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Abstract: The paper presents a heuristic approach for development of polynomial-
time algorithms, solving the two-group classification problem. The proposed algorithm
ALS, based on this heuristic approach, has been tested on 200 test problems with 6
attributes and 150 training sample observations (75 per group), and with 10% to
30% overlapping of both groups in the training sample. The obtained results are
compared with that one, obtained by means of three other heuristic algorithms, one
exact algorithm and one statistical method on the same test problems. The
computational complexity of ALS algorithm is very encouraging.
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1. Introduction

The two-group classification problem is very important, because it appears in many
business areas (economics, marketing, finance and management), as well as in
engineering, medical and social sciences.

Let two groups of objects g1 and g2 be given. There are available m = m1+m2
observations of these objects in a training sample (m1 are from g1, and m2 are from
g2). The objects are described by an n-component vector of attributes x = (x1, ..., xn).
Usually m1 > n and m2 > n. The objective of discriminant analysis is to find a function
(classifier) f(x,w) separating the two groups (classifying the objects to the
corresponding groups).

Different type approaches have been used over the years to solve this problem
and corresponding methods are developed. Many investigations have been devoted
to the statistical (nonparametric and parametric) methods. The most widely known
statistical methods, such as Fisher’s linear discriminant function (LDF) [7], Smith’s
quadratic discriminant function (QDF) [23] and the logistic discriminant function
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(LGD) [5] may yield poor classification results if the data sets of the both groups are
highly skewed or scattered and the training sample observations are contaminated by
outliers (see [3, 20]). The LDF-methods have robust classification accuracy for
normally distributed data sets and perform poorly if the deviations from normality
are significant. The logistic regression method is a parametric statistical method.
Also the LDF- and QDF-methods are parametric statistical methods, using a distance
measure, based on L2-norm. However it is well known that criteria based on higher
norm distances perform poorly if extreme training sample observations are available
(see [6]). For this reason many researchers have directed their efforts to develop
nonparametric classification methods. There exist nonparametric Mathematical
Programming (MP) methods minimizing the absolute distances to the hyperplane
that separates the groups (L1-norm-based methods) and MP methods, which minimize
the actual number of misclassified observations (L0-norm-based methods). In [21] is
supported the use of MP methods, because they do not make any assumptions about
the distributional characteristics of the attribute populations. These methods focus on
the search space region, where overlap of the groups occurs. An L1-norm-based method
in [9] proposes the MSD (minimize the sum of deviations) model. Some experimental
results [15] show that the MSD method performs more accurately than the LDF and
QDF methods. An L-norm-based method [8] minimizes the maximum deviation
(MMD). Other known L1-norm-based method, solving the two-group classification
problem, is the method optimizing the sum of deviations (OSD) [3, 19], as well as the
Hybrid method [11]. The L1-  and L-norm methods can be realized by means of
linear programming (LP) techniques.

Methods, which use another MP approach, are the mixed-integer programming
(MIP) methods. They minimize the number of misclassified training sample
observations directly. The MIP methods can be viewed as Lp-norm methods with
p0 and are referred as MP-L0 methods (see [2]). Methods belonging to this group
are those, proposed in [2, 17, 25]. Unfortunately the MIP problems are proven to be
NP-hard (see [10, 15]). The exact methods to solve these problems have exponential
computational complexity. In the concrete case the computational efforts in the exact
methods increase exponentially as a function of the training sample size and of the
number of attributes. For this reason some exact algorithms which take advantage of
the special structure and characteristics of the problem formulation are developed
(see [4, 2, 25]) and the Divide and Conquer (D&C) algorithm [6]). To solve large-size
two-group classification problems with a relative small deviation from optimality
some researchers have developed heuristic algorithms, which drastically reduce the
computational efforts in comparison to the exact algorithms (see [1, 12, 13, 14, 17,
22]). Relationships between support vector machines and the generalized linear
discriminant analysis applied to the support vectors are studied in [16]. In this
connection, exact generators of random vectors are proposed in [18, 19]. Illustrating
the relationship, it is shown in [16] that the classification problem can be interpreted
as a data reduction problem.

In this paper a heuristic approach and the possible development of polynomial
algorithms based on it are considered. The paper is organized as follows: In
Section 2 a brief formulation of the problem is presented. Section 3 states the mentioned
heuristic approach and a possible basic algorithm. In Section 4 the performance of
different exact and heuristic algorithms is compared. In Section 5 an illustrative
example is presented. Some conclusions are made in Section 6.
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2. The problem formulation

Let we consider two groups of objects g1 and g2 and xi = (x1, ..., xn), i = 1, ..., m, are
training sample observations, such that m1 of them belong to g1 and m2 of them belong
g2. Hence m = m1+m2  and  xi , i = 1,..., m, are n-dimensional vectors of attributes.

The most frequently used classifier is linear. The objective in this paper is to
find an n-dimensional hyperplane in the attribute space f(x, w) = xTw, such that x g1,
if  f(x, w)  w0, otherwise x g2. Here w is n-dimensional vector, containing the
parameters of the classifier (the coefficients of the separating hyperplane), and w0 is
the cut-off value. The problem is formulated as a Mixed-Integer Programming problem
(MIP-problem) as follows:

(1)                                       



m

i
iz

1

min 

subject to
(2)  xi

Tw  + w0 + Mi  0, ig1 , i = 1,..., m1,
(3)                          xi

Tw   w0 + Mi  , ig2 , i = 1,..., m2,
where wk , k = 0, 1,..., n, are unrestricted in sign real variables, each of the binary
variables i correspond to one observation in the training sample, so that i = 1, if the
i-th observation is misclassified and i = 0 if the i-th observation is correctly classified.
The objective function value z is equal to the number of misclassifications. M is a
sufficiently large, and  is sufficiently small positive real number, for example

 = 3 macheps , where “macheps” is the computer’s machine precision.

3. Heuristic approach

Elements of the heuristic approach, discussed here has been proposed in [12, 13].
These ideas are developed further here and are illustrated by a test example in Sec-
tion 5, in order to become clearer.

From geometrical point of view one training sample observation is one point in
the n-dimensional Euclidean space of the attributes. In case the matrix of n arbitrary
chosen different  xi

T , where i = 1, ..., n; training sample vectors (points) is nonsingular,
i. e. it is of full rank, the chosen n points determine an unique hyperplane in this
n-dimensional space. Let we assume that every one such matrix is nonsingular, i. e.
the Haar condition holds (see [25]). Then each combination of n training sample
observations (points) will determine an unique hyperplane. This assumption doesn’t
decrease the generality of the consideration, because the choice of a training sample
corresponding to this condition is not difficult. The problem (1)-(3) is a combinatorial
one. There are C n

m  hyperplanes, defined by all possible combinations of the training
sample observations. The optimal hyperplane, separating the groups g1 and g2 with a
minimum number of misclassifications may be obtained by the complete enumeration
of all these hyperplanes. Usually the problem (1)-(3) has not an unique solution, i. e.
there are several optimal hyperplanes. By means of some heuristic techniques the
number of enumerated hyperplanes may be drastically reduced.

To obtain the coefficients of the hyperplane determined by the n training sample
observations xi

T , a determinant is solved:
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where (xi1, xi2, ..., xin) = xi
T,  u1, u2 ,..., un are variables in the attribute space and wk,

k = 0, 1, ...,  n) are the coefficients of the concrete hyperplane. The obtained coefficients
wk  may be substituted in the system (2)-(3) and each violated inequality i in this
system will lead to i =1, so that the objective function  z in (1) will increase by 1.

Grounded on geometrical reasons an initial hyperplane may be constructed, so
that it separates relatively well the two groups of objects (observations). For example
the weight centers O1 and O2 (mean vectors) correspondingly for the groups g1 and g2
may be calculated:

(5)                  O1j  =  












1

1

m

i

ijx /m1 ,   ig1 , i = 1, ..., m1,  j = 1, ..., n;

(6)                   O2j  =  












2

1

m

i

ijx /m2 ,   ig2 , i = 1, ..., m2,  j = 1, ..., n;

Then the normal vector h of the initial hyperplane H0 may be chosen as
(7) h = O2 – O1,  or   hj = O2j – O1j,   j = 1, ..., n;

The initial hyperplane H0 may pass through a chosen point (observation) xT of
the training sample or through the point  O  =  (O2 – O1)/2. If a point xT is chosen, then
the coefficients of the hyperplane H0 are determined as follows:
(8)                    wj = hj ; j = 1,..., n;  w0 =  xT h.

A simple way to construct a good initial hyperplane H0  is to construct a hyperplane
with normal vector h  through each point xi

T , i = 1, ..., m; in the training sample, to
calculate the z-value for each of these hyperplanes and then to choose as initial
hyperplane that one, corresponding to the minimum z-value. During this experiment
it may occurs for some hyperplanes, that more than the half of the inequalities (2)-(3)
are violated. In this case the hyperplane coefficients should be taken with the opposite
sign: wj =  wj, j = 0, ..., n.

After the initial separating hyperplane H0 is found, it is not difficult to find the n
closest situated to it (in Euclidean sense) training observations (points). They define
a new hyperplane, which may be denoted by H1.

Having a hyperplane H defined by n points xi
T from the training sample a set SH

of their indices i may be constructed. The replace of one corresponding to i  SH
point by another point from the training sample, which index doesn’t belong to SH
will lead to a new hyperplane, slightly turned in comparison to the former one. The
new hyperplane may (or may not) separate better the groups g1 and g2. Intuitively
there are points in the training sample, having a great probability to take part in the
definition of the optimal hyperplane H*. Let the search of such points is focused in
the region, where the both groups g1 and g2 overlap. A set P of indices of the training
sample points, which probably will take part in the definition of the optimal hyperplane
H* may be created. It will include the closest situated k points (k/2 from g1 and k/2
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from g2) to the current hyperplane H. Here k is even number. These points are
considered as “promising” observations. Another criterion may be the value di = |xi

Tw|.
The observations having value di closest to 0 may be considered as “promising”. Let
the training sample points are arranged according to their Euclidean distance to the
current hyperplane H or according to their di -values. The first k of them are included
in the set P.

The main idea of the heuristic approach presented here is to perform iterative
enumeration of hyperplanes in such manner, that at each iteration a set of hyperplanes
is constructed, replacing each point with index in SH by the point xj

T, where j  P. This
means that at each iteration n new hyperplanes will be enumerated. One enumeration
cycle for the set SH of the current hyperplane H will perform k iterations, because
there are k indices in P:  j = 1, ..., k. Hence the attempt to obtain a better separating
hyperplane on the basis on the current hyperplane H will cost by such enumeration kn
calculations of the determinant (4) and kn check-ups of the system (2)-(3) to calculate
the z-value. In case n is a great number, for example if n>20, it is recommended to be
taken k = 10, i. e. only 5 “promising” points from each group g1 and g2 will be included
in P. The possible heuristic may perform several iteration cycles improving the
z-value until there is no more improvement of z-value during the last iteration cycle.

Another idea is the information of the history of the search process to be used.
In case the observation indices, defining kbest last found hyperplanes, arranged
according their corresponding z-values, starting with the minimal one, are stored in
an array MINH, a rating of each training sample observation may be calculated as
follows: Let the observation xj

T takes part in qj hyperplanes from the hyperplanes,
stored in MINH. Let Qj is the index-set of these hyperplanes. Then the observation xj

T

has a rating: rate(xj
T) = 











Qji

iz /qj. In case qj = 0, rate(xj
T) = min(m1,  m2). Then the

observations indices may be arranged in a list according the ratings of the observations,
starting with the minimum rate(xj

T). A new set of  “promising” observations P' may
be created, containing k' indices among the first in the obtained rating list, which
have not been included in the set SH. An enumeration cycle may be performed by the
indices in P' like the enumeration cycle by P.

After all performed enumerations the two closest points (observations) to the
current best found hyperplane, but not lying on it,  may be selected (the one from
group g1 and the other from group g2). The hyperplanes defined by all combinations
of these two points with the points, which indices are included in SH may be
enumerated. If the number of attributes n = 10, then Cn

2 = C10
2 = n(n –1)/2 = 45

combinations (new hyperplanes) will be enumerated.
To complete the search process a new enumeration cycle may be performed

using the best found hyperplane and the corresponding set P.
At the end a simple transformation of the optimal hyperplane should be

performed. This is necessary, because here it was implicitly assumed, that all training
sample observations lying on the separating hyperplane are correctly classified. Usually
this is not true, taking into account that the set SH could contain indices of observations
from both groups g1 and g2. In this case the best found hyperplane should be turned
slightly, so that each of the training observations on it go to the corresponding group
and the other m  n observations keep their positions in the corresponding subspace.
The transformation of the best-found hyperplane should be performed as follows:
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Until this moment the found vector w satisfies the system
(9)  xi

Tw  + w0 = 0,  iSH and  ig1,
or
(10)                            xi

Tw   w0 = 0,  iSH and  ig2.
Let w satisfies the system (2)-(3). It should be found the correction ā in

w  = w+ā, where  w  and ā are n-dimensional vectors. Taking into account that  is a
small positive constant (see Section 2), and the system (9)-(10), then ā should satisfy:
(11)     xi

Tā  0,   iSH  and  i g1,
(12)                                  xi

Tā   ,   iSH   and  i g2.
Considering (11)-(12) as equalities ā can be calculated by means of the following

formula
(13)                                 ā = X–1[],
where X is a nn matrix, which rows are  xi

T,  iSH and  ig1; and xi
T,  iSH and  ig2;

[] is an n-dimensional vector, which i-th component is equal to 0 if iSH and  ig1;
otherwise (if iSH  and  i g2) it is equal to .

In case the training sample observations, which indices are in SH, belong only to
group g2, then simply w0 is changed:  w 0 = w0  .

In case the observations, which indices are in SH, belong only to group g1, the
coefficients of the obtained hyperplane don’t need any change.

4. Algorithmic scheme ALS

Step 1. Calculate the coefficients of an initial hyperplane H0, solving (5), (6), (7) and
(8). Choose among the given m observations the best observation, through which
passes H0.

Step 2. Calculate the coefficients of the hyperplane H1, passing trough the n
closest to H0 training sample observations.

Step 3. Create set SH, containing the indices of observations defining H1. Create
the set P, containing the first k indices of the closest observations (points) to H1.

Step 4. Perform an enumeration cycle based on indices in P:
Let  j=0  and  i=0.
i= i+1  While ik do:

j= j+1 While jn do:
Replace xj

T, j  SH  by  xi
T, i  P.

Calculate the coefficients of the hyperplane
defined by the indices in SH, solving (4).
Endwhile

Endwhile
Let by Hbest is denoted the best obtained hyperplane by this enumeration cycle. Update
the set SH by the indices of Hbest.

Step 5. Calculate the rating of each training sample observation and rearrange
the indices of the observations, starting with that one, having minimum rating value.
Create a new set P', containing the first k' indices in the so obtained list of indices.

Step 6. Perform an enumeration cycle like that one in Step 4, but based on
indices in P'.
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Step 7. Find the two closest observations (points) to the current best found
hyperplane, but not lying on it (the one from group g1 and the other from group g2).
Create the set P'' with the indices of these two points.

Step 8. Perform an enumeration cycle like that one in Step 4, but based on
indices in P''.

Step 9. Perform an enumeration cycle like that one in Step 4, based on indices in
P. Repeat this step until no more new hyperplanes with z-values equal or less to the z-
value of the best obtained hyperplane (before this step) are generated.

Step 10. If it is necessary, change the cut-off value of the final hyperplane Hbest
or turn slightly the hyperplane Hbest to classify correctly the observations lying on it
and obtain the hyperplane Hbest' , calculating its coefficients as in (13).

END   of the calculations.
The algorithmic scheme, presented above is open for further improvement by

other new ideas for creating of set P, and for including of such number of indices in it,
that is the most appropriate for the size and properties of the solved problem.

Step 1 with the check of m training sample observations to find out through
which of them passes H0, Step 7 and Step 8 with the full enumeration of Cn

2 hyperplanes
are new. The algorithm ALS may be extended by other new steps, based on the same
heuristic approach. Similar algorithms are proposed in [12, 13] and test results are
presented in [12, 13, 14].

5. Comparison between different heuristic algorithms
and one exact algorithm

To evaluate the relative deviation from optimality of the obtained solutions in [12,
13, 14] the following formula is used:

(14)                          ,./%100.err
1

* mNzz
N

i
ii 


















 



where N is the number of the test problems, zi and zi
* are the best found and the

optimal z-value for the i-th test problem and m = m1+ m2 is the number of training
sample observations.

Eight data sets, each one containing 25 test problems are used to test the presented
algorithm. The problems are with 6 attributes and 150 observations in two groups (75
per group). The problems in the different data sets are randomly generated by means
of different mean vectors and covariance matrices, so that the both groups overlap to
a different degree. The overlapping varies among the data sets between 10% and
30%. By means of (14) the obtained mean error for these 200 test problems is evaluated:
err = 4.5%. Similar results are obtained in [14] on the same test problems. In Table 1
are presented the test results for these 200 test problems about the mean error and the
mean arithmetical operations for one test problem of 4 heuristic algorithms - HG1,
HG2 and FCS from [14] and ALS, presented here, one exact – D&C from [6] (known
as one of the best exact algorithms for this class of problems) and one statistical
method – LDF method.

HEURISTIC ALGORITHM / METHOD Procedure 
HG1 HG2 FCS ALS LDF D&C 

Mean error [%] 11.53 6.27 4.55 4.50 7.98 0.00 
Math. operations 48.n3 350.n3 808.n3 800.n3 O(n3) 262.106.n3 

4
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The algorithm ALS solves each test problem in less than a minute on a Pentium
III computer, and the D&C method needs for some test problems about a week on the
same computer.

At Step 1, Step 2, Step 4, Step 6, Step 8, and Step 9 the presented heuristic
algorithm calculates correspondingly: m times, one time, kn times, k'n times,
n(n–1)/2 and kn times a nn determinant. Hence (2k+k')n + n(n+1)/2 +1 deterninants
(with size nn) will be solved. To calculate one such determinant 2n(n–1)
multiplications and 2n additions (subtractions) are performed. At Step 10 one inverse
nn matrix is calculated, so that Step 10 costs O(n3) arithmetical operations It follows
that the heuristic algorithms of this type perform O(n3 + mn2) arithmetical
operations. The values of  and  depend on the choice of k and k'. If  m and  m,
then the worst-case performance of ALS-type algorithms will cost O(mn3 + m2n2)
arithmetical operations. For comparison the computational complexity of FCS
algorithm (see [12]) is O(n5+mn3 + m2n) arithmetical operations. The computational
complexity of the D&C method [6] depends exponentially on n and increases very
rapidly with the increase of the overlapping of both observation data sets.

6. Illustrative example

The following test example with two variables (n=2) and ten training sample
observations, with 5 observations in each group (m1 = m2 = 5), illustrates the
performance of the algorithm from Section 3

min z = 


10

1i
i

subject to: –4w1 – 7w2 + w0 + M1  0
–5.5w1 – 5w2 + w0 + M2  0
–6.5w1 – 6w2 + w0 + M3  0

–7w1 –10w2 + w0 + M4  0
–8w1 – 8w2 + w0 + M5  0

5.5w1 + 8w2 – w0  + M6  
7.5w1 + 4w2 – w0  + M7  
8.5w1 + 7w2 – w0  + M8  
9.5w1 + 6w2 – w0  + M9  
10w1 + 9w2 – w0  + M10  ,

where M=10 000 and = 0.021.
Solving (5) and (6) is obtained O1  =  (6.2 , 7.2)  and  O1  =  (8.2 , 6.8).
From (7) h = (2, –0.4).
At Step 1 the initial hyperplane H0 passes through observation 3 and has the

following coefficients:
w1 = 2, w2 = –0.4 and  w0 = 12.8.
At Step 2 the hyperplane H1, passing trough observation 2 and 3 has the

following coefficients:
w1 = 1, w2 = –1 and  w0 = 0.5.
For this hyperplane z = 1, because the sixth inequality is violated.
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At Step 4 the set P includes 8 indices of observations: P={1, 4, 5, 6, 7, 8, 9, 10}.
Three hyperplanes having  z = 1 (because 6 = 1) are obtained, correspondingly passing
through observations: (2), (3), (2), (10) and (3), (5). Their coefficients are:

1) w1 = 1, w2 = –1 and  w0 = 0.5 or     w1 – w2 = 0.5;
2) w1 = 4, w2 = –4.5 and  w0 = –0.5 or     w1 – 4.5w2 = –0.5;
3) w1 = 1, w2 = –0.75 and  w0 = 2 or     w1 – 0.75w2 = 2.
Calculating the rating of all variables the following result is obtained:

rate(2)=rate(3) = 1; rate(5) = rate(10) = 1.5; rate(4) = rate(8) = 2.5; rate(1) = rate(6)
= rate(7) = 3; rate(9) = 4.5. The observations with indices 2, 3, 5, 10 have been
included at least one time in the set SH. Then the set P’ = {4, 8}is created at Step 5.

At Step 6 a new hyperplane having  z = 1 (because 6 = 1) is obtained: (8,10).
Its coefficients are:

4) w1 = 2, w2 = –1.5 and  w0 = 6.5 or     2w1 – 1.5w2 = 6.5.
At Step 8 no better solution has been found.
At Step 9 performing an enumeration cycle arround the hyperplane (3), (5) a

new hyperplane having  z = 1 (because 6 = 1) is obtained (5), (7) with coefficients:
5) w1 = 8, w2 = –1 and  w0 = 56 or     8w1 – w2 = 56.
Repeating this step one more new hyperplane having  z = 1 (because 6 = 1)

is obtained  (7), (8) with coefficients:
6) w1 = 3, w2 = –1 and  w0 = 18.5 or     3w1 – w2 = 18.5.
At Step 10 the hyperplane through (2), (10) is turned slightly, so that

ā = [0.21, –0.231]. The coefficients of the turned hyperplane are:
2') w1 = 4.21, w2 = –4.731 and  w0 = –0.5    or     4.21w1 – 4.731w2 = –0.5.
The same operation is performed with the hyperplane passing through (5),

(7), so that ā=[0.006, –0.006]. The coefficients of the turned hyperplane are:
5') w1 = 8.006, w2 = –1.006 and  w0 = 56   or     8.006w1 – 1.006w2 = 56.
The cut-off value of the hyperplane through (8), (10) is slightly changed:
4') ŵ0 = w0   = 6.5 – 0.021 = 6.479 or     2w1 – 1.5w2 = 6.479.
The same operation is performed with the hyperplane through (7, 8):
6') ŵ0 = w0   = 18.5 – 0.021 = 18.479  or     3w1 – w2 = 18.479.
Hence here are obtained six “best” hyperplanes having z-value equal to 1,

because 6 = 1.

7. Conclusions

The paper demonstrates a heuristic approach, giving a simple way to construct
polynomial-time algorithms for the two-group classification problem, formulated as
a mixed-integer programming problem, which belongs to the class of NP-hard
optimization problems.

The ALS algorithm based on the proposed heuristic approach produces near
optimal solutions (20-30% among them are equal to the optimal solution) with
drastically small computational efforts in comparison to the exact D&C algorithm.
These near optimal solutions may be used as initial solutions for the run of exact
algorithms.

The obtained very encouraging results by the presented ALS algorithm and
the presented approach are good reason to continue the research in this area and to
increase further the size of the accessible two-group classification problems.
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