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Reference-Neighborhood Scalarizing Problems
of Multicriteria Integer Optimization

Krassimira Genova

Institute of Information Technologies, 1113 Sofia

Abstract: The purpose of this paper is to propose reference-neighborhood scalarizing
problems for finding (weak) Pareto optimal solutions of multicriteria optimization
problems. The decision maker (DM) provides information about his/her preferences
for choice of new Pareto optimal solution with respect to the criteria values at the
current solution. The current solution and the DM’s local preferences set a reference-
neighborhood in the Pareto optimal set of the multicriteria problem solution, and the
scalarizing problems search for a new (weak) Pareto optimal solution in this area.
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1. Introduction

Several criteria (objective functions) are simultaneously optimized in the feasible set
of solutions (alternatives) in the multicriteria optimization problems. In the general
case a single solution, which optimizes the criteria, does not exist. However, there is
a set of solutions in the variables’ space and a respective set in the criteria space,
which is characterized by the following: each improvement in the value of one criterion
leads to deterioration in the value of at least one other criterion. These sets are called
Pareto optimal sets. Every element of these sets could be a solution of the multicriteria
optimization problem. In order to select a particular element, the so-called decision
maker (DM) has to provide additional information. The information, which the DM
sets, reflects his/her global preferences with respect to the quality of the solution
obtained.

The scalarizing approach is one of the main approaches in solving multicriteria
optimization problems. The basic representatives of the scalarizing approach (B e n -
a y o u n  et al. [1], W i e r z b i c k i  [14], N a k a y a m a, S a w a r a g i  [6], S t e -
u e r  [9], N a r u l a, V a s s i l e v [7], K o r h o n e n  [4], B u c h a n a n [2], M i e t-
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t i n e n [5], V a s s i l e v a [11], V a s s i l e v  et  al. [10], V a s s i l e v a  [12]), are
the interactive algorithms. In the general case each interactive algorithm consists of
two procedures – an optimization one and an evaluating one. These procedures are
cyclically repeated until the stopping conditions are satisfied. During the evaluating
procedure the DM estimates the obtained current Pareto optimal solution and either
accepts it as the final (the most preferred) one, or sets his/her preferences in the
search for a new solution. On the basis of these preferences a scalarizing problem is
formed and subsequently solved in the optimization procedure. As a result a new
Pareto optimal solution is obtained, which is presented to the DM for evaluation. The
main feature of each scalarizing problem is that every optimal solution is a Pareto
optimal solution of the corresponding multicriteria optimization problem. The
scalarizing problem is a single-criterion optimization problem, which allows the
application of the theory and methods of single-criterion optimization. A number of
scalarizing problems and a set of interactive algorithms developed on their basis have
been proposed so far. The different algorithms offer different possibilities to the DM
for controlling or stopping the process of the final solution finding. On its hand, this
searching process can be divided into two phases. In the first phase (the learning
phase) the DM usually defines the region, in which he/she expects to find the most
preferred solution, whereas in the second phase (the concluding phase), he/she  is
looking for this solution namely in this region. The interactive algorithms are especially
appropriate for solving linear multicriteria optimization problems, in which the time
for scalarizing problems solution (the time for a new solution expecting) does not
play an important role.

The present paper describes reference-neighborhood scalarizing problems. The
designation of the scalarizing problems is based on the region, in which a new Pareto
optimal solution is sought. This region is defined by the current solution obtained
and the preferences set by the DM. The reference-neighborhood summarizes the
reference direction that is utilized in the scalarizing problems suggested by K o r h o-
n e n [4]. The reference direction is set by the obtained current solution and the
reference point. The components of the reference point equalize the preset desired
(aspiration) levels of the criteria by the DM. The reference-neighborhood is defined
by the obtained current solution, the preset desired (aspiration) levels by the DM and
the desired directions of the alteration of the criteria values. The reference-
neighborhood scalarizing problems are in the same group as the classification based
scalarizing problems (M i e t t i n e n [5]), because the criteria in the reference-
neighborhood scalarizing problems can be classified in different groups based on the
DM’s preferences. However, the classification of the criteria is not the defining factor
for the designation of the proposed scalarizing problems, but the defined region, in
which the new Pareto optimal solution is sought. The reference-neighborhood
scalarizing problems are especially appropriate for solving multicriteria integer
optimization problems because of their main features.

2. Problem formulation

The proposed reference-neighborhood scalarizing problem is designed for solving
multicriteria linear integer problems (MLIP). These multicriteria problems can be
formulated as
(1)                      }),(“max”{ Kkxfk 
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subject to:
(2)                        




Nj

ijij Mibxa ,,

(3)                         ,,0 Njdx jj 

(4)                        jx  –  integer, ,Nj

where Kkxfk ),( , are linear criteria (objective functions); 



Nj

j
k
jk xcxf )( and

symbol “max” means that all criteria are to be simultaneously maximized;

},...,2,1{},,...,2,1{},,,...2,1{ nNmMpK  denote the index sets of the criteria,

the linear constraints, and the decision variables, respectively: T
21 ),...,,...,,( nj xxxxx 

is the vector of the decision variables.
The constraints (2)-(4) define the feasible region 1X  for the integer variables.
The problem (1)-(3) is a multicriteria linear programming problem (MLP). The

feasible region for the continuous variables is denoted by 2X . Problem MLP is a
relaxation of MLIP.

For clarity of the exposition, a few definitions of the used terms are given.
Definition 1. The solution x  is called an efficient solution of MLP or MLIP, if

there does not exist any other solution x , such that the following inequalities are
satisfied:

                          )()( xfxf kk   for every Kk   and
                          )()( xfxf kk   for at least one index.
Definition 2. The solution  x is called a weak efficient solution of MLP or MLIP,

if there does not exist another solution  x  such that the following inequalities hold:

                             ),()( xfxf kk  for every Kk  .

Definition 3. The solution x is called a (weak) efficient solution of MLP or
MLIP, if x  is either an efficient or a weak efficient solution.

Definition 4. The vector T
1 ))(...,),(()( xfxfxf p  is called a (weak) Pareto

optimal  solution in the criteria space, if x is a (weak) efficient solution in the variable
space.

Definition 5. The vector T**
1

* ),...,( pfff  is called an ideal solution in the

criteria (objective) space, if its every component *
kf  is derived as individual

optimization of each criterion (objective function) )(xfk  in the feasible space of
MLP or MLIP.

Definition 6. A current preferred solution of MLP or MLIP is a (weak) Pareto
optimal solution chosen by the DM at the current iteration. The most preferred solution
of MLP or MLIP is the solution that satisfies the DM to the greatest degree.
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3. Scalarizing problems

When solving a MLIP problem, the DM estimates and compares the currently obtained
(weak) Pareto optimal solutions. If the DM looks for a better solution, he/she needs
to set his/her preferences for the desirable or reasonable alterations of the values of
some or all criteria. Depending on these preferences, the set of the criteria at each
iteration can be indirectly divided into four or less than four classes, denoted as follows

.,,,  KKKK Each criterion Kkxf k ),( , may belong to one of these classes,
as given below:

Kk , if the DM wishes the criterion )(xfk  to be improved;
 Kk , if the DM wishes the criterion )(xfk  to be improved by any desired

(aspiration) value k ;
 Kk , if the DM assumes the criterion )(xfk  to be worsened;
 Kk , if the DM assumes the value of the criterion )(xfk  to be deteriorated

by no more than k .
In order to obtain a (weak) Pareto optimal solution of MLIP problem, on the

basis of the implicit criteria classification, done by the DM, the following scalarizing
problems RNS1 {Reference-Neighborhood Scalarizing Problems) is proposed bellow.

To minimize
(5)  S(x)=
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under the constraints:
(6)                   ,)( kk fxf  Kk ,

(7)                               kk fxf ~)(  , Kk ,

(8)                            ,1Xx
where kf  is the value of the criterion  xfk  in the current preferred solution, *

kf  is
an ideal solution vector in the criteria space of MLIP, kkk ff   is the desired
(aspiration) level of the criterion with an index Kk , kkk ff 

~
, the DM agrees

with worsening by value k  of the current value of the criterion with an index Kk .
To obtain a (weak) Pareto optimal solution for MLP problem in the reference-

neighborhood of the current preferred solution, we may use the scalarizing problem
RNS1-L, which is obtained from RNS1 by replacing constraint (8) by constraint
(9)                           2Xx .
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Theorem 1. The optimal solution of the scalarizing problem RNS1 is a weak
efficient (Pareto optimal) solution of the multicriteria linear integer programming
problem (1)-(4).

P r o o f. If the DM is looking for a new solution, which is better than the current
one at least in one criterion, he/she needs to solve the scalarizing problem RNS1.
Therefore we have to assume that K  or K .
Let *x  be an optimal solution of problem RNS1. Then the following condition is
satisfied:
(10)                                    ,),()( 1

* XxxSxS 

and ,)( *
kk fxf   Kk ;  kk fxf ~)( *  , Kk .

Let us assume that  *x is not a weak efficient solution of the initial MLIP (1)-

(4). In this case there must exist another Xx ' , which is a weak efficient solution
of MLIP (1)-(4). From the definition of weak efficient solution of MLIP and the
inequalities (10), it follows that:

(11)                                   )()'( *xfxf kk  , Kk ,

and ,)'( kk fxf  Kk ;   kk fxf ~)'(  , Kk .
After transformation of the objective function S(x) of the scalarizing problem

RNS1, using the inequalities (11), the following relation is obtained:
(12)  S(x') =

It follows from (12) that )()( *' xSxS  and ,)( *
kk fxf  Kk , kk fxf ~

)( *  ,
 Kk ,  which contradicts to (10). Hence x* is a weak efficient solution and f(x*) is

a weak Pareto optimal solution in the criteria space of MLIP (1)-(4).
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Consequence. Theorem 1 is true for arbitrary values of kf , Kk .
This consequence follows from the fact that the proof of Theorem 1 does not

assume any conditions concerning the values of the criteria  kf , Kk .
The current preferred solution of the multicriteria problem is a feasible solution

of the current scalarizing problem RNS1, i.e., the scalarizing problem RNS1 has an
initial feasible solution. This is a very important property, because the finding of a
feasible solution of integer problems is an NP-problem. Furthermore, the feasible
solutions of the scalarizing problem RNS1 are located near the Pareto optimal surface
of the multicriteria problem in the criteria space. They belong to the reference-
neighborhood space defined by the DM’s preferences. According to the manner, which
the DM uses to set up his preferences for alteration of the criteria values, the reference-
neighborhood space could be very narrow or it could widen considerably, if the DM
has set freely improvement or he/she has admitted free worsening for most of the
criteria.

The solution of problem RNS1 is a weak Pareto optimal solution. A guarantee
for obtaining a Pareto optimal solution, the problem RNS1 can be modified to problem
RNS2, as follows below.

To minimize
(13) T(x) =

under the constraints:
(14)                                  ,)( kk fxf  Kk ,

(15)                        kk fxf ~)(  , Kk ,

(16)                               ,1Xx
where is arbitrary small number.

Theorem 2. The optimal solution of the scalarizing problem RNS2 is an efficient
(Pareto optimal ) solution of the multicriteria linear integer programming problem
(1)-(4).

P r o o f. If the DM is looking for a new solution, which is better than the current
one at least in one criterion, he/she needs to solve the scalarizing problem RNS2.

Therefore we have to assume that K or K .
Let *x  be an optimal solution of the problem RNS2. Then the following

conditions are satisfied:
(17)                             ,),()( 1

* XxxTxT 

and  ,)( *
kk fxf  Kk ; kk fxf ~)( *  , Kk .
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Let us assume that 1
* Xx   is not an efficient (Pareto optimal) solution of the

initial MLIP (1)-(4). In this case there must exist another Xx ' , which is an efficient
(Pareto optimal) solution of MLIP (1)-(4) and for which from the definition and
according to inequalities (17), the following conditions are satisfied:

(18)                       )()( *' xfxf kk  , Kk ,

)()( *' xfxf kk   for at least one index kl  ,

and ,)'( kk fxf  Kk ; kk fxf ~)'(  , Kk .
After transformation of the objective function T(x) of the scalarizing problem

RNS2, using the inequalities (18), the following relation is obtained:

(19)   T (x') =

It follows from (19) that )()( *' xTxT   and ,)( *
kk fxf  Kk  ; ,

~
)( *

kk fxf 
Kk , which contradicts to (17). Hence x* is an efficient solution and )( *xf  is a

Pareto optimal solution in the criteria space of MLIP (1)-(4).
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In order to find a Pareto optimal solution of problem MLP, we may use the
scalarizing problem RNS2 by replacing constraint (16) by constraint (9). We denote
the obtained relaxed problem by RNS2-L.

Because the objective function of the scalarizing problems RNS1 and RNS2 is
nondifferentiable, each one of them could be converted into an equivalent optimization
problem by adding additional variables and limits, but with a differential objective
function. N e m h a u s e r, W o l s e y [8], W o l s e y [15]. The equivalent mixed
integer programming problem of problem RNS1, denoted by RNS1e, can be presented
as follows:
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(24)                  ,)( kk fxf  Kk ,

(25)                kk fxf ~)(  , Kk ,

(26)                   kk fxf ~)(  , Kk ,

(27)                            ,1Xx
(28)                        arbitrary.

Problems RNS1 and RNS1e have the same feasible sets of variables. The values
of their objective functions are also equal. This follows from the following assertion.

Theorem 3. The optimal values of the objective functions of scalarizing problems
RNS1 and RNS1e are equal, i.e.,
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is true for every  Kk , it is also true that
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(29)                         
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Similarly to (23), it follows that
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From (29), (30), (31) and (32) it can be written:

(33)

Let x* be an optimal solution of problem RNS1e. Then:
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because in the opposite case it could be decreased further. The right side of (34) can
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which proves the theorem.
Every equivalent problem of the scalarizing problem RNS2, denoted by RNS2e,

can be presented in this way:
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(46)                  , ky Kk  arbitrary..

The scalarizing problem RNS2e has the same properties as problem RNS1a, but
it has more constraints and variables, because this problem is more difficult for solving.
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4. Concluding remarks

The scalarizing problems RNS are formulated based on implicit classification of the
criteria, defined by the DM. With this classification, the DM sets his/her desired
alterations of the criteria values in reference with the current preferred solution. These
scalarizing problems can be examined as a modification of the proposed classification-
oriented scalarizing problems (N a r u l a, V a s s i l e v [7], V a s s i l e v a [11],
Va s s i l e v et al. [10], V a s s i l e v a [12], V a s s i l e v a et al.[13]), which also
utilize implicit classification (partition) of the criteria in groups. The scalarizing
problems RNS possess most of the positive properties of these problems. The greater
freedom, which is given to the DM to express his/her local preferences, enables the
DM to be more efficient in finding the most preferred solution and to feel more
confident about the quality of this solution. In the general case (from the mathematical
point of view) the current preferred solution and the local preferences of the DM
define a comparatively narrow reference-neighborhood in the non-dominated set.
The feasible solutions of the integer scalarizing problem lie comparatively close to
the efficient (Pareto optimal) surface of the MLIP. This enables the use of heuristic
integer algorithms (G l o v e r, L a g u n a [3]) for its solution. On the other hand, the
DM works mainly in the criteria space when applying these scalarising problems.
Since the criteria of most of the problems have physical or financial interpretation,
this feature allows him/her to judge, choose and take the most realistic decision.
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