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Abstract: Real decision makers partially disobey axioms of rationality and are called
fuzzy rational. Fuzzy rationality in probabilities leads to the construction of x-ribbon
and p-ribbon distribution functions, whose quantiles/quantile indices are elicited as
uncertainty intervals. As a result x-fuzzy rational and p-fuzzy rational generalized
lotteries are introduced and a general approach to rank each type is developed, which
approximates ribbon functions by classical partially linear ones and then applies
expected utility. In this paper, approximation is made via Laplace criterion under
strict uncertainty. Its use is formalized for both types of ribbon functions. Laplace
expected utility is also introduced to rank p-fuzzy-rational and x-fuzzy-rational
generalized lotteries of I type. An example is developed to show the importance of
decision modeling and detailed analysis of available subjective information for the
final decision.
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1. Introduction

Lotteries are proposed by utility theory as a model of uncertain alternatives (v o n
N e u m a n n, M o r g e n s t e r n, [20]). They consist of a full set of disjoint events
(called states) each associated with a holistic consequence for the decision maker
(DM), called a prize. The cardinality of the set of lotteries and the set of prizes defines
the type of lotteries. Ordinary lotteries apply to discrete sets of prizes. It is also possible
for the set of prizes to take one or more continuous intervals, and the prize is actually
a random variable that is probabilistically described by a distribution function F(.).
In that case, generalized lotteries apply of either I, II or III type (T e n e k e d j i e v,
[15]). In problems with generalized lotteries of I type, in particular, the set of lotteries
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is discrete, whereas the set of prizes is a continuous one. A set of axioms of utility
define the conditions that should hold for the preferences of the rational DM. On that
basis, a utility function u(.) can be constructed over the prizes, such that the more
preferred the consequence the higher the value of the utility function (K e e n e y, R a-
i f f a, [6]). The main paradigm of utility theory is that all kind of lotteries should be
ranked in descending order of their expected utility, which is the utility of prizes,
weighted by their probabilities.

Traditionally, decisions are made under risk or under strict uncertainty according
to the information provided by the DM. In the first case, the DM has to assign unique
probability measure (B e r n s t e i n, [4]) for the chance of receiving a prize (such a
lottery will be referred here as a classical risky one). In the second case, the DM only
has to identify the possible states of nature (such a lottery will be referred here as a
strictly uncertain one). There exist decision criteria to rank strictly uncertain lotteries
according to preferences, like Wald, Hurwic za, Savage and Laplace criteria, but none
obeys the minimal rationality requirements of choice (R a p p a p o r t [12]).

Real DMs can define subjective probabilities, quantiles and quantile indices
only in an interval form. As a result, utility theory assumptions are disobeyed, and
partially non-transitive preferences are observed. For that reason, in (N i k o l o v a  et
al. [9]), real DMs are referred to as fuzzy rational. Then uncertain alternatives are
modeled with fuzzy rational lotteries where the chance of receiving each prize is
quantified by interval probability measure (T e n e k e d j i e v  et al. [17]). Since fuzzy
rational DMs only partially quantify uncertainty, ranking fuzzy rational lotteries is a
problem of mixed type, and generalizes decisions under risk and under strict
uncertainty.

In decision problems with partially quantified uncertainty, it is necessary to select
a method to approximate fuzzy rational lotteries by classical risky ones, which can
then be ranked according to the expected utility criterion. These ideas lead to the
introduction of the Laplace expected utility criterion for the case of ordinary fuzzy
rational lotteries in (N i k o l o v a [8], of the Hurwicz expected utility criterion for the
case of ordinary fuzzy rational lotteries in (T e n e k e d j i e v [17]), and of the Wald
expected utility criterion for the case of generalized lotteries of II type in (T e n e k e-
d j i e v  et al [19]). These procedures benefit from the existing mathematical homology
between the descriptions of the triples “event from a probability field – interval
subjective probability – point estimate probability” and “object from an universe –
degree of membership to an intuitionistic fuzzy set (A t a n a s s o v [3]) – degree of
membership to a (classical) fuzzy set” (S z m i d t, K a c p r z y k [14]). That allows
transforming interval probabilities into point estimates using the operators that
transform an intuitionistic fuzzy degree of membership into classical fuzzy degree of
membership (A t a n a s s o v [1]; A t a n a s s o v [2]).

In this paper the fuzzy rationality modeling is facilitated by the introduction of
ribbon probability distributions. As a result of those, fuzzy-rational generalized lotteries
of I type are constructed. If the problem is to be solved using expected utility it
should be brought down to one under risk. For that purpose, the Laplace criterion
under strict uncertainty is used to approximate ribbon distributions with classical
ones. On the basis of that, alternatives are ranked by the Laplace expected utility
criterion.

In what follows, Section 1 formalized classical and fuzzy rational probability
distributions, the latter also called ribbon distributions. Section 3 discusses two
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methods to build subjective distribution functions on elicited knots. Problem modeling
via classical risky and fuzzy-rational generalized lotteries of I type is discussed in
Section 4. Two procedures are proposed for the second task, which depend on the
type of ribbon functions. Section 5 discusses the use of the Laplace criterion of strict
uncertainty in the transformation of ribbon functions. It also introduces Laplace
expected utility for both types of fuzzy-rational generalized lotteries of I type. An
example for the use of all those techniques is developed in Section 6.

2. Classical and fuzzy rational probability distributions

2.1. One-dimensional classical distribution functions

Let the uncertainty associated with a one-dimensional (1D) random variable X be
entirely quantified by a known 1D distribution function F (.), which will be called
classical function. If x is an arbitrary fixed value of X, then
(1)                F(x)=P(X  x) for x  (–; +).

Classical distribution functions must be increasing and limited within the interval
[0 ;1]:
(2)                   if x1>x2 , then F(x1)  F(x2),

 lim ( ) 0
x

F x


 , and lim ( ) 1
x

F x


 .

A very convenient and practically universal approach to define a classical
distribution function is by linear interpolation using a set of z>1 defined points
from its graphics:
(3)                     {(xl ; Fl)  l=1, 2, …, z},
where

                         x1 x2 ...  xz,
                  0 = F1 F2 ...  Fz = 1.

Each point (xl , Fl ) is called a knot point, where xl is the -quantile of the random
variable X with =  Fl. Then:

(4)        F(x)=

 1

1

1
1

1

0 for
for , =1,2,..., 1

( )( ) for , =1,2,..., 1

1 for

l l l

l l l
l l l

l l

z

x x
F x x x l z

x x F FF x x x l z
x x

x x









          




.

2.2. 1D ribbon distribution functions

2.2.1. General case of  1D ribbon distribution function
Let the uncertainty in a 1D random variable X be partially quantified by a 1D
distribution function FR(.). It is only known that it entirely lies between the so called
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lower and upper border functions Fd(.) and Fu(.), i.e.

(5)          Fd(x)  FR(x) Fu(x)  for x  (–; +).
Here, Fd(.) and Fu(.) are known classical distribution functions, which obey the

condition
(6)              Fd(x)  Fu(x), for x  (–; +).

A 1D distribution function FR(.) that obeys this definition shall be called  ribbon
distribution function.

2.2.2. 1D x-ribbon distribution functions
A common special case is to construct distributions (usually subjective) by
interpolation on knots with an uncertainty interval for the quantile (error on the abscissa
x). Then the fuzzy distribution function may be called x-ribbon FxR(.), whereas the
border functions are respectively lower and upper x-border functions Fxd(.) and Fxu(.).

A convenient way to define x-border distribution functions is via linear
interpolation on the margins of the set of z>1 defined uncertainty intervals for quantiles
of the x-ribbon function:
(7)                    {(xd,l ; xu,l ; Fl) l=1, 2, …, z},
where

                      xd,1  xd,2   ...  xd,z,
                         xu,1   xu,2  ...   xu,z,
                 xd,l   xu,l  ,  for l = 2, 3, …,  z–1,
                       xd,1 = xu,1,  xd,z = xu,z  ,
                    0 = F1   F2  ...  Fz = 1.

Then

(8)            Fxd(x)=

 ,1

, , 1

, 1
, , 1

, 1 ,

,

0 for
for , =1,2,..., 1

( )( )
for , =1,2,..., 1

1 for

d

l d l d l

d l l
l d l d l

d l d l

d z

x x
F x x x l z

x x F F
F x x x l z

x x
x x









          

 

,

(9)            Fxu(x)=

 ,1

, , 1

, 1
, , 1

, 1 ,

,

0 for
for ,   =1,2,..., 1

( )( )
for ,  =1,2,..., 1

1 for

u

l u l u l

u l l l
l u l u l

u l u l

u z

x x
F x x x l z

x x F F
F x x x l z

x x
x x









          

 

,

(10)         Fxd(x)   FxR(x)   Fxu(x), for x  (–; +).
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2.2.3. 1D  p-ribbon distribution functions
Another common approach is when (usually subjective) distributions are interpolated
on knots with uncertainty interval for the quantile index (error on the ordinate, i.e.
probability). Then the fuzzy distribution function may be called p-ribbon FpR(.),
whereas the border functions are respectively lower and upper p-border functions
Fpd(.) and Fpu(.).

A convenient way to define p-border distribution functions is by linear
interpolation on the borders of the set of  z>1 defined uncertainty intervals for quantile
indices of the p-ribbon function:
(11)             {(xl ; Fd,l ; Fu,l)  l = 1, 2, …, z},
where

x1   x2  ...  xz,
0 = Fd,1   Fd,2   ...   Fd,z = 1,
0 = Fu,1  Fu,2   ...  Fu,z = 1,
Fd,l  Fu,l, for l = 2, 3, …, z–1.

Then

(12)       Fpd(x)=

 1

, 1

, 1 ,
, 1

1

0 for
for ,  =1,2,..., 1

( )( )
for ,  =1,2,..., 1

1 for 

d l l l

l d l d l
d l l l

l l

z

x x
F x x x l z

x x F F
F x x x l z

x x
x x









          
 

,

(13)   Fpu(x)=

 1

, 1

, 1 ,
, 1

1

0 for
for ,  =1,2,..., -1

( )( )
for ,  =1,2,..., -1

1 for

u l l l

l u l u l
u l l l

l l

z

x x
F x x x l z

x x F F
F x x x l z

x x
x x









        
 

,

(14)       Fpd(x)  FpR(x)  Fpu(x),  for x  (–; +).

3. Subjective distributions’ elicitation and fuzzy rationality

Let’s assume that the random variable X  belongs to a closed interval [ 1?x ;  ?zx ], assessed
by the DM. Then the subjective elicitation of the probability distribution is brought
down to the assessment of several knots of the CDF curve {(xl ; Fl)|l = 2, 3,…,
z–1}. That could be accomplished in two ways, both using the binary relations of
preference     (“more proffered than”, or “strict preference”), and ~ (“equally preferred
to”, or “indifference”).



98

In the first method, several quantiles x2, x3, …, xz–1 are selected uniformly in the
assessed interval, and their quantile indices  2

?F ,  3
?F , ..., 1

?
zF    are assessed. That coincides

with the general case of subjective probability elicitation for the random events “the
random variable X takes values equal or less than xl (i.e. X  xl)” (P r a t t  et  al. [10]).
For each knot, the DM has to solve, according to m, the preferential equation
l1(X  xl)~l2(m, n) between l1(X  xl), giving a huge award if X  xl, and l2(m, n), giving
the same huge award if a white ball is drawn out of an urn with m white and (n–m)
black balls. Then,  ?

lF =m*/n, where m* is the root, assessed using classical dichotomy
(P r e s s  et  al. [11]). This normative scheme holds only for ideal DMs. For real DMs,
there could exist  m2 > m1, such that  l1(X  xl) ~ l2(m1, n),  l1(X  xl) ~ l2(m2, n), and
l2(m2 , n)  l2(m1, n). Thus, the DM must find the greatest possible m = ?downm , such
that l1(X  xl)  l2(m̂ down, n), and the smallest possible m = ?upm , such that l2(m̂up,  n) 
l1(X  xl). Then m*(m̂ down; m̂ up), and  ?

lF (m̂ down/n; m̂ up/n). That is the uncertainty
interval of the quantile index, which could be elicited using triple dichotomy
(T e n e k e d j i e v et al. [18]).  Thus, the DM’s degree of belief about the quantile
indices takes the form
(15) F^lF

^
d, lF

^
u, l for l =2, 3,…, z–1.

The interval in (15) is closed so that to accommodate the cases when the quantile
indeces are known. The extreme quantiles x1= x̂1 and xz= x̂z have quantile indices
respectively F^1= F^d,1 = F^u,1 = 0 and F^z = F^d, z = F^u, z = 1.

In the second method, several quantile indices F2, F3, ..., Fz–1 are selected
uniformly in the interval [0;1] and their quantiles x̂2, x̂3, ..., x̂z-1 are assessed. For each
knot, the DM has to solve, according to  ?lx , the preferential equation l1(X x̂l)~l2(m,n),
where m/n=Fl. Then, x̂l = x*, where x* is the root, assessed using classical dichotomy.
Again, this normative scheme holds only for ideal DMs. For real DMs, there could
exist x2>x1, such that l1(X  x~ l2(m, n), l1(X  x~ l2(m, n), and l1(X x2)  l1(X x1).
Thus, the DM must find the greatest possible x = x̂down, such that l2(m,n)  l1(X x̂down),
and the smallest possible x = x̂up, such that l1(X x̂up)  l2(m,n). Then x*(x̂down ; x̂up).
That is the uncertainty interval of the quantile, which could be elicited using triple
dichotomy.  Thus, the DM’s degree of belief about the quantiles takes the form
(16) x̂l[ x̂d, l;  x̂u, l], for l=2, 3,…, z–1.

The interval in (16) is closed in order to accommodate the cases when the
quantiles are known. The extreme quantile indices F1= 0 and Fz= 1 correspond to
quantiles respectively x̂1 = x̂d,1 = x̂u,1 and  x̂z = x̂d, z = x̂u, z.

There are several sets of requirements to the rationality of the DM (S a v a g e
[13]; T e n e k e d j i e v [16]; D e G r o o t [5]). A common requirement in all is
transitivity of DM’s binary relations of preference. As it was demonstrated, real DMs
partially disobey transitivity of indifference and the mutual transitivity between strict
preference and indifference. Such DMs are denoted as fuzzy rational [N i k o l o v a
et al. [9]).



99

If an ideal DM makes the elicitation by any of the described methods, then
classical probability distributions shall be defined. On the contrary, a fuzzy rational
DM shall elicit ribbon probability distribution functions. The p-ribbon version shall
be formed using the first approach described above, whereas the x-ribbon version
shall be formed using the second approach.

4. 1D generalized lotteries of I type
4.1. 1D classical risky generalized lotteries of I type
Let’s compare q alternatives according to DM’s preference, which give 1D prizes x
with a utility function u(.), defined for all possible prizes from all alternatives.

A 1D generalized lottery of I type with a classical distribution function Fi(.)
shall be called classical risky generalized lottery of I type:
(17)             gi=Fi(x); x for i = 1, 2,…, q.

A theorem proves that such lotteries should be ranked in descending order of the
expected utility, which is calculated as a Stiltes integral:

(18)                   Ei(u/Fi)=
 

( ) ( )iu x dF x



 .

Let Fi(.) be a partially linear distribution function with knots

(19)              { ( ) ( )( ; )i i
l lx F | l = 1, 2,… zi},

where  ( ) ( ) ( )
1 2 ...

i

i i i
zx x x   ,  ( ) ( ) ( )

1 20 ... 1
i

i i i
zF F F     .

Then the expected utility is brought down to

(20)   Ei(u/Fi)=
 ( ) ( )

1

( ) ( )
1 ( ) ( ) ( ) ( )

1 1

1 1( ) ( )
( ) ( )1

1( ) ( )
=1 11

( ) ( )= ( ) ( ) ( )

i i
zi li i

i i
li i i i

l l l l

x xz zi i
i il l

i l l li i
l ll lx x

x x x x

F Fu x dF x u x dx F F u x
x x



 

 





 


 

   .

4.2. 1D fuzzy rational generalized lotteries of I type

4.2.1. General case of 1D fuzzy-rational generalized lotteries of I type
1D generalized lottery of I type with a ribbon distribution function  shall be called
fuzzy-rational:

(21)  fr
ig =; x, for i=1, 2,…, q.

By analogy to fuzzy-rational ordinary lotteries, 1D fuzzy-rational generalized
lotteries of I type may be ranked at two stages:

1) The ribbon distribution functions  ( )R
iF x  are approximated by classical

distribution functions  using a criterion under strict uncertainty S. In that way the
resulting alternatives are approximated by 1D classical-risky generalized lotteries of
I type, which can be called S-generalized:
(22)  S

ig = S( )iF x ; x for i=1, 2,…, q.
2) Alternatives are ranked in descending order of the expected utility of the S-

generalized lotteries. The resulting ranking criterion can be called S-expected utility
of the fuzzy-rational generalized lotteries:
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(23)               
 

( / ) ( ) ( )S R S
i i iE u F u x dF x





  .

4.2.2. 1D x-fuzzy-rational generalized lotteries of I type
A special case of a 1D generalized lottery of I type with an x-ribbon distribution
function  ( )xR

iF x  shall be denoted x-fuzzy-rational:
(24)          xfr

ig = ( )xR
iF x ; x, for i=1, 2,…, q.

Then the calculation of the S-expected utility of the x-fuzzy-rational lottery
could be brought down to the following steps:

1) The x-ribbon distribution function  ( )xR
iF x  is approximated by a classical,

partially linear distribution function  ( )xS
iF x  using a criterion under strict uncertainty

S, with knots
(25) { S,( ) ( )?( ; )i i

l lx F | l=1, 2,…, zi}, where

 ,( ) ,( ) ,( )
1 2? ? ?...

i

S i S i S i
zx x x   ,

 ( ) ,( ) ( )
, ,? ? ?i S i i

d l l u lx x x   for l = 2, 3,…, zi–1,

  ,( ) ( ) ( )
1 ,1 ,1? ? ?S i i i

d ux x x   and  ,( ) ( ) ( )
, ,? ? ?

i i i

S i i i
z d z u zx x x   .

Then

(26)   

 ,( )
1

( ) ,( ) ,( )
1

,( ) ( ) ( )
( ) ,( ) ,( )1

1,( ) ,( )
1

,( )

?0 for
? ?for ,  =1,2,..., 1

( )= ?( )( ) ? ?for ,  =1,2,..., 1
? ?

?1 for
i

S i

i S i S i
l l l i

xS S i i i
i i S i S il l l

l l l iS i S i
l l

S i
z

x x
F x x x l z

F x x x F FF x x x l z
x x

x x








 


  


      
 

.

The resulting alternatives are approximated by a 1D classical-risky generalized
lottery of I type, which can be called xS-generalized:

(27)           xS
ig = ( )xS

iF x ; x for i=1, 2,…, q.
2) Alternatives are ranked in descending order of the expected utility of the xS-

generalized lotteries. The resulting ranking criterion may be called xS-expected utility
of the fuzzy-rational generalized lotteries:

(28)        
 ,( )

,( )
1

,( )
1

,( )1
,( ) ,( ) ,( ) ,( )
1 1

?

?

?1 1( ) ( )
( ) ( ) ,( )1

1,( ) ,( )
=1 1?

? ? ? ?

( / )= ( ) ( )=

?= ( ) ( ) ( )
? ?

S i
zi

S i

S i
li i

l
S il l

S i S i S i S il
l l l l

x
xS xR xS
i i i

x

xz zi i
i i S il l

l lS i S i
l lx

x x x x

E u F u x dF x

F F u x dx F F u x
x x





 

 





 


 





  .
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4.2.3. 1D p-fuzzy-rational generalized lotteries of I type
A special case of a 1D generalized lottery of I type with a p-ribbon distribution function
 ( )pR

iF x  shall be called p-fuzzy-rational:

(29)          pfr
ig = ( )pR

iF x ; x, for i = 1, 2,…, q.

Then the calculation of the S-expected utility of the p-fuzzy-rational lottery may
be brought down to the following steps:

1) The p-ribbon distribution function  ( )pR
iF x  is approximated by a classical,

partially linear distribution function, using a criterion under strict uncertainty S, with
knots
(30)             {  ( ) S,( )?( ; )i i

l lx F | l=1, 2,…, zi}, where
 ,( ) ,( ) ,( )

1 20 ... 1
i

S i S i S i
zF F F     ,

 ( ) ,( ) ( )
, ,

? ? ?i S i i
d l l u lF F F  , for l = 2, 3,…, zi–1.

Then

(31)  

 ( )
1

,( ) ( ) ( )
1

( ) ,( ) ,( )
,( ) ( ) ( )1

1( ) ( )
1

( )

0 for
? for ,  =1,2,..., 1

? ?( )= ( )( )? for ,  =1,2,..., 1

1 for
i

i

S i i i
l l l i

pR i S i S i
i S i i il l l

l l l ii i
l l

i
z

x x

F x x x l z
F x x x F FF x x x l z

x x

x x








 


  


      
 

.

The resulting alternatives are approximated by a 1D classical-risky generalized
lottery of I type, which may be called pS-generalized:

(32)  pS
ig = ( )pS

iF x ; x, for i=1, 2,…, q.
2) Alternatives are ranked in descending order of the expected utility of the pS-

generalized lotteries. The resulting ranking criterion may be called pS-expected utility
of the fuzzy-rational generalized lotteries:

(33)                
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5. Ranking 1D fuzzy-rational generalized lotteries of I type
with Laplace approximation

5.1. Laplace approximation of x-ribbon distributions

The values of the required quantiles  ,( )?L i
lx , for l=2, 3,…, zi–1, do not depend on the

utility function. According to the Laplace principle of insufficient reason, if no
information is available for the quantiles (i.e.  ( ) ( ) ( )

, ,1 ,1? ? ?i i i
d l d ux x x   and  ( ) ( ) ( )

, , ,? ? ?
i i

i i i
u l d z u zx x x 

for l=2, 3,…, zi–1), then the distribution must be uniform in the interval  ( ) ( )
,1 ,? ?[ ; ]

i

i i
d d zx x .

Let the quantile with the  ( )i
lF   index of this uniform distribution be called quantile of

the complete ignorance and be denoted as  ,( )aL i
lx :

(34)  ,( ) ( ) ( ) ( ) ( )
,1 , ,1? ? ?+( )

i

aL i i i i i
l d d z d lx x x x F    for l = 2, 3, …, zi–1.

Let  ,( )x i
lh  be the affine transformation of the maximal uncertainty interval under

strict uncertainty of the l-th quantile  ( ) ( )
,1 ,? ?[ ; ]

i

i i
d d zx x  into the actual uncertainty interval

 ( ) ( )
, ,? ?[ ; ]i i

d l u lx x  of that same quantile. Then the required quantile  ,( )?L i
lx  will be the image of

the quantile of complete ignorance  ,( )aL i
lx  at the affine transformation  ,( )x i

lh :

(35) 
 ,( ) ( )

,1,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,( ) ( )

, ,1

?
? ? ? ? ? ? ?+( ) +( )

? ?
i

aL i i
l dL i i i i i i i i

l d l u l d l d l u l d l li i
d z d

x x
x x x x x x x F

x x


   


 for l = 2, 3,…, zi–1.

5.2. Laplace approximation of p-ribbon distributions

The values of the required quantile indices  ,( )?L i
lF  for l = 2, 3, ..., zi–1 do not depend

on the utility function. According to Laplace principle of insufficient reason, if no
information is available for the quantile indices (i. e.  ( )

,
? i
d lF =0 and  ( )

,
? 1i
u lF   for

l = 2, 3,..., zi–1), then the distribution must be uniform in the interval  ( ) ( )
1[ ; ]

i

i i
zx x . Let

the quantile index of the quantile  ( )i
lx  of that distribution be called quantile index of

complete ignorance and be denoted  ,( )aL i
lF :

(36)
 ( ) ( )

,( ) 1
( ) ( )

1i

i i
aL i l

l i i
z

x xF
x x




  for l = 2, 3,..., zi–1.

Let  ,( )p i
lh  be the affine transformation of the maximal uncertainty interval under

strict uncertainty of the l-th quantile index [0; 1] into the actual uncertainty interval
 ( ) ( )

, ,
? ?[ ; ]i i
d l u lF F  of the same quantile index. Then the required quantile index  ,( )?L i

lF  will be
the image of the quantile index of complete ignorance  ,( )aL i

lF  at the affine
transformation  ,( )p i

lh :

(37) 
 ( ) ( )

,( ) ( ) ( ) ( ) ,( ) ( ) ( ) ( ) 1
, , , , , , ( ) ( )

1

? ? ? ? ? ? ?( ) +( )
i

i i
L i i i i aL i i i i l

l d l u l d l l d l u l d l i i
z

x xF F F F F F F F
x x


    


 for l = 2, 3, ..., zi–1.
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5.3. Laplace expected utility criterion for 1D fuzzy-rational
generalized lotteries of I type

The dependency (35) generates a set of Laplace approximated knots for the x-ribbon
distribution functions, with which to build classical, partially linear distribution
functions. On that basis it is possible to calculate the Laplace expected utility for the
x-fuzzy-rational generalized lotteries of I type, by substituting (35) into (28):

(38)         
 ,( )

,( )
1

,( )
1

,( )1
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1 1
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i i L il l

l lL i L i
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x x x x

E u F u x dF x
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x x
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 





 


 





 

The Laplace expected utility criterion in that case has the following three
properties:

1) The estimated knots using (35) obey the conditions in (25);
2) If the uncertainty intervals of the quantiles are of zero length (i.e.  ( )

,? i
d lx = ( )

,? i
u lx ),

then the Laplace expected utility criterion (38) transforms into the classical expected
utility criterion under risk;

3) Under strict uncertainty nothing is known, and the uncertainty interval of all
inner quantiles are of maximal length (i.e.  ( ) ( )

, 1? ?i i
d lx x  and  ( ) ( )

,? ?
i

i i
u l zx x ). Then according

to (35)  ,( )?L i
lx = ,( )L i

lx , and the distribution is uniform in the interval  ( ) ( )
,1 ,? ?[ ; ]

i

i i
d d zx x  with

density  ,( ) ,( )
1

1( )
? ?

i

i L i L i
z

f x
x x




. In that case the Laplace expected utility criterion (38)

transforms into the classical Laplace criterion under strict uncertainty:

(39)             
 ,( ) ,( )
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1 1
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 

 

The dependence (35) generates a set of Laplace approximated knots for the p-
ribbon distribution functions, with which to build classical, partially linear distribution
functions. On that basis it is possible to calculate the Laplace expected utility for the
p-fuzzy-rational generalized lotteries of I type, by transforming (33) into (40):

.

.

.

.
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(40)       
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The Laplace expected utility criterion in that case also has the following three
properties:

1) the estimated knots using (37) obey the conditions in (30);
2) if the uncertainty intervals of the quantile indices are of zero length (i.e.

 ( )
,

? i
d lF  = ( )

,
? i
u lF ), then the Laplace expected utility criterion (40) transforms into the classical

expected utility criterion under risk;
3) under strict uncertainty nothing is known, and the uncertainty intervals of all

inner quantile indices are of maximal length (i.e.  ( )
,

? i
d lF =0,  ( )

,
? i
u lF =1). Then according to

(37)  ,( )?L i
lF = ,( )L i

lF , and the distribution is uniform in the interval  ( ) ( )
1[ ; ]

i

i i
zx x  with

density 
 

( ) ( )
1

1( )
i

i i i
z

f x
x x


 . In that case the Laplace expected utility criterion (40)

transforms into the classical Laplace criterion under strict uncertainty:
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6. Example problem with fuzzy-rational generalized lotteries of I type

In order to facilitate a businessman’s decision, her/his utility function was constructed
in the interval [–$2000; $28 000] using the lottery equivalence method (M c C o r d,
D e N e u f v i l l e [7]). Five uniformly distributed prize values, given in the second
column of Table 1 are chosen in the interval. The corresponding uncertainty intervals
of the elicited utilities are given in columns 3 and 4 of Table 1, whereas column 5
contains their point estimates, calculated as the mean values of the uncertainty intervals.
The utility function, depicted on Fig. 1, is constructed using linear interpolation on
the seven knots.

Let’s assume that the businessman has to choose between three investment
projects, for which the NPV in US dollars are calculated in the form of probability

.

.
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distributions. The first project is expected to yield profits in the interval [$0; $18
000], the second project – in the interval [$500; $18 000], and the third project – in
the interval [$0; $17 500]. Then the set of prizes X consists of all profits in the
continuous interval [$0; $18 000]. Since there are only three alternatives and a countless
number of consequences (profits), the problem may be modeled with generalized
lotteries of I type.

The subjective distribution functions of the businessman over the prize set in
each of the alternatives are constructed by interpolation on elicited knots. For the
first two alternatives, three inner quantile uncertainty intervals corresponding to three
initially defined quantile indices were elicited. The acquired knots are given in columns

2 to 4 of rows 2 to 6, and 8 to 12 of
Table 2. For the third alternative, the
quantile index uncertainty intervals of
four inner quantiles were elicited. The
acquired knots are given in columns 2
to 4 of rows 14 to 19 of Table 2. Ranking
the alternatives shall be performed using
classical (based on point estimates of
probabilities) and fuzzy-rational
generalized lotteries of I type. The
Laplace expected utility criterion shall
be used to approximate and rank the
fuzzy-rational lotteries.
6.1. Problem solving via classical risky
generalized lotteries of I type
Classical risky generalized lotteries of
I type require a classical distribution
function. This could be provided by
interpolation on the point estimates of
the uncertainty intervals of the
distribution function knots, calculated
as mean values of those intervals. The

former are given in column 5 of Table 2. The graphics of the distribution functions
and the densities, constructed using the point estimates, are depicted on Fig. 2.
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l (1)x,
lF  (1)

d ,l?x  (1)
u ,l?x  (1)

l?x  (1)aL,
lx  (1)L,

l?x  
1 0 0 0 0 – 0 
2 0.25 4000 12000 8000 4500 6000 
3 0.5 5000 13000 9000 9000 9000 
4 0.75 6000 14000 10000 13500 12000 
5 1 18000 18000 18000 – 18000 
l (2)x,

lF  (2)
d ,l?x  (2)

u ,l?x  (2)
l?x  (2)aL,

lx  (2)L,
l?x  

1 0 500 500 500 – 500 
2 0.25 1500 9500 5500 5000 3500 
3 0.5 5500 13500 9500 10000 9500 
4 0.75 9500 17500 13500 14000 15500 
5 1 18500 18500 18500 – 18500 
l (3)

lx  (3)p,
d ,l

?F  (3)p ,
u ,l

?F  ,(3)p
l

?F  (3)aL,
lF  (3)L,

l
?F  

1 0 0 0 0 – 0 
2 1000 0.01 0.12 0.065 0.057 0.016 
3 5000 0.2 0.4 0.3 0.286 0.211 
4 9000 0.45 0.75 0.6 0.514 0.467 
5 14000 0.65 0.92 0.785 0.824 0.667 
6 17500 1 1 1 – 1 
 

i xi i?u  i,d?u  i,u?u  
1 -2000 0 0 0 
2 3000 0.4 0.35 0.45 
3 8000 0.68 0.62 0.74 
4 13000 0.85 0.8 0.9 
5 18000 0.95 0.92 0.98 
6 23000 0.98 0.97 0.99 
7 28000 1 1 1 
 

Table 1. Utility knots and
uncertainty intervals for
  prizes in the interval

[–$2 000;$28 000]

Fig. 1. Utility function over prizes in
the interval [–$2 000;$28 000]

Table 2. Elicited subjective data for the three
projects
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Then the expected utilities of the
alternatives may be calculated using (20).
Another possibility is to use the approximate
algorithm to calculate the integral of
expected utility of classical r isky
generalized lotteries of I type, proposed in
(T e n e k e d j i e v  [16]. The algorithm
does not generate error in the integration of
linearly interpolated utility function and
density function (where the latter is acquired
via differentiation of a linearly interpolated
distribution function). The calculated
expected utilities with this algorithm are:
E1(u/F1)=0.683, E2(u/F2)=0.685, and
E3(u/F3)=0.597. Since E2(u/F2)>E1(u/F1)>
E3(u/F3), then the preferences of the DM
should be: at first place – Project 2, followed
by Projects 1 and 3.
6.2. Problem solving via fuzzy-rational generalized lotteries of I type
The data in columns 2 to 4 of Table 2 allow constructing two x-ribbon and one
p-ribbon distribution functions over the prizes. In that case, the investment projects
could be modeled by two x-fuzzy-rational (first and second alternative) and one
p-fuzzy-rational (third alternative) generalized lotteries of I type. The procedures
from Sections 4.2.2 and 5.1, and Sections 4.2.3 and 5.2 can be applied to rank lotteries
from both types.
6.2.1. Approximation of the x-ribbon distributions
A first step in the approximation is to find the quantiles of complete ignorance for the
probability distributions of the first two alternatives, using (34). For example, the
first quantile of complete ignorance for the distribution function of the first alternative

is  ,(1)
2
aLx  (1) (1) (1) (1)

,1 ,5 ,1 2? ? ?+( )d d dx x x F    0+(18000-0)0.25=4500.
All other quantiles are calculated in the same fashion, and are given in the sixth

column of Table 2 in rows 2 to 6 and 8 to 12. It is now possible to calculate the
required Laplace quantiles, using (35). For example, the first quantile for the

distribution function of the first alternative is  ,(1) (1) (1) (1) (1)
2 ,2 ,2 ,2 2? ? ? ?+( )L

d u dx x x x F   =
=4000+(12000–4000)0.25=6000. All other quantiles are calculated in the same fashion,
and are given in the column 7 of Table 2 in rows 2 to 6 and 8 to 12. Then both
x-ribbon distributions may be approximated on the acquired knots. The graphics of
the Laplace approximated distribution functions for both alternatives, along with their
densities, are given on Figs. 3 and 4.
6.2.2. Approximation of the p-ribbon distribution
The quantile indices of complete ignorance for the probability distributions of the
third alternative could be calculated using (36). For example, the first quantile index

of complete ignorance is 
 (3) (3)

,(3) 2 1
2 (3) (3)

6 1
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aL x xF
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  
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Fig. 2. Distribution function (CDF) and
density (PDF) of prizes for the three
alternatives, constructed on point estimates
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Fig. 4. Distribution function (CDF) and density
(PDF)of prizes for the second alternative
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indices are calculated in the same fashion, and are given in column 6 of Table 2 in
rows 14 to 19. It is now possible to calculate the required Laplace quantile indices,
using (37). For example, the first quantile index shall be

 
 (3) (3)

,(3) (3) (3) (3) 2 1
2 ,2 ,2 ,2 (3) (3)

6 1

? ? ? ?+( )L
d u d

x xF F F F
x x


  

 0.01+(0.12–0.01)[(1000–0)/(17500–0)]=0.016.

All other quantile indices are calculated in the same fashion, and are given in column
7 of Table 2 in rows 14 to 19. Then the
p-ribbon distribution may be approximated
on the acquired knots. The graphics of the
Laplace approximated distribution function
for the third alternative, along with its density,
is given on Fig. 5.
6.2.3. Calculation of the Laplace expected
utility
The xL-expected utility of the first two
alternatives are calculated using (28), and the
data  in Table 1 and 2, and are:
 

1 1( / )=xL xRE u F 0.671,  2 2( / )=xL xRE u F 0.667. The
pL-expected utility of the third alternative is
calculated using (33) and the data in Tables
1 and 2, and is  

3 3( / )=pL pRE u F 0.604. Since

 
1 1( / )xL xRE u F > 

2 2( / )xL xRE u F > > 
3 3( / )pL pRE u F ,

then the preferences of the DM should be: at first place – Project 1, followed by
Projects 2 and 3.

The example case demonstrated that the final ranking is dependent on the proper
modeling of unquantified uncertainty. In our example the ranking of alternatives is



108

different when the unquantified uncertainty is approximated according to Laplace
expected utility criterion from the case when unquantified uncertainty is neglected
by the expected utility criterion applied on middle points of uncertainty intervals.

7. Conclusions

The paper dealt with the fuzzy rationality of real DMs and its influence on the
construction of probability distributions. Two methods were outlined to construct the
latter using linear interpolation on several elicited knots. Those envisaged the elicitation
of either quantiles or quantile indices. Due to the reality of DMs both methods resulted
in uncertainty intervals of the required estimates. Because of that ribbon distribution
functions were introduced, which depending on the type of uncertainty intervals (on
prizes or on probabilities) could be x-ribbon and p-ribbon ones.

1D generalized lotteries of I type envisaged probability distributions of the prize.
Due to the use of ribbon functions, the classical risky generalized lotteries of I types
transformed into fuzzy-rational ones of either x-fuzzy-rational or p-fuzzy-rational
type. A two-step procedure to rank those was formalized in both cases. It envisaged
approximation of the ribbon functions by classical, partially linear ones in order to
apply expected utility. The Laplace criterion under strict uncertainty was proposed
for that purpose, and its use was formalized both for x-ribbon and p-ribbon functions.
Quantiles and quantile indices of complete ignorance were introduced to facilitate
the approximation of the ribbon distributions with classical distribution functions.
The Laplace expected utility criterion was introduced, and formalized both for the
case of x-fuzzy-rational and p-fuzzy-rational generalized lotteries of I type. An example
was developed which demonstrated how generalized lotteries could be ranked in the
classical case (with point estimates of quantiles/quantile indices, which are the mean
values of the uncertainty intervals) and in the fuzzy-rational case (i.e. using Laplace
approximation and Laplace expected utility). All calculations of Laplace expected
utility in the example were performed with the help of a specially constructed
MATLAB program function, which is available free upon request from the authors.
The example results showed that problem modeling and more detailed analysis of the
information available are crucial for the final decision.

R e f e r e n c e s

1. A t a n a s s o v, K. Review and New Results on Intuitionistic Fuzzy Sets. – Preprint IM-MFAIS,
Vol. 1-88, Sofia, 1988.

2. A t a n a s s o v, K. Four New Operators on Intuitionistic Fuzzy Sets. – Preprint IM-MFAIS,
Vol. 4-89, Sofia, 1989.

3. A t a n a s s o v, K. Intuitionistic Fuzzy Sets. Heidelberg, Springer-Verlag, 1999.
4. B e r n s t e i n, P. L. Against the Gods – the Remarkable Story of Risk. John Wiley, 1996.
5. D e  G r o o t, M. H. Optimal Statistical Decisions. McGraw-Hill, 1970.
6. K e e n e y, R. L., H. R a i f f a. Decisions with Multiple Objectives: Preference and Value Tradeoffs.

Cambridge University Press, 1993, 282-344.
7. M c C o r d, M., R. D e  N e u f v i l l e. Lottery Equivalents’: Reduction of the Certainty Effect

Problem in Utility Assessment. Management Science, Vol. 32, 1986, 56-60.
8. N i k o l o v a, N. Two Criteria to Rank Fuzzy Rational Lotteries. – In: Proc. Automatics and

Informatics, Sofia, Bulgaria, 2006 (accepted).



109

9. N i k o l o v a, N. D., A. S h u l u s, D. T o n e v a, K. T e n e k e d j i e v. Fuzzy Rationality in
Quantitative Decision Analysis. – Journal of Advanced Computational Intelligence and
Intelligent Informatics, Vol. 9, 2005, No 1, 65-69.

10. P r a t t, J. W., H. R a I f f a, R. S c h l a I f e r. Introduction to Statistical Decision Theory.
Cambridge, Massachusetts, MIT Press, 1995.

11. P r e s s, W. H., S. A. T e u k o l s k y, W. T. V e t t e r l i n g, B. P. F l a n n e r y. Numerical Recipes
– the Art of Scientific Computing. Cambridge University Press, 1992.

12. R a p p a p o r t, A. Decision Theory and Decision Behavior – Normative and Descriptive Approaches.
Kluwer Academic Publishers, 1989.

13. S a v a g e, L. J.. The Foundations of Statistics. First Edition. John Wiley, 1954.
14. S z m i d t, E., J. K a c p r z y k. Probability of Intuitionistics Fuzzy Events and their Applications

in Decision Making. – In: Proc. EUSLAT-ESTYLF Joint Conference, September 22-25, Spain,
1999, 457-460

15. T e n e k e d j i e v, K. Decision Problems and Their Place Amongs Operational Research. –
Automatica and Informatics, Year XXXVIII, 2004, No 1, 6-9.

16. T e n e k e d j i e v, K. Quantitative Decision Aanalysis: Utility Theory and Subjective Statistics.
Sofia, Marin Drinov Academic Publishing House, 2004.

17. T e n e k e d j i e v, K. Hurwicz-Expected Utility Criterion for Decisions with Partially Quantified
Uncertainty.  – In:  Proc. First International Workshop on Intuitionistic Fuzzy Sets, Generalized
Nets and Knowledge Engineering, University of Westminster, London, UK, 2006, 56-75.

18. T e n e k e d j i e v, K., N. D. N i k o l o v a, D. D i m i t r a k i e v. Application of the Triple Bisection
Method for Extraction of Subjective Utility Information.  – In:  Proc. Second International
Conference “Management and Engineering’2004” , Sofia, Bulgaria, Vol. 2(70) , 2004, 115-
117.

19. T e n e k e d j i e v, K., N. D. N i k o l o v a, C. K o b a s h i k a w a, K. H i r o t a. Conservative Betting
on Sport Games with Intuitionistic Fuzzy Described Uncertainty.  – In: Proc. Third International
IEEE Conference on Intelligent Systems IS’2006, Westminster, UK, 2006, 747-754.

20. V o n  N e u m a n n, J., O. M o r g e n s t e r n. Theory of Games and Economic Behaviour. Second
Edition. Princeton University Press, 1947.


