increasing in the interval xxl

d,(i); xl
u,(i),

– limited from above by u(xl
d,(i)) in the interval x )(,

1
id

lx  ; xl
d,(i),

– limited from below by u(xl
u,(i)) in the interval xxl

u,(i); )(,
1
iu

lx  ,

then )(,
1

ixW
lI   and Il

xW,(i) are monotonically increasing functions of xl
W,(i);

d) let for some l{2, 3, …, zi–1}, the utility function u(.) be
– monotonically decreasing in the interval xxl

d,(i); xl
u,(i),

– limited from below by u(xl
d,(i)) in the interval x )(,

1
id

lx  ; xl
d,(i),

– limited from above by u(xl
u,(i)) in the interval x xl

u,(i); )(,
1
iu

lx  ,

then )(,
1

ixW
lI   and Il

xW,(i) are monotonically decreasing functions of xl
W,(i);

e) let for some l{2, 3, …, zi–1} the utility function u(.) be a constant in the
interval x )(,

1
id

lx  ; )(,
1
iu

lx  . Then )(,
1

ixW
lI   and Il

xW,(i) do not depend on changes of xl
W,(i).

When reducing the dimensionality of the optimization task, it is convenient to
assign the quantiles xl

W,(i),  l=1, 2, …, zi, to 5 disjoint sets: “known”, “arbitrary”, “left
prone”, “right prone” and “optimizing”, according to Algorithm 1.

Algorithm 1
Step 1. All quantiles are marked as “optimizing”.
Step 2. From left to right (l=2, 3, …, zi–1) all “optimizing” quantiles, whose

lower and upper limits coincide (i.e. xl
d,(i)=xl

u,(i)), are marked as “known”. The following
assignments are made: xl

W,(i)= xl
d,(i).

Step 3. From left to right (l=2, 3, …, zi–1) all “optimizing” quantiles that obey
“property e” (i.e. )(,

1
ixW

lI    and Il
xW,(i) do not depend on the change of xl

W,(i)), are marked
as “arbitrary”.

Step 4. From left to right (l=2, 3, …, zi–1) all “optimizing” quantiles that obey
“property c” (i.e. )(,

1
ixW

lI   and Il
xW,(i) are monotonically increasing functions on xl

W,(i)),
are marked as “left prone”.

Step 5. From right to left (l=zi–1, zi–2, …, 3, 2), all “optimizing” quantiles that
obey “property d” (i.e. )(,

1
ixW

lI   and Il
xW,(i) are monotonically decreasing functions of

xl
W,(i)), are marked as “right prone”.

Step 6. From left to right (l=2, 3, …, zi–1) all “arbitrary” quantiles, whose left
neighbor is “known”, “left prone” or “optimizing”, is marked as “left prone”.

Step 7. From left to right (l=2, 3, …, zi–1) all “arbitrary” quantiles, whose right
neighbor is “known”, “right prone” or “optimizing”, are marked as “right prone”.

Step 8. From left to right (l=2, 3, …, zi–1) all “arbitrary” quantiles, whose left
neighbor ll and right neighbor lr do not overlap (i.e. xll

u,(i) xlr
d,(i)), are marked as “left
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prone”, and both neighbors are marked as “known”. The following assignments are
made: xll

W,(i)=xll
u,(i) , xll

d,(i)= xll
u,(i), xt

d,(i)=maxxt
d,(i); xll

W,(i), t=ll+1, ll+2, …, zi–1, xlr
W,(i)=xlr

d,(i),
xlr

u,(i)=xlr
d,(i) and xt

u,(i)=minxt
u,(i); xlr

W,(i), t=2, 3, …, lr–1.
Step 9. From left to right (l=2, 3, …, zi–1) all quantiles, whose lower and upper

limit coincide (i.e. xl
d,(i)=xl

u,(i)), are marked as “known”. The following assignment are
made: xl

W,(i)=xl
d,(i).

Step 10. From left to right (l=2, 3, …, zi–1) the first quantiles from the group of
“arbitrary” quantiles, whose left neighbor ll and right neighbor lr overlap (i.e.
xll

u,(i)>xlr
d,(i)), are marked as “optimizing”, and the other quantiles in the group are

marked as “left prone”.
Step 11. From left to right (l=2, 3, …, zi–1) all “right prone” quantiles, which do

not overlap with their right “left prone” neighbor (i.e. xl
u,(i) )(,

1
id

lx  ), are marked as
“known”, together with their right neighbors, and it is defined that xl

W,(i)=xl
u,(i), xl

d,(i)=xl
u,(i),

)(,
1

iW
lx  = )(,

1
id

lx   and )(,
1
iu

lx  = )(,
1

id
lx  .

Step 12. From left to right (l=2, 3, …, zi–1) all “right prone” quantiles, which do
not overlap with their right “left prone” neighbor (i.e. xl

u,(i)> )(,
1

id
lx  ), are marked as

“optimizing”.
Step 13. From left to right (l=2, 3, …, zi–1) all “left prone” quantiles, whose left

neighbor is “known” or which do not overlap with their left neighbor (i.e. xl
d,(i)

)(,
1
iu

lx  ), are marked as “known”. The following assumptions are made: xl
W,(i)=xl

d,(i) and
xl

u,(i)=xl
d,(i).

Step 14. From right to left (l=zi–1, zi–2, …, 3, 2) all “right prone” quantiles,
whose right neighbor is “known”, and which do not overlap with their right neighbor
(i.e. xl

u,(i) )(,
1

id
lx  ), are marked as “known”. The following assignment are made:

xl
W,(i)=xl

u,(i) and xl
d,(i)= xl

u,(i).
Step 15. If at least one quantile has been marked as “known” in steps 13 and 14,

then go to step 13.
Step 16. If at least one “optimizing” quantile has been marked as “arbitrary”,

“left prone” or “right prone” in Steps 3 to 5, then go to Step 3, otherwise – the end.
After applying Algorithm 1:

 there are no “arbitrary” quantiles;
 if there are no “optimizing” quantiles, then there are only “known” quantiles;
 if there are “optimizing” quantiles, then there are no “right prone” quantiles

with right “left prone” neighbors;
 the lower and upper limits of all “known” quantiles coincide with a fixed value;
 all quantile limits obey the initial conditions.

Let N be the cardinality of the set of “optimizing” quantiles. If N=0, then all
quantiles have been found and the task is solved. If N>0, then Algorithm 2 should be
applied. It uses only arbitrary permissible (ones which obey the linear constraints)
values of the “optimizing” quantiles to calculate the function Ei

xW(u|Fi
xR).

Algorithm 2
Step 1. From left to right (l=2, 3, …, zi–1), all “optimizing” quantiles are set to

coincide with the chosen values of the “optimizing” quantiles xl
W,(i), such that

xl
d,(i)xl

W,(i)xl
u,(i).
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Step 2. From left to right (l=2, 3, …, zi–1) all “left prone” quantiles are set to
coincide with the greater of the lower limit and the left neighbor.

Step 3. From right to left (l=zi–1, zi–2, …, 3, 2) all “right prone” quantiles are set
to coincide with the smaller of their upper limit and the right neighbor:
xl

W,(i)=minxl
u,(i); )(,

1
iW

lx  .
Step 4. The values Il

xW,(i), l=1, 2, 3,…, zi–1, are calculated using the defined xl
W,(i).

Step 5. Ei
xW(u/Fi

xR) is calculated using the defined Il
xW,(i).

It is again necessary to optimize Ei
xW(u|Fi

xR), but the dimensionality N of this
task does not exceed and is usually smaller than zi–2. From the 3zi–5 number of linear
constraints only those that include an “optimizing” quantile are analyzed.

Algorithm 2 is realized in a numerical procedure, where a set of 10 values are
defined for each “optimizing” quantile, uniformly distributed in its uncertainty interval.
Then the permissible out of all possible quantile value combinations are identified,
which obey the initial conditions. The final estimates are the permissible combination,
which minimizes Il

xW,(i). Once the “optimizing” quantiles have been defined, it is
possible to find the values of the “left prone” and “right prone” quantiles according
to Steps 2 and 3 of Algorithm 2, and calculate Il

xW,(i) (l=1, 2, 3,…, zi–1) and Ei
xW(u|Fi

xR).

4.1.2. Special case of monotonically increasing utility function

Let the utility function u(.) be monotonically increasing in the interval x1
d,(i); )(, iu

zi
x :

(17)       if xa>xb, then u(xa)u(xb) for xax1
d,(i); )(, iu

zi
x , xbx1

d,(i); )(, iu
zi

x .

Then all unknown quantiles xl
W,(i), l=2, 3, …, zi–1,  would obey “property c” in

the general case (i.e. )(,
1

ixW
lI   and Il

xW,(i) are monotonically increasing functions on xl
W,(i)).

Then, in order to minimize Il
xW,(i), all quantiles will be set to their lower limits, which

are the smallest values that obey the linear constraints
(18)                            xl

W,(i)= xl
d,(i),  l=2, 3, …, zi–1.

4.1.3. Special case of monotonically decreasing utility function

Let the utility function u(.) be monotonically decreasing in the interval x1
d,(i); )(, iu

zi
x :

(19)      if xa > xb , then u(xa) u(xb), for xax1
d,(i); )(, iu

zi
x , xbx1

d,(i); )(, iu
zi

x .

Then all unknown quantiles xl
W,(i), l=2, 3, …, zi–1,  obey “property d” in the general

case (i.e. )(,
1

ixW
lI   and Il

xW,(i) are monotonically decreasing functions of xl
W,(i)). Then, in

order to minimize Il
xW,(i), the quantiles should be set to their upper limits, which are

the highest possible values that obey the linear constraints
(20)                             xl

W,(i) = xl
u,(i), for l=2, 3, …, zi–1.
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4.2. Approximation of x-ribbon CDF using the maximax criterion (Q=W)
4.2.1. General case
The maximax criterion is the opposite of the Wald criterion and the quantile values
might be found using the algorithms from Section 4.1 with the substitution
(21)                                    u(x)= – u(x), for x(–; +).

The maximax decision criterion under strict uncertainty assumes that the best
outcome always occurs. The application of this idea in the case of 1D x-fuzzy-rational
GL-I would assume to choose the quantiles xl

W,(i), l=2, 3, …, zi–1, so that to maximize
the xW-expected utility of the lottery:

(22)     
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, l=1, 2, 3, …, zi–1.

The variables Il
xW,(i) physically coincide with the expected utilities of hypothetical

1D classical-risky GL-I – gl
h,xW,(i)=<Fl

h,xW,(i)(x); x>, where the 1D classical CDF –
Fl

h,xW,(i)(.) are linearly interpolated on two knots (xl
W,(i)

 ; 0) and ( )(,
1

iW
lx
 ; 1). The 1D

classical CDF – Fl
h,xW,(i)(.), the hypothetical 1D classical-risky GL-I – gl

h,xW,(i) and
their expected utilities Il

xW,(i) are unknown until the quantiles xl
W,(i), l=2, 3, ..., zi–1,

are defined, which obey the conditions
xl

d,(i) – xl
W,(i)  0,  l=2, 3, ..., zi–1,

xl
W,(i) – xl

u,(i)  0,  l=2, 3, ..., zi–1,
(24) xl

W,(i) –  )(,
1

iW
lx
  0,  l=2, 3, ..., zi–2,

x1
d,(i) – x2

W,(i)  0,
)(,

1
iW

zi
x – )(, id

zi
x  0.

The so-defined (zi–2)-dimensional non-linear optimization task with 3zi–5 linear
constraints can be redefined in a task of lower dimension, using the following
properties:
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a) since the weight coefficients (–Fl
(i)) of the variables Il

xW,(i) in the function
Ei

xW(u|Fi
xR) are known and nonnegative, then the required quantile estimates should

be set so that to maximize the quantities Il
xW,(i);

b) let all quantiles, but the l-th, be fixed at a certain level, where l{2, 3, ...,
zi–1}, and assume that for the l-th quantile
(25)                    xl

W,(i)maxxl
d,(i), )(,

1
iW

lx
 ; minxl

u(i), )(,
1

iW
lx
 ,

then the change in xl
W,(i) only influences )(,

1
iWx

lI 
  and Il

xW,(i);
c) let for some l{2, 3, …, zi–1} the utility u(.) be
– monotonically increasing in the interval xxl

d,(i); xl
u,(i),

– limited from above by u(xl
d,(i)) in the interval x )(,

1
id

lx  ; xl
d,(i),

– limited from below by u(xl
u,(i)) in the interval xxl

u,(i); )(,
1
iu

lx  ,

then )(,
1

iWx
lI 
  and Il

xW,(i) are monotonically increasing functions of xl
W,(i);

d) let for some l{2, 3, …, zi–1} the utility function u(.) be
– monotonically decreasing in the interval xxl

d,(i); xl
u,(i),

– limited from below by u(xl
d,(i)) in the interval x )(,

1
id

lx  ; xl
d,(i),

– limited from above by u(xl
u,(i)) in the interval xxl

u,(i); )(,
1
iu

lx  ,

then )(,
1

iWx
lI 
  and Il

xW,(i) are monotonically decreasing functions of xl
W,(i);

e) let for some l{2, 3, ..., zi –1} the utility function u(.) be a constant in the
interval x )(,

1
id

lx  ; )(,
1
iu

lx  ; then )(,
1

iWx
lI 
  and Il

xW,(i) do not depend on changes of xl
W,(i).

When reducing the dimensionality of the optimization task, it is convenient to
assign the quantiles xl

W,(i), l=1, 2, …, zi, to 5 disjoint sets: “known”, “arbitrary”, “left
prone”, “right prone” and “optimizing”, according to Algorithm 3.

Algorithm 3
Step 1. All quantiles are marked as “optimizing”.
Step 2. From left to right (l=2, 3, …, zi–1) all “optimizing” quantiles, whose

lower and upper limits coincide (i.e. xl
d,(i)=xl

u,(i)), are marked as “known”. The following
assignments are made: xl

W,(i)=xl
d,(i).

Step 3. From left to right (l=2, 3, …, zi–1) all “optimizing” quantiles that obey
“property e” (i.e. )(,

1
iWx

lI 
   and Il

xW,(i) do not depend on the change of xl
W,(i)), are

marked as “arbitrary”.
Step 4. From left to right (l=2, 3, …, zi–1) all “optimizing” quantiles that obey

“property c” (i.e. )(,
1

iWx
lI 
  and Il

xW,(i) are monotonically increasing functions on xl
W,(i)),

are marked as “right prone”.
Step 5. From right to left (l=zi–1, zi–2, …, 3, 2), all “optimizing” quantiles that

obey “property d” (i.e. )(,
1

iWx
lI 
  and Il

xW,(i) are monotonically decreasing functions of
xl
W,(i)), are marked as “left prone”.

Step 6. From left to right (l=2, 3, …, zi–1) all “arbitrary” quantiles, whose left
neighbor is “known”, “left prone” or “optimizing”, is marked as “left prone”.
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Step 7. From left to right (l=2, 3, …, zi–1) all “arbitrary” quantiles, whose right
neighbor is “known”, “right prone” or “optimizing”, are marked as “right prone”.

Step 8. From left to right (l=2, 3, …, zi–1) all “arbitrary” quantiles, whose left
neighbor ll and right neighbor lr do not overlap (i.e. xll

u,(i)  xlr
d,(i)), are marked as “left

prone”, and both neighbors are marked as “known”. The following assignments are
made: xll

W,(i)=xll
u,(i), xll

d,(i)= xll
u,(i), xt

d,(i)=maxxt
d,(i); xll

W,(i), for t=ll+1, ll+2, ..., zi–1,
xlr

W,(i)=xlr
d,(i), xlr

u,(i)=xlr
d,(i) and xt

u,(i)=minxt
u,(i); xlr

W,(i), t=2, 3, …, lr–1.
Step 9. From left to right (l=2, 3, …, zi–1) all quantiles, whose lower and upper

limit coincide (i.e. xl
d,(i)=xl

u,(i)), are marked as “known”. The following assignment are
made: xl

W,(i)=xl
d,(i).

Step 10. From left to right (l=2, 3, …, zi–1) the first quantiles from the group of
“arbitrary” quantiles, whose left neighbor ll and right neighbor lr overlap (i.e.
xll

u,(i)>xlr
d,(i)), are marked as “optimizing”, and the other quantiles in the group are

marked as “left prone”.
Step 11. From left to right (l=2, 3, …, zi–1) all “right prone” quantiles, which do

not overlap with their right “left prone” neighbor (i.e. xl
u,(i)  )(,

1
id

lx  ), are marked as
“known”, together with their right neighbors, and it is defined that xl

W,(i)=xl
u,(i),

xl
d,(i)=xl

u,(i), )(,
1

)(,
1

id
l

iW
l xx 

   and )(,

1
)(,

1
id

l
iu

l xx   .
Step 12. From left to right (l=2, 3, …, zi–1) all “right prone” quantiles, which do

not overlap with their right “left prone” neighbor (i.e. xl
u,(i)> )(,

1
id

lx  ), are marked as
“optimizing”.

Step 13. From left to right (l=2, 3, …, zi–1) all “left prone” quantiles, whose left
neighbor is “known” or which do not overlap with their left neighbor (i.e. xl

d,(i) )(,
1
iu

lx  ),
are marked as “known”. The following assignments are made: xl

W,(i)=xl
d,(i), xl

u,(i)=xl
d,(i).

Step 14. From right to left (l=zi–1, zi–2, …, 3, 2) all “right prone” quantiles,
whose right neighbor is “known”, and which do not overlap with their right neighbor
(i.e. xl

u,(i) ), are marked as “known”. The following assignments are made:
xl
W,(i)=xl

u,(i), xl
d,(i)=xl

u,(i).
Step 15. If at least one quantile has been marked as “known” in steps 13 and 14,

then go to Step 13.
Step 16. If at least one “optimizing” quantile has been marked as “arbitrary”,

“left prone” or “right prone” in Steps 3 to 5, then go to Step 3, otherwise – the end.
After applying Algorithm 3:
 there are no “arbitrary” quantiles;
 if there are no “optimizing” quantiles, then there are only “known” quantiles;
 if there are “optimizing” quantiles, then there are no “right prone” quantiles

with right “left prone” neighbors.
 the lower and upper limits of all “known” quantiles coincide with a fixed

value;
 all quantile limits obey the initial conditions.
Let N be the cardinality of the set of “optimizing” quantiles. If N=0, then all

quantiles have been found and the task is solved. If N>0, then Algorithm 4 should be
applied. It again uses only arbitrary permissible values of the “optimizing” quantiles
to calculate Ei

xW(u|Fi
xR).
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Algorithm 4
Step 1. From left to right (l=2, 3, …, zi–1), all “optimizing” quantiles are set to

coincide with the chosen values of the “optimizing” quantiles xl
W,(i), such that

xl
d,(i) xl

W,(i) xl
u,(i).

Step 2. From left to right (l=2, 3, …, zi–1) all “left prone” quantiles are set to
coincide with the greater of the lower limit and the left neighbor:
xl
W,(i)=maxxl

d,(i); )(,
1

iW
lx
 .

Step 3. From right to left (l=zi–1, zi–2, …, 3, 2) all “right prone” quantiles are set
to coincide with the smaller of their upper limit and the right neighbor:
xl
W,(i)=minxl

u,(i); )(,
1

iW
lx
 .

Step 5. The values Il
xW,(i), for l=1, 2, 3,…, zi–1, are calculated using the defined

xl
W,(i).

Step 6. Ei
xW(u|Fi

xR) is calculated using the defined Il
xW,(i).

It is again necessary to optimize Ei
xW(u|Fi

xR),  but the dimensionality N of this
task does not exceed and is usually smaller than zi–2. From the 3zi–5 number of linear
constraints only those that include an “optimizing” quantile are analyzed.

Algorithm 2 is realized in a numerical procedure, similar to the one of Algorithm
2. The only difference is that the final estimate of the quantiles are the permissible
combination, which maximizes Il

xW,(i).

4.2.2. Special case of monotonically increasing utility function

Let the utility function u(.) be monotonically increasing in the interval x1
d,(i); )(, iu

zi
x :

(26)      if xa>xb , then u(xa)  u(xb), for xax1
d,(i); )(, iu

zi
x , xbx1

d,(i); )(, iu
zi

x .

Then all unknown quantiles xl
W,(i), l=2, 3, ..., zi–1, would obey “property c” in

the general case from section 4.2.1 (i.e. )(,
1

iWx
lI 
  and Il

xW,(i) are monotonically increasing
functions on xl

W,(i)). Then, in order to maximize Il
xW,(i), all quantiles will be set to

their upper limits, which are the highest values that obey the linear constraints, i.e.
(27)                           xl

W,(i)=x1
u,(i),  l=2, 3, ..., zi–1.

4.2.3. Special case of monotonically decreasing utility function

Let the utility function u(.) be monotonically decreasing in the interval x1
d,(i); )(, iu

zi
x :

(28)      if xa > xb, then u(xa) u(xb), for xax1
d,(i); )(, iu

zi
x , xbx1

d,(i); )(, iu
zi

x .

Then all unknown quantiles xl
W,(i), l=2, 3, ..., zi–1, obey “property d” in the

general case from Section 4.2.1 (i.e. )(,
1

iWx
lI 
  and Il

xW,(i) are monotonically decreasing
functions of xl

W,(i)). Then, in order to maximize Il
xW,(i), the quantiles will be set to

their lower limits, which are the smallest possible values that obey the linear
constraints, i.e.
(29)                           xl

W,(i)= xl
d,(i), for l=2, 3, ..., zi–1.
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4.3. Approximation of 1D x-ribbon CDF using the Hurwiczα criterion (Q=Hα)

The Hurwiczα decision criterion under strict uncertainty assumes that the choice of
an alternative must be guided by a numerical index, which is a weighed sum of the
worst and best that may occur. Implementing this idea for 1D x-fuzzy-rational GL-I
means to choose the quantiles )(, iH

lx  , l=2, 3, …, zi–1 , as weighed values of the
quantiles xl

W,(i) and xl
W,(i), l=2, 3, …, zi–1:

(30)                   )(, iH
lx  =αxl

W,(i)+(1–α)xl
W,(i), l=2, 3, …, zi–1.

Here, α0; 1 is the pessimism index and measure the pessimism of the DM.
The Hα-expected utility can be calculated by (7), using the substitution Q=Hα

5. Numerical example

The 1D random variable X is defined, which takes values in the interval [30; 42]. A
1D x-ribbon CDF FxR(.) is defined over the values of X by linear interpolation on the
end points of uncertainty intervals (assessed by a fuzzy-rational DM) of z=11 knots:
(x1

d=x1
u=30; F1=0), (x2

d=31; x2
u=32; F2=0.1), (x3

d=32; x3
u=33; F3=0.2), (x4

d=32.8;
x4

u=33.5; F4=0.3), (x5
d=33; x5

u=34.5; F5=0.4), (x6
d=34; x6

u=36; F6=0.5), (x7
d=35.5;

x7
u=37; F7=0.6), (x8

d=36; x8
u=37.5; F8=0.7), (x9

d=37; x9
u=40; F9=0.8), (x10

d=40; x10
u=41;

F10=0.9) and (x11
d= x11

u=42; F11=1). The conditions in (A8) apply for the elicited knots.
A 1D x-fuzzy-rational GL-I – gxfr=<FxR(x); x >, is defined on that basis.

The utility function is non-monotonic in the interval [30; 42], with a maximum
extremum. It was constructed using techniques from N i k o l o v a  et al. [11]. The
following results were obtained (represented by their point estimates): u(30)=0,
u(31)=0.06, u(32)=0.09, u(33)=0.15, u(34)=0.3, u(35)=0.55, u(36)=0.7, u(37)=0.6,
u(38)=0.4, u(39)=0.2, u(40)=0.15, u(41)=0.1, u(42)=0 (see Figs. 1–3). The task is to
approximate FxR(x) using Wald, maximax and Hurwiczα criteria, and then calculate
the Wald, maximax and Hurwiczα expected utilities of gxfr.

a) Approximation of FxR(x) using the Wald criterion and calculation of the
W-expected utility of gxfr

According to (11), x1
W=30, x11

W=42. After applying Algorithm 1, six quantiles
are marked as “known” with values x2

W=31, x3
W=32, x4

W=32.8, x5
W=33, x6

W=34 and
x10

W=41. The other three quantiles are marked as “optimizing” and their estimates
should be found in the intervals 35.5x7

W37, 36x8
W37.5 and 37x9

W40.
Following the comments to Algorithm 2, the permissible combinations of the

quantile estimates are identified on the possible values of the “optimizing” quantiles.
Those combinations should obey the conditions in (15), and Il

xW, l=1, 2, ..., 10, and
ExW(u|FxR) are calculated for each.

For example, for the permissible combination x7
W=36.5, x8

W=37 and x9
W=39,

according to (14), I1
xW=0.03, I2

xW=0.075, I3
xW=0.114, I4

xW=0.144, I5
xW=0.225, I6

xW=0.525,
I7

xW=0.675, I8
xW=0.425, I9

xW=0.15 and I10
xW=0.05. According to (13), the expected utility

ExW(u |FxR)=0.2413. The minimal possible value of the expected utility
ExW(u|FxR)=0.2147 is calculated for the following values of the “optimizing” quantiles:
x7

W=35.5, x8
W=37.5 and x9

W=40, where I1
xW=0.03, I2

xW=0.075, I3
xW=0.114, I4

xW=0.144,
I5

xW=0.225, I6
xW=0.4708, I7

xW=0.6281, I8
xW=0.285, I9

xW=0.125 and I10
xW=0.05.

FxR(.) now can be approximated by FxW(.) using the knots (x1
W=30; F1=0), (x2

W=31;
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F2=0.1), (x3
W=32; F3=0.2), (x4

W=32.8; F4=0.3), (x5
W=33; F5=0.4), (x6

W=34; F6=0.5),
(x7

W=35.5; F7=0.6), (x8
W=37.5; F8=0.7), (x9

W=40; F9=0.8), (x10
W=41; F10=0.9) and

(x11
W=42; F11=1). Then gxfr is approximated using the 1D xW-GL-I – gxW= <FxW(x); x>.

Graphical representation of FxW(x) and its corresponding density (PDF) are given on
Fig. 1.

b) Approximation of FxR(x) using the maximax criterion and calculation of the
W -expected utility of gxfr

According to (11), x1
W=30, x11

W=42. After applying Algorithm 3, two quantiles
are marked as “known” with estimates x2

W=32 and x10
W=40. Four of the remaining

quantiles are marked as “right prone” and their estimates must be found in the intervals
32  x3

W  33, 32.8  x4
W  33.5, 33  x5

W  34.5 and 34  x6
W  36. The other three

quantiles are marked as “optimizing” and their estimates must be found in the intervals
35.5  x7

W  37, 33  x8
W  37.5 and 37  x9

W  40.
Following the comments to Algorithm 4, the permissible combinations of the

quantile estimates are identified on the possible values of the “optimizing” quantiles.
Those combinations should obey the conditions in (24), and Il

xW, l=1, 2, 10, and
ExW(u|FxR) are calculated for each.

For example, at the permissible combination x7
W=36, x8

W=36.5 and x9
W=38,

the “right prone” quantiles are set as follows: x3
W=33, x4

W=33.5, x5
W=34.5 and

x6
W=36. According to (23), I1

xW=0.0525, I2
xW=0.12, I3

xW=0.1875, I4
xW=0.3125,

I5
xW=0.5458, I6

xW=0.6, I7
xW=0.625, I8

xW=0.5917, I9
xW=0.2375 and I10

xW=0.0875.
According to (22), the expected utility ExW(u|FxR) =0.336. The maximal possible
value ExW(u|FxR) =0.3697 is calculated for the following values of the “optimizing”
quantiles: x7

W=37, x8
W=37 and x9

W=37. Here, the estimates of the “right prone”
quantiles are again x3

W=33, x4
W=33.5, x5

W=34.5 and x6
W=36, whereas according to

(23), I1
xW=0.0525, I2

xW=0.12, I3
xW=0.1875, I4

xW=0.3125, I5
xW=0.5458, I6

xW=0.65,
I7

xW=0.7, I8
xW=0.7, I9

xW=0.3417 and I10
xW=0.0875.

Then FxR(.) is approximated by FxW(.) on the knots (x1
W=30; F1=0), (x2

W=32;
F2=0.1), (x3

W=33; F3=0.2), (x4
W=33.5; F4=0.3), (x5

W=34.5; F5=0.4), (x6
W=36;

F6=0.5), (x7
W=37; F7=0.6), (x8

W=37; F8=0.7), (x9
W=37; F9=0.8), (x10

W=40; F10=0.9)
and (x11

W=42; F11=1). Then gxfr is approximated with the 1D xW-GL-I –
gxW =<FxW(x); x>. Graphics of FxW(.) and its corresponding density are presented
on Fig. 2.

c) Approximation of FxR(x) using the Hurwiczα criterion and calculation of the
Hα-expected utility of gxfr

Let α=0.7. According to (11), 7.0
1
Hx =30 and 7.0

11
Hx =42. The values of the quantiles

7.0H
lx , l=2, 3, ..., 10, may be calculated according to (30), using the estimates of xl

W

and xl
W, l=2, 3, ..., 10, as follows 7.0

2
Hx =0.7x2

W+(1–0.7)x2
W=0.731+0.332=31.3,

7.0
3
Hx =32.3, 7.0

4
Hx =33.01, 7.0

5
Hx =33.45, 7.0

6
Hx =34.6, 7.0

7
Hx =35.95, 7.0

8
Hx =37.35,

7.0
9
Hx =39.1 and 7.0

10
Hx =40.7. The graphics of (.)7.0xHF  and its corresponding density

are given on Fig. 3. The H0.7-expected utility calculated according to (7) is
)|(7.0 xRxH FuE =0.2542.
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6. Conclusions

The paper proposed methods and procedures to approximate x-ribbon CDF, constructed
on interval estimates of quantiles of a fuzzy-rational DM, and to rank x-fuzzy-rational
GL-I. The partially linear interpolation of the x-ribbon CDF by classical ones was
performed on the basis of three decision criteria under strict uncertainty – Wald,
Hurwiczα and maximax criterion. The Wald approximation was performed according
to two algorithms – the first reduced the dimensionality of the optimization task, and
the second defined permissible values of the unknown quantiles so that to minimize
Il

xW,(i). A similar set of algorithms was developed for the maximax approximation. The
Hurwiczα approximation took into account the Wald and maximax quantiles, which
were weighed by the pessimism index α0;1. Once the x-ribbon CDF were
approximated by classical ones, it was possible to approximate the x-fuzzy-rational
GL-I by classical-risky GL-I. The latter obey the assumptions of the expected utility
rule. The Wald, Hurwiczα and maximax expected utility criteria were proposed to
rank one-dimensional fuzzy-rational GL-I according to the preferences of the DM.
The expected utility of the x-fuzzy-rational GL-I in the numerical example significantly
differs in the pessimistic (Wald) and the optimistic (maximax) case. The choice of
α=0.7 assumes a pessimistic DM, and justifies results similar to those of the Wald
expected utility. The opposite effect would be observed if α<0.5 (i.e. if the DM is an
optimist).
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Appendix

Each 1D random variable X describes a 1D object with a single attribute – the
realization of the random variable. A 1D distribution function (CDF), that entirely
describes the uncertainty in X shall be referred as classical, and will be denoted as
F(.):
(A1)                              F(x)=P(Xx), x(–; +).

The function (A1) is usually defined by linear interpolation on a set of z>1
points from its graphics, where xl is an α-quantile of X, and α =Fl:
(A2)        {(xl ; Fl) | l=1, 2, …, z},
where

(A3)                                      x1 x2…  xz,
0=F1 F2…Fz=1;

(A4)     

A 1D CDF, that partially describes the uncertainty in X shall be referred as
ribbon, and will be denoted as FR(.). It entirely lies between two 1D classical CDFs,
called lower and upper border functions – Fd(.) and Fu(.), where the following
conditions hold (T e n e k e d j i e v  et al. [20]):
(A5)          Fd(x)FR(x)Fu(x), x(–;+),
(A6)                              Fd(x)Fu(x), x(–;+).

The 1D x-ribbon CDF is a special case of a 1D ribbon CDF, when probability
distributions are interpolated on knots with uncertainty interval for the quantile. Let
FxR(.), Fxd(.) and Fxu(.) are respectively a 1D x-ribbon CDF and its lower and upper
x-border functions. The 1D x-ribbon CDF is defined by linear interpolation on the
end points of the uncertainty intervals of z>1 quantiles:
(A7)                             {( xl

d; xl
u; Fl) | l=1, 2,…, z},

where
x1

dx2
d…xz

d,
x1

ux2
u…xz

u,
(A8) xl

dxl
u, l=2, 3,…, z–1,

x1
d

 =x1
u, xz

d
 =xz

u,
0=F1 F2…Fz=1;
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(A11)                      Fxd(x)FxR(x)Fxu(x),  x(–;+).
A 1D GL-I is defined as alternative that gives 1D prizes x from an almost

everywhere continuous 1D set X, according to continuous or mixed 1D probability
law (T e n e k e d j i e v   et al. [20]). An 1D GL-I with 1D classical CDF – Fi(.) – shall
be referred as classical-risky and takes the form (A12). Its expected utility (A13) is
calculated using Stieltjes integral (K r a m e r [10]) with respect to the function Fi(.):
(A12)                              gi=<Fi(x); x >,   i=1, 2, …, q ,

(A13)                                      Ei(u/Fi)= 




)(d)( xFxu i .

If Fi(.) is a piece-wise linear 1D classical CDF with knots as in (A14), then its
expected utility is calculated by (A15):

{(xl
(i); Fl

(i)) | l=1, 2, …, zi}, where

(A14)                             x1
(i)x2

(i)… )(i
zi

x ,

                            0=F1
(i)F2

(i)… )(i
zi

F  =1.
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