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Estimating the Minimum of a Function over the Efficient Set
of a MOLP Problem  Some Experiments

Boyan Metev, Vassil Vassilev

Institute of Information Technologies, 1113 Sofia

Abstract:   The MOLP problem is considered together with  a linear function   
defined over the feasible set  S  Rn . A procedure is proposed for estimating the
minimal value of   over the efficient set E  S  using the reference point method.
Some extensions of the procedure are proposed, too, and a short discussion is
added. Three numerical examples are presented.

Keywords:  Multiobjective linear programming, Optimization over the efficient
set, Reference point method.

1. Introduction

The multiobjective linear programming  (MOLP) problem can be presented in the
following way:

                                             max  f1(x)
                                             max  f2(x)

(1)                                  ...
                                             max  fm(x)

s.t.
                                            x  S  Rn.
Here  fi(x) , i = 1, 2, …, m, are linear functions, they are the optimization criteria

in MOLP problem (1).  The vector  x  S  is called an argument vector and the vector
f (x) = (f1(x), f2(x), …, fm(x))Rm is called a criteria vector. The set  S is called a
decision space or feasible set in Rn. It is defined as follows

                           S = {x  Rnci(x)  0,  i = 1, 2, …, k}.
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In  MOLP problems all ci(x) are linear functions. We will consider the list of
constraints  ci(x)  0,  i = 1, 2,…, k,  as containing the inequalities  xj  0 for all
j = 1, 2, …, n. The set  S is nonempty and bounded.The set

                                    Z = {z   Rm z = f(x) , x  S}
is called an objective space or criteria space.

The point  z1 = f(x1)  Z , x1  S , is called a nondominated (Pareto) point  if there
does not exist a point  x2 S , x2  x1,  such that the following two conditions are
fulfilled simultaneously

                             fi (x2)   fi (x1) for all i = 1, 2, …, m;
                             fj (x2)  fj (x1) for one j at least.

If we have   z1 = f (x1), z1  Z,  x1 S , and  z1  is nondominated, then the point x1

is called an efficient point. The set  P  Z of all nondominated points in Z is called a
nondominated  (Pareto) set. The set  E  S  of all efficient points in S is called an
efficient set. For MOLP problems this set is closed.

Having in mind MOLP problem (1) and supposing  that (x) is a linear function
on S, we will consider here the problem
(2)          min (x) =  B

                     xE

We will propose some ways to estimate the value of B. It is difficult to solve
problem  (2) directly because the set E is not convex.

2. A  short review  of the literature

Many papers describing  methods for optimization  over the set E  can be found  in the
periodicals. Some of the first results are based on the idea to organize a movement in
the set of efficient extreme points only. In the next years many attempts have been
made to apply various  optimization techniques for solving or analyzing problem (2).
The survey of Y a m a m o t o [19] contains a large amount of information (45 cited
papers).  Following the development of the ideas in the field, the author obtains as a
result a classification of the existing algorithms for optimization over the efficient set.
This classification contains seven classes:

 adjacent vertex search algorithm;
 nonadjacent vertex search algorithms;
 face search algorithms;
 branch and bound search algorithms;
 lagrangean  relaxation based algorithms;
 dual approach;
 bisection algorithms.
In Yamamoto’s paper each class is presented with one typical algorithm and

these algorithms are compared with respect to the computational requirements.
D a u e r [4] founds his work on the idea that the important case is when the

efficient solutions are on the frontier of  S .With the purpose to optimize over the set E
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he uses the nondominated structure of the set f (S) (corresponding to E  S). He
proposes to solve a nonlinear programming problem (having a nonlinear constraint)
and develops a method that uses only a portion of the function that forms the nonlinear
constraint.

The utility function approach is used in the paper of H o r s t  and T h o a i [6].
They give a set of conditions that must be satisfied in order to use the utility function.
The obtained solutions are  ε-approximate.

 D. J.W h i t e [18] gives several equivalent formulations of problem (2). For the
case when  (x) is a linear function he describes an approach that uses a penalty
function. Some computational aspects as well as  ε-efficiency  are discussed. Possible
nonlinear extensions are pointed out.

T h o a i  [13]  considers a special quasiconvex function of the criteria  fi   and
proposes a method based on maximization of this function. He outlines a class of
problems where his method works satisfactorily.

 A branch and bound type algorithm is proposed in the paper of Y a m a d a, T a-
n i n o and I n u i g u ch i [21]  for maximization of  a concave function in a problem
similar to problem (2).

We can mention here the papers concerning finding or estimating the nadir point
in MOLP problems.  Such procedures are of interest because to find the nadir point –
this is a special case of optimizing over the efficient set. Some methods are cited in
M i e t t i n e n [11] and S t e u e r [12]. The paper of K o r h o n e n, S a l o, S t e u-
e r [7]  proposes to use the reference direction method for determining or estimating
the nadir point.

The reference point method is chosen here for handling the problems connected
with the nonconvexity of  the set E. Several computational procedures are proposed
that give upper bounds of the needed value B.

3. An auxiliary  LP problem

Here we will not describe in details the reference point method proposed by W i e r z-
b i c k i [16, 17]. Some information about this method may be found in Miettinen [11],
S t e u e r [12], V i n c k e [14], too. With respect to problem (1) the reference point
method recommends to solve  the following LP problem
(3)    min  D
                            s.t.
                                                               m

                D  bi (ri  fi(x))    l  fj(x),    i=1,…,m
                                                       j=1

                                            x  S.
Here the set S and the functions fi(x)  are defined as in problem  (1), the coefficients

bi   are positive real numbers for all  i and l is a small positive number. The variable D
can have positive or negative values. This LP problem has the following remarkable
property: for an arbitrary reference point  r  Rm the obtained solution of problem  (3)
determines an efficient point in the decision space of problem  (1)  (a nondominated
point in the criteria space of the same problem).



4 8

4. An algorithm for estimating the minimal value of  (x)
over the efficient set

Having in mind MOLP problem (1), we will use the notion of a wall of the set  S.
Remember that the set  S in problem (1) is described by the constraints  ci(x)  0,
i = 1, 2,…, k,  and here the constraints   xj  0 (for all  j = 1, 2,…, n) are  included. Let
the constraints   ci(x) 0,  i = 1, 2, …, p,  p   k,  are not redundant and constitute the
set  S. Consider now the corresponding sets Wj where
(4)                          Wj  =  { x  S  cj = 0 } ,    j = 1, 2,…, p.

Each one of these sets is a wall of the set  S.
It must be noted that there is a more general notion of a facet.  A definition of

this notion can be found in S t e u e r [12]. So, each wall is a facet, but there can be a
facet that is not a wall.

As we know in MOLP problems if an interior point of  S is efficient, then all of  S
is efficient  [12]. So we will suppose that each point xe E is a point from the frontier
of S, i.e. for each point xe we have xeWj for some j = 1, 2,…, p .

 The main idea of the algorithm can be expressed as follows. For a fixed wall  Wt
we solve the problem   min { (x): x  Wt }. If the obtained solution  xt  is an efficient
point, it gives an estimate  (xt)  of  B. This estimate is an upper bound of B. If xt is
not an efficient  point, then the point  f (xt ) is used as a reference point in problem  (3).
The solution of the so formulated problem (3) is an efficient point that gives an estimate
of B (an upper bound again). We repeat this procedure with all walls Wt. The minimal
of the corresponding upper bounds is the obtained estimate of B.

Here below the algorithm is presented. The checking for efficiency of the solution
of   min { (x): x  Wt } is skipped because if  xe  E  and  ri  =  fi (xe), i,  then the
solution xs of problem (3) satisfies the equality xs = xe. So, it is sufficient to use problem
(3) only.

The algorithm (version 1)

Let  W0  = S,  Wi , i = 1, 2, …, p,  are the walls of  S  and  u denotes the number of the
current step.

1. Begin
Set u: = 0

 Solve the problem  min  . The obtained solution is  xau.
    xWu

3. Set ri  =  fi (xau)  and solve problem (3). The obtained solution is xbuE.
4. Set  du =   (xbu).
5. Check whether  u < p.
If  u < p,  then set   u:= u + 1,  Go to  .
If  u = p, then 6.
6. End of the algorithm.
With  this algorithm we have the estimate

       min    min  du ,  u =  0, 1, 2, …, p.
          x E         u
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5. Numerical example

Example 1. For illustrative purposes we will consider example 8 from [12], p. 244.
The additional data given by Steuer allow to estimate the work of the algorithm very
easily. The example is defined as follows:

x1      x2        x3          x4      x5

f1: 1       3        2       1           max
Objs f2: 3      1           3                  1           max

f3: 1          2       3           max

      s.t.   c1:      2       4       3              27
  c2:           2            5                4              35
  c3:      5           26
  c4:                         2                       24
  c5:       5        5           2   36

In addition:  xi  0,   i = 1, 2, …, 5.

We will consider the following function  :
 (x)  =  2f2 + 4f3 – f1

Table 1 contains the list of the extreme nondominated points (in the criteria space)
taken from [12].  The data here slightly differ from the original because we give more
digits after the decimal point.
    Table 1

         f1   f2          f3               

z1        20.25             14.25                 0.00                8.25
z2        19.80             17.40                 0.90               18.60
z3          9.31               8.675             26.25             113.04
z4        14.06             30.583             13.816           102.37
z5          9.12             12.00               26.25             119.88
z6        10.7330         28.853              21.80            134.173
z7        11.20            34.60                 5.20                78.80
z8      1.2578         20.2648           34.04             177.9474
z9          5.2              36.60                 5.2                  88.80
z10        0.733           22.853             31.80              172.173
z11    34.80               0.60              35.20              176.8

The last column in Table 1 contains the corresponding values of . The table
shows that  z1 is the best  nondominated extreme point  ( = 8.25).

There is a list of walls  Wi  of  S  for the example.
W1  =  {x  S   c1 = 27},
W2  =  {x  S   c2 = 35},
W3  =  {x  S   c3 = 26},
W4  =  {x  S   c4 = 24} this set is empty,
W5  =  {x  S   c5 = 36},

4
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  W6  =  {x  S   x1 = 0},
  W7  =  {x  S   x2 = 0},
  W8  =  {x  S   x3 = 0},
  W9  =  {x  S   x4 = 0},
  W10 = {x  S   x5 = 0}.

The algorithm works as follows. Solving the problem  min{ :x S} we obtain
the point x0s S and  f(x0s)= (20.25, 6.75,  0.00) in the criteria space. Using this point
as a reference point in problem  (3) we obtain the point x0eE and  f (x0e) = z1 =
(20.25,  14.25,  0.00)  in the criteria space, too, and the corresponding value  (x0e) =
8.25.  The obtained points in the criteria space and the obtained value of   are placed
in the first row of Table 2.

Solving the problem  min { : x  W1} we  obtain the  point x1s = x0s and
f (x1s) = (20.25,  6.75, 0.00). Solving problem (3) we obtain again the point z1  in the
criteria space (of course) and the value   = 8.25. The obtained points in the criteria
space and the corresponding value of    are in the second row of Table 2.

Solving  min { : x  W2 } we obtain directly the point  z1 . The corresponding
results are in the third row of  Table 2.

Proceeding in the same way and summarizing the results we obtain the whole
Table 2.

       Table 2

        The checked             f (xis )  f ( xie )      (xie )
                 set

S  (20.25, 6.75, 0.0)       (20.25, 14.25, 0.0)             8.25
W1            (20.25, 6.75, 0.0)       (20.25, 14.25, 0.0)             8.25
W2            (20.25, 14.25, 0.0)        (20.25, 14.25, 0.0)            8.25
W3            (11.2, 13.6, 5.2)            ( 15.96, 18.36, 9.96)        60.598
W4                 W4   =  
W5           (19.8, 3.6, 0.9)          (19.85, 14.04 , 0.95)          12.046
W6           (20.25, 6.75, 0.0)        (20.25, 14.25, 0.0)             8.25
W7           (0.00, 0.00, 0.00)         (14.24, 14.24, 14.24)          71.227
W8           (20.25, 6.75, 0.0)       (20.25, 14.25, 0.0)             8.25
W9           (20.25, 6.75, 0.0)      (20.25, 14.25, 0.0)              8.25
W10          (20.25, 6.75, 0.0)         (20.25, 14.25, 0.0)            8.25

In Table 2 the data for W3, W5 and W7 are made round, but the changes are not
significant. We see that the algorithm finds the needed value very surely. The result
for W5 is very good, too.  The obtained results are relatively larger  for two cases (W3
and  W7) but  Table 1 contains two points only that are better – points  z1 and  z2 .

6. Some comments

Our computational experience shows very good behaviour of this algorithm. An
application of this algorithm to the problem of estimating the nadir point in MOLP
problems is described in [9]. The algorithm can be implemented without using any
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special optimization techniques. For MOLP problems it is sufficient to use standard
LP programs.

We obtain feasible points xS  only at each step of the algorithm. This allows to
use a Pareto test instead of the reference point method. If the point checked by the
test  is efficient, the solution of the test determines the same point. If the checked
point is not efficient, the solution of the test determines an efficient point.

 The proposed method gives an upper bound only for the needed minimal value
and usually this bound is close to the minimal value.

7. Some advanced versions of the algorithm

It can be seen that in the proposed algorithm the walls are used for obtaining points
with small value of . Then, in general, it is possible to use other ways for obtaining
such points. For example, consider the linear function (x)  and the numbers  dg ,
g = 1, 2, …, q, such that

             d1 =  min dg ,     dq = max dg
                                         g               g

and
min  (x) <  d1  <  d2  <  …  <  dq  <  max  (x).
xS                           xS

Now we can consider the sets  Ag

                    Ag = {xS (x) = dg},  g = 1, 2, …, q.

It is evident that Ag  for all g. In a version of the algorithm we replace the
walls Wi with the sets  Ag,  g = 1, …, q, and we solve the problem

                 min { : x  Ag} for all g.
The  obtained solutions are  xg   and the corresponding points in the criteria space

are  f(xg). Then the points  f(xg) are used as reference points in problem (3) and the
obtained solutions are the efficient points  xeg . Now we have the estimate

           min     min   (xeg ) ,  g = 1, 2,…, q.
              xE              g

In such a version of the algorithm we are free to choose the numbers  dg  as well
as the function (x). The only condition is Ag   0 for all g.

Another  version  of the algorithm can be obtained based on the following reasons.
We use the sets Ag with  the purpose to obtain the points  xg S  and the points
f (xg) f (S). But the reference points can be everywhere in Rm.  So, having the
intention to determine a series of reference points  we can use a set  S1  S ,  S1   Rn.
We suppose that  S1 is bounded and closed. (The function   must be correspondingly
defined, of course.)  Now  we  define another series of sets Cg:

   Cg  =  {x  S1 (x) = dg},  g = 1, 2, …, q.
Here (x)   and  dg  are defined  like above and the only condition is Cg     for

all g. Solving the problem min {: x  Cg}for all g we obtain the series
xgRn , g = 1, 2, …, q, and the corresponding series of reference points   f (xg )   Rm.
Having this series we follow the rest part of the algorithm.
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The algorithm (version 2)

1. Begin
Set u: = 1.
2. Solve min  .  The obtained solution is x1u . (It is possible that x1u S).

         xCu

3. Solve problem  (3) where  ri = fi (x1u ), i =1, 2, …, m. The obtained solution is
x2uE.

4. Set  du =  (x2u)
5. Check whether u < q.  If  u < q, then set  u : =  u + 1,  Go to 2.
If  u = q,  then 6.
6. End of the algorithm.
So we  obtain the  estimate

min   min  du ,  u = 1, 2, …, q.
xE              u

Here some very natural questions arise:  what are the good ways to choose the
set  S1, the function  (x)  and the numbers  dg?  Now we cannot give full answers to
these questions. But if   (x) is a linear function and the set  S1 satisfies the condition

f (S1)    f (S),
then the reference points obtained by the last version of the algorithm are outer points
for f (S).  In this case the obtained nondominated points f (x2u)  (Pareto points) have a
minimal Tchebychev distance to the corresponding reference points  f (x1u).

Of course, increasing the number q (adding new points to the already inspected)
we cannot make worse the obtained solution. For the second version of the algorithm
we have the freedom to choose the set  S1,  the function   (x), and the numbers  dg
under a very weak condition: Cu    for all  u.

8. Some other examples

Example 2. D a u e r [4]  has considered the following MOLP problem:

    max  f1(x)  =  9x1 + x3,
    max  f2(x)  =  9x2 + x3,

                               s.t.
    9x1 + 9x2 + 2x3  81,
    8x1 + x2 + 8x3  72,
     x1 + 8x2 + 8x3  72,
       7x1 + x2 + x3  9,
      x1 + 7x2 + x3  9,
       x1 + x2 + 7x3  9,
       x1  8 , x2  8,
      xi  0,  i = 1, 2, 3.

We add to this example the function
   (x) = 5x1 + 3x2 + x3
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and we wish to estimate the value
    min   (x).
     xE

Table 3 contains all the efficient extreme points for the example (given by Dauer)
and the corresponding values of   (in the last column)

         Table 3

x1 x2 x3  (x)
0.8 8 0.9 28.9
1 8 0.0 29
8 1 0.0 43
8 0.8 0.9 43.3
4 4 4.5 36.5
0.0 8 1 25
8 0.0 1 41

The minimal value of   over S is equal to 9 and is obtained at point  (1, 1, 1). This
point is not efficient.

With this example we would like to illustrate the possibility to use a set S1  containing
S as a proper subset.. Minimizing the function φ on the walls of  S1 we obtain some
points from the criterion space that do not belong to  f(S). Using these points as
reference points in problem (3) we obtain Pareto points that are close to the reference
points (in general).

We shall replace the set  S, described in the example under consideration with
the following set  S1:

      9x1 + 9x2 + 2x3   96,
       8x1 + x2 + 8x3  88,
        x1 + 8x2 + 8x3  88,
         7x1 + x2 + x3  4,
          x1 + 7x2 + x3  4,
          x1 + x2 + 7x3  4,
         x1  12 ,     x2  12,
          xi  0,  i = 1, 2, 3.

We have to find min φ over each wall of this set.We shall not present here the
full collection of computational results. Denoting

W1 =  {x S19x1 + 9x2 + 2x3  = 96}
and solving the problem

               min  {φ: x W1}
we obtain a solution, that gives

                                          f1 = 0,      f2 = 96.

These two numbers are coordinates of a point from the criterion space. Using
this point as a reference point in problem (3) where l  =  0.01, we obtain the following
result:

     x1 = 0.0,   x2 = 8.0,   x3 = 1.0;     f1 =  1,   f2 =  73 ;  φ = 25.
Table 3 shows that  this is the needed solution .
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Example 3.  We will consider again the example from Steuer’s book [12, p.244].
The data for the MOLP problem are given above (in the text for example 1).  But now
we will consider the function

       FIL = (x1  1)2 + (x2  2)2 + (x3  3)2 + (x4  2)2 + (x5  1)2.
Our interest here is to estimate the minimal value of this function over the efficient

set of the given MOLP problem.
Steuer has given the following 11 efficient extreme points. We give here these

points once more for convenience:
z1  =  (20.25, 14.25, 0.0),
z2  =  (19.80, 17.40, 0.90),
z3  =  (9.31, 8.675, 26.25),
z4  =  (14.06, 30.583, 13.816),
z5  =  (9.12, 12.0, 26.25),

            z6   =  (10.733, 28.853, 21.80),
            z7   =  (11.2, 34.6, 5.20),

z8   =  (1.2578, 20.2648, 34.04),
z9   =  (5.2,  36.6, 5.20),
z10  =  (0.733, 22.853, 31.80),
z11  =  (34.80, 0.60, 35.20).

The MOLP problem under consideration  has 4  maximally efficient facets (MEF).
The above given efficient extreme points constitute these MEFs as follows (Steuer):

MEF1     z1,   z2,  z3,  z4,  z5,  z6;
MEF2      z4,   z6,  z7,  z9;
MEF3      z5,   z6,  z8,  z10;
MEF4      z8,   z11.

Here we must point out that in Steuer’s book the above given extreme points as
well as the maximally efficient facets belong to the criterion space and not to the
argument space.

Using the constraints of the MOLP problem it is easy to see that each of points
zi  has a corresponding point  xi  that belongs to the intersection of some walls . The list
of these intersections is as follows:

z1      x1   W1  W2  W6  W8  W10,
z2      x2   W1  W2  W5  W8  W10,
z3      x3   W1  W2   W8  W9,
z4      x4   W1  W2   W3  W8,
z5      x5   W1  W2  W7,
z6      x6  W1  W2  W3  W7  W8,
z7      x7   W2  W3  W5  W8  W10,
z8     x8   W1  W2  W5  W7   W9,
z9      x9   W2  W3  W7  W8,
z10     x10   W1  W2  W3  W5  W7,
z11     x11  W2  W5  W7  W9   W10.

Comparing these intersections and using the description of maximally efficient
facets given by Steuer we get the description of each MEF as a subset of  S:
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MEF1 = {x   S  W1 = 0,   W2 = 0,   W8 = 0},
MEF2 = {x   S  W2 = 0,   W3 = 0,   W8 = 0},
MEF3 = {x   S  W1  = 0,  W2 = 0,  W7 = 0},

            MEF4 = {x   S  W2 = 0,   W5 = 0,   W7 = 0,   W9 = 0}.
The next step is to minimize the function FIL on each of these subsets of  S. The

minimal among obtained values is the needed minimum. Table 4 contains the results of
these computations. The 1-st column contains the symbols of the used maximally
efficient facets (subsets of  S). The 2-nd column contains the corresponding minima
of the function FIL, obtained on these subsets, the 3-rd column contains the
corresponding nondominated vectors in criteria space.

 Table 4

MEF1 22.17599 (14.926673,  17.543787,  12.453541)

                MEF2   37.409894                 (13.896882, 30.498379, 14.207482)

                MEF3    42.061135                 (5.17996, 23.55534, 27.70443)

                MEF4    53.4344                    ( 3.29078, 19.07092, 34.11348)

Thus we see that the needed minimum is equal to 22.175997. Now the question
is: can we obtain this value or another one close to it using the proposed
algorithm?

We shall apply version 1 of the algorithm. The main computational results are
collected  in Table 5. In the 1-st column we see the symbols of the active walls of S.
We minimize the function FIL on these walls. The 2-nd column contains the obtained
corresponding minimal values of  FIL . The 3-rd column contains the corresponding
points in  the criterion space. All these points are dominated. But these points are used
as reference points in problem  (3)  and the obtained Pareto points are written in the 4-
th column. The 5-th column contains the corresponding values of FIL.

Table 5

  1       2          3      4      5

 W1 6.758532 f1=10.204541 12.7496 31.5781
f2=10.422458 12.9676
f3=15.316346 17.8614

 W2 4.999915 f1=2.008572 10.1394 51.0713
f2=14.33663 22.4744
 f3=15.331489 23.469

W2 4.999915 f1=2.008572 10.1394 51.0713
f2=14.33663 22.4744
f3=15.331489 23.469

 W3 18.851287 f1=3.923564 11.211871 47.282117
f2=21.638556 28.926863
f3=13.372526 20.660834
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Table 5 (continued)

  1       2          3      4      5

W4 W4   =  

 W5 4.166595 f1=6.4444056 12.410140 30.855787
f2=10.777268 16.743352
f3=12.500109 18.466192

 W6 0.999902 f1=1.000031 11.848236 35.605831
f2=4.999498 15.847703
f3=8.998655 19.84686

 W7 3.999945 f1= 4.003252 9.679067 48.672687
f2=9.982783 23.665103
f3=9.985459 23.667779

 W8 8.999911 f1=8.000968 15.415049 22.791814
f2=7.996032 15.410114
f3=3.994359 11.408440

 W9 3.999908 f1=1.992702 11.907339 39.201898
f2=1.999540 11.914177
f3=10.001240 19.915877

 W10 0.999931 f1=1.004126 12.4046 30.400139
f2=6.980639 18.3811
f3=6.991470 18.392

Thus this table gives the following estimate
min  FIL  22.791814
xE

Having in mind the value 22.175997 we accept that the estimate 22.791814 is
satisfactory.

9. Conclusion

We have shown (by examples) that it is possible to obtain an upper bound close to the
minimal value of a linear function φ over the set E of a MOLP problem without using
any special optimization techniques. The proposed versions of the algorithm use the
well known reference point method for obtaining nondominated points. Therefore they
differ from all algorithms cited in Yamamoto’s paper. On the other hand all these
versions substantively use the fact that the needed solutions belong to the frontier of
S. And this is used in some other algorithms, too (in branch and bound algorithms, for
example). The experiments show that the described algorithm (main version) can
successfully work for estimating the minimum of a convex function on the set  E . It
must be pointed out that parallel computations can be used very easily. It is of interest
now to have sufficiently good methods for obtaining lower bounds for the value of
min φ over the set  E .
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