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Abstract: A method for more compact description of clusters with arbitrary form
in comparison with Kohonen’s or Kohonen-Hebb’s methods is introduced in this
paper.
The neural network (NN), based on the described  method, uses NN of Kohonen-
Hebb for initial determination of the Mahalanobis distance between the points
in the cluster, after which it find the biggest convex core inside the cluster. The
difference between this core and the cluster, containing it, creates a group of
sub-clasters to which the same method is applied. In this way, the arbitrary form
of the cluster is divided into separate convex sub-areas – one central and several
peripheral. Each one of them is fixed on the map of the self-organizing NN.

Keywords: self-organizing NN, cluster analysis, Kohonen’s NN with
hyperelipsoidal clustering, pattern recognition, image analysis.

1. Introduction

Considering the problems of clusterization by means of NN, the self-organizing NN of
Kohonen and its modifications are most widely used. Since by these problems lack
preliminary information for the number and situation of the clusters, the NN has to be
trained in such a way that the set of similar vectors to activate one and the same
output neural element, in order to solve the task for division of the initial clusters
successfully [1]. For this purpose, having a well-trained NN, the scalar product of
each input vector with the vectors of the coefficients of the separate clusters is
calculated:
(1)                                           Yk = WT
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where Wk  = (w1k, …, wnk) is the vector weight coefficients, corresponding to the
K-cluster, X = (x1, ..., xn), X  R n – input vector, defined in the n-dimensional Euclidean
feature space, Yk – output of the k-neuron.

Fig. 1

At  this type of NN, the scalar product (1) serves as a measure for closeness
between the input vector and the centers of the clusters, already defined in the space
Rn, shown in Fig. 1. As is well known [2, 3], one of the basic ideas of the training
method is that the scalar product (1) will satisfy the condition Yk(X t ) > Yl (Xt) for XtK
and Xt  L, where K and L are respectively the K- and the L-cluster. The output Yk(Xt),
satisfying the inequality, will be considered as a “winner” and will be activated, while
the other outputs will be inactive. The correction of the weight vector Wk  will be
carried out only for the cluster K, whose output is active:

wik(q + 1) = wik (q) + [xi – wik(q)],
where i = 1, …, n, q is an iteration index.

By the well trained NN of this kind, the weight-vectors wik will be modified
insignificantly [4]: wik(q + 1) – wik(q)  0, from where for the mathematical expectation
we will have: M[Xi

k – wik(q)]  0. This means, that xi
k – wik(q)  x–i

k  wik(q)  mik
for q  , where x–i

k is a component of the central input vector, belonging to the
K-cluster; m ik is a component of the vector of mathematical expectation: mk = (m1k,
…, mnk) of the cluster K. The Euclidean distance of each point Xt  K from the center
mk of the cluster K will be: DE

kt = (Xt – mk)T(Xt – mk). If we define the inequality for this
distance: DE

kt  Q k , we will obtain a hypersphere, containing, depending on the value of
the threshold Qk , all points of the cluster K or the most of them [5].

Obviously, for the clusters with a form, close to the spheroidal, the distance will
define a relatively compact envelope of the corresponding cluster, but for clusters
with non-regular form this distance will not be optimal.

In [6] is supposed comparatively more compact clasterization method by means
of Mahalanobis distance: DM

kt = (Xt – mk)T(Xt – mk)Mk
–1; where Mk

–1 is an inverse

matrix to the covaritional one Mk = {ij}, i, j = 1, ..., n, and ij = ;/))(( Txxxx jtj
Tt
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x–i,  x
–

j  Xt  K and x–i and x–j are the average values of the i and j coordinates of the
current elements xti and xtj, T is a number of the points in the cluster K [7].

The matrix Mk
–1 is recurrently calculated by means of the method suggested in

[6], which includes the method of principal component analysis (PCA) using the Hebbian
rule [4]. The NN, which realizes the finding of the Mahalanobis distance Dkt   is given in
Fig. 2, where the blocks calculating the values of the  mk-vectors and the Mk

–1 matrices,
are respectively NN of Kohonen and NN of Hebb [6].

In order to examine the basic properties of the Mahalanobis distance, we will
first suppose that the cluster K contains a sufficient number of points, specified by
their radius-vectors Xk, with a clearly expressed linear dependence between them and
a single-extremum function of the density of the probability distribution, such as the
normal density of distribution or the cases of uniform distribution of the points in the
cluster K.

2. Hyperellipsoidal  clasterization

Let us specify for the distribution density function of the vectors Xk in the cluster K an
intersection with a hyperplane, parallel to the hyperplane of the arguments
X=(x1, ..., xn).

Then the points of this intersection will obviously have one and the same probability
density and, as is well-known [8], the projection of these points onto the hyperplane X
will be a hyperellipsoid, for which the square distance Dks

M
 = (Xks– mk)T(Xks– mk)Mk

–1

will be constant for Xks  Sk, where Sk is the set:
(2)                               Sk = {Xks: P(Xks) = const}
and P(…) is a function of the density of probability distribution.

For example, if the points Xks  of the cluster K  have a normal density of probability
distribution, so for  P(Xks) = Ps = const we will have the equation:
(3)                  P(Xks) = Kexp[–0.5(Xks – mk)T (Xks – mk) Mk

–1] = Ps

Fig. 2
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from where for Xks  Sk we will obtain:
ln(Ps) = – 0.5(Xks – mk)T(Xks – mk)Mk

–1 + lnK  (Xks – mk)T(Xks – mk)Mk
–1

 =

2[lnK – ln(Ps)] = ln(K/Ps)2 = Dks
M

  = const, where K = ||)2(

1

k
n M  = const .

In the cases of statistical independance  and equal dispersion of the points, the
covariation matrix will be diagonal and the Mahalanobis distance turns into an Euclidean
one: Dk

M
   = Dk

E.  This means that even if it is slower for calculating, the distance Dk
M 

 will
be more universal than the Euclidean one, because the distance Dk

M  is determined by
the average value of the vectors mk  and the covariation matrix Mk  for the chosen
cluster K.

These two basic properties of the Mahalanobis distance can be also applied to
clusters with various forms, containing an insufficiently large number of points, which
often appear in the real problems. Because we can calculate for every cluster with
random form the average value of its points mk  and its covariation matrix Mk, so by
means of these two generalized parameters we can calculate the distance Dk

M  For this
cluster which will define its hyperellipsoidal or in some special cases hyperspherical
envelope. This greater universality of the Mahalanobis distance in comparison with
the distance Dk

E  is sufficient argument to use only Dk
E further in this paper, because of

which we will mark it for shortness Dk  .

3. Maximum convex clusterization

Definition. The maximum convex core of the cluster K (Fig. 1) will be called as inner
core  KI  K ,  defined by the distance DkI (or DE

kI), which satisfies the conditions:
(4)               PI(X) – PI(X)   and M[K|C(KI)] = M[K|C(Ki)]
for X  SI = Fr[C(KI)], where Fr[…]  is the boundary of the convex envelope C(KI)
and PI( X ) is an evaluation of the distribution density of the points on the (n – 1)-
dimensional convex hypersurface  S I ;  PI(X) = Ps(X); Ps is defined from condition (3),

 is a threshold constant, C(KI) = {Z: Z =

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 = 1, j  0 ; Xj  KI,

N= M(KI)}, analogously is determined and C(Ki), Ki  K, i = 1, 2, …, and M (…) –
power of the point set.

In the concrete example PI(X) is specified by means of the Parzen window [8]:

(5)                            PI(X) = ,11
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where N = M(SI  K) is the number of the points on the hypersurface SI,  S = hn–1  is the
Parzen window with a side-lehgtn h . The window function will be of the type:
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for Xk  S(X), S(X) – an area with a center at the point X, the function will be equal
to 1 or to zero, if Xk  S(X).

In the real problems of clusterization in most cases  we usually have not at our
disposal the analytical form of the function, defining the distribution density P( X ),
because of which we cannot use directly the evaluation a  PI(X) – PI(X)   while
determining the kernel KI. In order to avoid this lack of correspondence between the
theoretical formulation of the definition of KI  and its real determination we will examine
one of the properties of the distribution density PI(X). If for the concrete cluster KI we
define the Mahalanobis distance Dk(X) = const, so from the conditions (2) and (3)
above, it is clear, that  PI(X) = const  for  X , for which  Dk(X) = const. Since this
equation defines the n-dimensional hyperplane  H I , which is parallel to the hyperplane
Rn and crosses the function  P(X), so PI(X) = P(X)  HI  and the intersection PI(X)
of the Gaus function P(X) will obviously be a convex surface in  HI , which we will
mark with S I(X). Then its projection in the space Rn will be the translation SI(X)  in Rn,
which will also be a convex surface.

This property can be applied for an indirect determination of the convex kernel
KI.. For this purpose we will divide the surface SI(X) into sufficiently small equal size

zones St(X) such that Sa  Sb = , t = a, b and 
t

tS )(X  = SI(X). As PI(X) =  const , so

for Xk  St(X) we will have PI(Xk) = const . Then for each one of the zones St, the
equality in property (4) can be written as:
(6)                                              PI(X) – m  ,
where PI(X) is defined by formula (5), with a center of the area St(X) at the point X t;
m = const  and  = const .

Obviously, condition (6) is more acceptable for finding out the convex kernel KI
in the real problems of the clusterization analysis. In this case using (6) we can obtain
an evaluation for the closeness of the separate areas St(X):
(7)                                          |PI(Xa) – PI(Xb)|  
for Sa(X), Sb(X)  SI(X)  and  = const – a sufficiently small number.

Since the elementary areas St(X)  form a cover of the (n – 1)-dimensional surface
SI(X) in Rn, so the inequality (7) is not very convenient for real applications in this
form. One more convenient representation of this evaluation can be obtained by means
of the theorem of Peano, according to which every limited closed set, defined in the
n-dimensional space can be uniquely represented by a intercept of a straight line [9].

In the concrete case we have a real cluster K, which is a limited point set, so its
convex envelope C(K) will be a limited set. It is clear, that the covering of the
hypersurface SI(X) from the areas St(X), which have a real size Vt = hn–1

  0, will
consist of a limited number of such areas. If we enumerate these areas in a certain
way (but always the same), so, according to the theorem of Peano, the whole covering


T

t
tS )(X  can be uniquely  represented by a linear arrangement (where T << ):
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Then, if we define a 2-dimensional space [P(t), t], where on the ordinate axis we
have set the evaluation of the distribution density Pt(X) for each area St(X) and  t  is a
discrete value on the abscissa -axis (with a value equal to the number of the area St),
so the function P(t) will be the histogram representation of the points for the whole
(n–1)-dimensional hypersurface SI(X) in the 2-dimensional space, where P(t) = P(Xt),
Xt – center of the area St(X). In order to be satisfied condition (7), the variation of the
function P(t) has to satisfy the inequality: Var[P(t)]    maxP(t) – minP(t)  . For
this purpose we will view condition (6), which is equivalent to (7) and can be easily
realized if we define the constants m and  in the following way:
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)]([1and)(1 XX  , where 0 <   1.

Then if for t[1, T] condition (6) is fulfilled, we will consider the current core KI K
to be convex, because this would mean that condition (4) of the definition above is
fulfilled. In order to satisfy the second  condition of the same definition as well, have

to find such a distance DI  for which M[C(KI)] = 
i

max M[C(Ki)]= i
min M[K|C(Ki)],

where C(Ki)  satisfies the condition (6). This can be realized  through the following
algorithm.

Algorithm
A 0. We define a certain initial distance D1< DK, where DK is the distance of the

whole   cluster K. If   C(K1) is a convex set, so go to A1. If C(K1) is not a convex set,
so go to B1.

A1. If C(Ki) is a convex set, so Di+1 = Di + D go to  A1, i = 1, 2, …
A2. If C(Ki) is not a convex set, so C(KI) = C(Ki–1) go to  End.
B1. If C(Ki) is not a convex set, so Di+1 = Di – D go to  B1.; i = 1, 2, …
B2. If C(Ki) is a convex set, so C(KI) = C(Ki – 1) go to  End.
End.

Fig. 4

Fig. 3
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The second part of the NN, determining the maximum convex core KI of the
cluster K (for the K-level of the NN from Fig. 2) is shown in more details in Fig. 4. For
the sake of  brevity K–H denotes the NN from Fig. 2, which defines the distance DK

I.

4. Conclusion

The suggested method for finding of the maximum convex inner core of a given cluster
K allows to approximate its parts by means of using separate convex cores.

This method presents the solution of the first part of the problem for a more
compact description of clusters having a random, a priori unknown form. With this
method, after the training of the NN, each part of the cluster K with a form close to a
convex one, is represented by a separate level  of the entire NN.

The unification of the separate cores of the given cluster is the second part of
the general problem. The finding of a reliable criterion which binds them into a common
set of points is a problem of no less complexity in comparison with the one discussed
in the present paper. The methods which will solve this problem require additional
research and their realization will obviously lead to the addition of new outer layers to
the proposed NN.
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