
96

Semantically Annotating Web Services Using WSMO Technologies*

Ivo Marinchev, Gennady Agre
Institute of Information Technologies, 1113 Sofia

Abstract: In this paper the differences and relationships between regular web services
and semantic web services are discussed. Later on a “bottom-up” approach is
introduced for converting existing web services to semantic web services using the
emerging WSMO technologies (specifications). We firmly believe that bottom-up
approaches are needed to facilitate smooth transition from the existing syntactically
defined web services to their future semantically enriched “counterparts”. We present
also our preliminary tool for semi-automated conversion of WSDL to WSMO services.

Keywords: Web Services, Semantic Web Services, Web Service Modeling Ontology
(WSMO), WSDL, OWL, OWL-S.

Introduction

Semantic Web technologies describe functional and behavioral aspects of Web services,
and their inputs and outputs in terms of ontologies as concepts, their instances and
relations among them, with a great portion of the meaning of the data explicit in its
ontology. From this point of view, Semantic Web Services and their clients are software
agents that produce and consume semantic data.

In order for Semantic Web Services (SWS) to be executed by computer systems
and SWS infrastructure (tools) to co-operate with regular web services, a mapping
between semantic data and regular web service syntaxes is needed. There are multiple
ways (syntaxes) of representing these semantic data on the wire for exchange. The
most useful ones are these based on XML syntaxes. This mapping is on two levels –
schema mapping and instance mapping.

Schema mapping is needed in the process of design and composition of Semantic
Web Services. It is a process of finding / building correspondence between data types
presented in the WSDL file and WSMO ontology concepts that describe the service
domain.

* This work has been partially supported by INFRAWEBS - IST FP62003/IST/2.3.2.3 research project
No 511723 and by project IIT-010061 “Technologies of the Information Society for Knowledge Pro-
cessing and Management”.

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2

Sofia 2005

97

 Instance mapping is needed in the process of execution when the concrete
messages are interchanged between the semantic and non-semantic part of the system.
Instance mapping is the process of constructing rules for automatic conversion between
XML instance documents and ontology instances.

As shown in the WSMO Grounding document [3], there is no direct mapping
between an XML vocabulary and WSMO ontology, mostly because relations can be
represented in multiple ways in XML, or they can even be implied. XML Schema
specifies structure of the documents. At the same time ontology languages provide a
formal specification of a shared domain theory. They model semantic relationships in
a particular domain. As a result, it is required a human operator to create the mapping.
However we think that these problems are more severe on the theoretical level when
any possible situations are considered. Some of them are even algorithmically
intractable. But in practice the XML Schemas and WSDL files are not so diverse and
do not employ all possible syntaxes. Hence the custom (task specific) approaches are
feasible.

Basics of XML, XML schema and WSDL

In the paper presented it is required that the reader is familiar with the XML, XML
Schema and WSDL specifications. XML is a standard language for describing
document types in any domain, facilitating the sharing of data across different systems
in the Internet [3]. XML is flexible and extensible allowing users to create their own
tags to match their own specific requirements. XML Schema is a W3C
Recommendation defining a schema language for XML. XML Schema provides a
way to define constraints on the syntax and structure of an XML document [2].

Currently, Web Services are described with the WSDL [1] documents/files.
WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented
information. Web services usually communicate with their clients (consumers) using
XML messages whose structure is described using XML Schema [2], usually
embedded in a Web Services Description Language [1] document.

The INFRAWEBS Grounding Editor uses the information from the Types,
Messages and Operations sections (Actually PortType section is also in use but only
for enumerating the services). The essential part of the work is done on the information
in the Types and Messages sections and in the current version of the Grounding Editor
converts the definitions in these sections to their semantic counterparts (according
WSMO specifications) in respect to a given set of general domain ontologies.

Basics of WSMO Ontology

WSMO identifies four top-level elements as the main concepts, which have to be
described in order to describe Semantic Web services (R o m a n et a l., [8]):

Ontologies provide the terminology used by other WSMO elements to describe
the relevant aspects of the domains;

Web services describe the computational entity providing access to services
that provide some value in a domain. These descriptions comprise the capabilities,

7

98

interfaces and internal working of the Web service. All these aspects of a Web Service
are described using the terminology defined by the ontologies.

Goals represent user's wishes, for which fulfillment could be sought by executing
a Web service.

Mediators describe elements that overcome interoperability problems between
different WSMO elements.

In the paragraphs below we provide some short introduction to WSMO elements
that we need and use in the current document. For the complete specification of
WSMO the reader have to refer to (R o m a n et al., [8]).

The basic blocks of WSMO Ontology are concepts, relations, functions, instances,
and axioms.

Concepts are defined by their subsumption hierarchy and their attributes,
including range specification. The range of the attributes can be a datatype or another
concept. There are two kinds of attribute definitions: constraining definitions, using
the keyword ofType and inferring definitions using the keyword impliesType. In the
first case, the values of the attribute are constrained to having the mentioned type,
while in the latter, the values of the attribute are inferred to have the mentioned type
concept person

id ofType xsd:positiveInteger
name ofType xsd:string
family ofType xsd:string
birthDate ofType xsd:date

Relations describe interdependencies between a set of parameters. Optionally,
the domain of parameters, which can be a datatype or a certain concept, can be specified
using the impliesType or ofType keywords.

Functions are a special type of relations that have an unary range beside the set
of parameters. Although in the conceptual model, they are regarded as entities distinct
from relations, in WSML they are modelled as a special type of relations that have
one functional parameter.

Instances are embodiments of concepts or relations, being defined either
explicitly by specifying concrete values for attributes or parameters or by a link to an
instance store.
instance Person1 memberOf person

id hasValue 2984845
name hasValue “John”
family hasValue “Dow”
birthDate hasValue ‘1970-06-06’

Axioms are specified as logic expressions and help to formalize domain specific
knowledge. Different WSML variants allow different expressivities for the logical
expressions (d e B r u i j n et al., [10]). Axioms are declared by using the keyword
axiom optionally followed by the axiom identifier, by a set of non-functional properties
and by the logical expression introduced by the keyword definedBy.
axiom myIntegerConstraint

definedBy ?X ofType xsd:positiveInteger and ?X>=10000 and ?X <= 99999

99

Overview of existing approaches

At the moment only one completed similar approach of grounding semantic web
services exists. It is presented in [4]. An OWL-S/WSDL grounding is done by creating
an instance of the OWL-S Grounding class, which includes all required information
regarding the relationships between the relevant OWL-S constructs and the relevant
WSDL constructs. Although Grounding instance has all required information, WSDL
documents are slightly modified (with the help of extensibility elements) to give
some indicators how the WSDL constructs are used to ground OWL-S. For more
complex cases OWL-S contains xsltTransformation property, which may be used to
express more complex mappings between WSDL message parts and atomic process
inputs/outputs.

When using OWL-S with WSDL, it is possible to declare OWL classes and
properties within the types section. When a types section is used in this way, the
extensibility element looks like this:
<definitions >
 <types>
 <rdf:RDF namespace-declarations ... > </rdf:RDF>
 </types>
</definitions>
where the “...” within the extensibility element may be replaced by any number of
OWL declarations.

Messages consist of one or more logical parts. Each part is associated with a
type from some type system using a message-typing attribute. The set of message-
typing attributes is extensible. WSDL defines several such message-typing attributes
for use with XSD:

element refers to an XSD element using a QName.
type refers to an XSD simpleType or complexType using a QName.
Other message-typing attributes may be defined as long as they use a namespace

different from that of WSDL. Binding extensibility elements may also use message-
typing attributes. For example:
<definitions >
 <message name=“Message1”>
 <part name=“Part1” owl-s-parameter=“ourNS:Param1”/>
 <part name=“Part2” owl-s-parameter=“ourNS:Param2”/>
 </message>
</definitions>

A way is needed to indicate the correspondence between a particular WSDL
operation, and an OWL-S AtomicProcess. WSDL offers no extensibility elements for
operations. For this purpose, the authors of OWL-S/WSDL grounding propose that
WSDL sanction an optional “owl-s-process” attribute for the WSDL operation element,
as illustrated in the example below:

 <operation name=“Operation1” owl-s-process=“ourNS:AtomicProcess1”>
It is necessary to mention here that in case we need it, we will adopt the idea of

such additional attributes from OWL-S grounding. More exactly, we will introduce
the analogous optional attributes “wsmo-parameter” and “wsmo-process”. Although
this is not a standard approach we need to introduce this “home-made” solution because

100

it is simple, efficient, easier to understand and non-intrusive. At the same time the
current WSMO approach to SWS grounding does not propose any solution so we are
free to adopt whatever we think is appropriate.

The latest working draft on WSMO grounding [4] enumerates the following
three possible approaches:

1. Create mappings at the conceptual (WSMO) level involving creating WSMO
ontology for the XML Schema used in the WSDL.

2. Use XSLT to create direct mapping between XML and the XML syntax of the
WSMO ontology.

3. Use a direct mapping between the source XML data and the target WSMO
ontology, using a mapping language specifically developed for this purpose.

The second and third approaches are not feasible since the mappings would take
place only on the syntactic level and there would be no possibility to use reasoning to
provide a more sophisticated mapping in the second one. Another language invented
specifically for the transformation is also needed in the third case.

The first approach requires three distinct activities to ground the data part of
WSMO service descriptions to the XML Schema used in WSDL:

Define a mapping between the XML Schema Conceptual Model (XML Schema)
to the WSMO Ontology metamodel.

Create an executable description of the mappings in the first point to enable the
automatic creation of ad-hoc WSMO ontologies from specific XML Schema.

Create the bi-directional mappings rules to be used for the transformation
between XML instances and WSMO instances. These mapping rules should be created
at the same time as the generation of the ad-hoc WSMO ontology from an XML
Schema. The creation of these mapping rules should be automatic, as they should be
completely derived from the actions described in the first two bullet points.

In the INFRAWEBS Grounding Editor we follow the above ideas although there
are some differences that stem from the specific problems that appear in the practical
application of this approach or when some missing parts of the specification have to
be completed.

The approach of service grounding in INFRAWEBS

The INFRAWEBS Designer is a tool aiming at converting an existing WSDL-based
service to a semantic WSMO-based one. So to ground such a semantic service we
need to perform only XML Schema to WSMO ontology mapping. As the WSDL files
contain descriptions of services implemented in some of the modern programming
languages, the schemas found in the WSDL files actually represent the data types
used by the services described by set of SimpleType and ComplexType declarations.

Since in most cases concrete services do not use the data types that correspond
exactly to ontologies concepts, as a result of the mapping process a new service
specific ontology will be built.
The INFRAWEBS “bottom-up” approach to service grounding can be summarized
as follows:

1. Lifting XML Schema to “ad hoc” WSML ontology. Simple and complex data-
types found in the WSDL file are converted to a service-specific (“ad hoc”) WSML

101

ontology. This step is basically a conversion of the data-types hierarchy to concept
hierarchy.

2. Mediation between the constructed ad-hoc WSML ontology and given general-
purpose WSML ontologies. At this step the user mediates the concepts of the ad hoc
ontology to the closest possible concepts of the available general-purpose ontologies.
In its turn this second step is implemented according to the following algorithm:

Map to existing ontology concepts wherever it is possible.
In case the exact matching could not be found, use the closest “counterpart”

concept from some of the domain ontologies and refine it (create a sub-concept of it)
by the addition of missing attributes and/or axioms.

The step of finding the best ontology “counterpart” can not be done completely
automatic. There are some approaches for automatic detection of the closest ontology
concepts but most of them attain limited success (accuracy of 20% – 30%) or are
applied in very limited domains (P a t i l et al., [6]).

That is why we decided to use semi-automatic approach: the user is the one that
makes explicit mapping using the tools for reducing the set of possible candidates for
mapping. Such “candidates” are automatically proposed based on similarity between
the data structures to be compared as well as on performing type checks. To make the
work easier for the user the tool follows “bottom-up” mapping approach – from simple
to complex data types mapping.

As a result our tool allows semi-automatic conversion process, in which the
user evaluates similarity between pair of concepts based on their meanings and the
tool assists him by presenting on the screen only relevant information and performing
type checks.

Lifting XML Schema to ad hoc WSML ontology

In this section we represent our approach to converting the different type of structures
(types) contained in XML schemas that is a part of WSDL files to the service-specific
(ad hoc) WSML ontology concepts. The initial version of our software tool uses
conversion (lifting) rules defined by us because at the corresponding moment (June/
July 2005) the lifting problem was not addressed in the WSMO grounding
specifications [3]. The corresponding rules was implemented in Java programming
language and was intended as a temporary solution until the specification catches up
with us. The latest version of WSMO grounding [3] has introduced very good lifting
specification. This specification is based on mapping rules that are in fact declarative
form of syntactical transformation needed in order to convert XML Schema to WSMO
Ontology. The only drawback in their approach that we see is that they are focused on
WSML version 2.0 that is still in working draft stage and all available web services
and the corresponding tools work with WSDL version 1.1. At the same time in our
project we must take into account exiting web services infrastructure and that’s why
we decided to modify the rules so that they can be used with the WSDL version 1.1
files. Fortunately this task does not appear to be very hard as the differences between
the two versions of the WSDL files are mainly syntactic. As additional flexibility the
new version of our tool uses XSLT transformation rules to implement the lifting
process so that we can easily support different version of WSDL and/or WSMO
syntaxes as they evolve over the time.

102

Mediation between ad-hoc WSMO ontology and general-purpose WSML
ontologies

The next step is mediation between ad hoc WSMO ontology and general-purpose
ontologies that represent the problem domain. The result of the mediation process is
the creation of the so-called “mapping ontology” that consists of service specific
refinement of the concepts of the general ontologies. Actually the mapping ontology
is an extension of the ad hoc ontology and is created from it by the procedure described
below:

For any concept found in the ad hoc ontology:
1. If that concept corresponds exactly to the concept of a certain general ontology

then it is mapped to this general concept. Mapping here means that in the mapping
ontology a new concept is created that is exact copy of the general concept (has the
same name and the same attributes and axioms).

2. If exact correspondence is not available then the closest concepts from the
upper ontologies are selected and the mapping is done to one of them. The closest
concepts are all of the concepts that has less or equal number of attributes that
correspond to the subset of the attributes of the “ad hoc” concept. When the “ad hoc”
concept is mapped to a closest general concept a new sub-concept of the general
concept is created in the mapping ontology that has the same name as the original
concept and all of the attributes from the “ad-hoc” concept that are missing in the
general concept are added to it (to the mapping concept).

3. In the worst case when there is no appropriate “closest concept” completely
new (is not a sub-concept of existing general concept) concept is created in the mapping
ontology that corresponds exactly to the one in the “ad-hoc” ontology. In fact this
step is analogous to the previous one with selected “the closest concept” Thing (the
most general concept of the WSMO ontologies).

As we mentioned above the result of the mediation process is a small custom
ontology (mapping ontology) that is service specific but at the same time is closely
related to the existing domain ontologies. We think that the creation of this service
specific ontology can not be avoided, as one can not model precisely a certain web
service using only the concepts from the general ontologies. For example let we
consider the credit card processing service. The general concept creditCardProcessor
will have an attribute creditCardNumber that can be for example of type xsd:string.
But our concrete service can be restricted to process only VISA and MasterCard
cards. Hence in our service specific ontology (mapping ontology) we have to create
the new concept ourCreditCardProcessor that is a sub-concept of the general credit-
CardProcessor concept that have additional axiom restricting the creditCardNumber
attribute to accept the numbers of the VISA and MC cards only.

Grounding editor architecture and interface

From a theoretic point of view our grounding editor implements the two step “lifting-
mediation” process described in the previous sections. However, it is not efficient in
practice the grounding process to be implemented in a straight-forward manner using
the above receipt. There are several reasons (criteria) that have to be considered:

103

1. The end user is not required to be familiar neither with the grounding
specifications nor with the specific terms as “lifting”, “mediation”, “refinement”,
etc.

2. Lifting (converting) the XML Schema to “ad hoc” ontology is not feasible to
be performed in a bulk as the user is sometimes required to check some of the
conversions or to add axioms manually.

3. Often not all of the XML Schema types that are available in the WSDL file are
needed for the semantic service. Usually the user will map only some of them that are
required for the corresponding semantic service. It is often the case that WSDL files
contain not used or legacy constructs that are kept in them only for backward
compatibility with previous versions of the same service.

4. As the user assistance is mandatory on the mediation step the information on
the screen have to be presented in a logical consequence as the user have to guess the
semantic meaning of the message parts based only on the operation name, message
name, type name, surrounding context, and optionally end user documentation of the
web service.

According to the above requirements in our implementation of the grounding
editor we do not follow blindly the two step process but inter-mix the two steps in
one interface operation. This way from the end user point of view it looks like the
mapping is done directly between the WSDL structures (messages and types) and the
concepts of the general ontologies.

In order to simplify additionally the process of types mapping and to make it
straightforward we decided to enforce the bottom-up approach to type-concept
mapping. In this context bottom-up mapping means that the user can not map a certain
type until all of its elements are mapped. In the terms of the first example (personType)
of the previous section it means that the user will have to map the name and family
elements (actually the full names personType.name and personType.family) to a certain
concepts (for example humanName) and then it will be allowed to map the complex
type personType.

Internally the tool starts with generation of unique type names based on the
names found in the WSDL file. All types that are “global” in the WSDL file have
unique names. Here we refer to the names of the XML Schema elements that are
“local”. For example elements of the complex types or complex types that are defined
inside another complex type. Two elements that are part of two different complex
types can have the same name but this fact does not guarantee that they have the same
meaning (semantics). In order to distinguish them we construct unique names of the
elements by creating the “full names” of the elements – the names that are prefixed
with the names of their corresponding enclosing types. For example the full name of
the element named “page” (Fig. 3 below) in the complex type SellerProfileRequest is
SellerProfileRequest.page and the full name of the element named “page” in the
complex type SellerRequest is SellerRequest.page.

In fact these full names are used internally by the tool and probably will never
be exposed to the end user, as they are not convenient for him. The context of the
elements in presented to the end user with the help of tree structures. At the same
time these names are needed for the implementation of instance mapping during run-
time. At this stage of development it is not completely clear how to handle the above
problem in the best way, so it will be solved when we start integrating the different
components of the INFRAWEBS framework and the WSMO execution environment
(WSMX).

104

Fig. 1 depicts the general architecture of the INFRAWEBS Grounding Editor as
a components diagram.

Fig. 1. Component diagram of INFRAWEBS Grounding Editor

Our tool follows “bottom-up” approach in type-concept mapping (from simpler
types to more complex ones). The user is not allowed to map a certain type if any of
it elements (and sub-types) is not already mapped/annotated. So the actual work process
is as follows: The user selects the type that she/he wants to map/annotate. If there is
any element (sub-types, and elements of sub-types at any level) that is not annotated
the user is warned about it and is sent to this sub-type to map it. Otherwise it allows
the annotation (see the next step). This approach not only simplifies and unifies the
annotation process from the user’s point of view but, more importantly, it allows any
mapping-time checks to be performed automatically and helps the user to avoid the
mapping incompatible types. In fact in the complex real-world ontologies without
such computer aided mapping it is almost impossible for the user to notice many of
the potential problems beforehand as a certain concepts of the ontology may inherit
many different attributes and restrictions from its direct and indirect super-concepts.

Fig. 2 is a screenshot of the graphical user interface of the current version of the
INFRAWEBS Grounding Editor. We have to explicitly mention here that this is not
the final interface but just some sort of mock-up. In the later versions the grounding
editor will be integrated with the axiom editor as they share many common components
as ontology manager, case memory manager and probably others.

On the left side the structure of a real web service is presented. In fact this is an
old version of the Amazon Web Service. Top left tree depicts the operations found in
this WSDL file and their input, output, and fault messages. Below it is the tree that
depicts the structure of the selected message. On the right side is the so-called “ontology
pane”. This is the graphical user interface of the ontology manager component. It will
be replaced (shared) with the one presented in the current version of the axiom editor
as it has a lot of functionality that is already implemented. The tree in the middle
represents a version of the ontology view that show only the “closest possible concepts”
(in the terms discussed in the mediation section) that correspond (are compatible) to

Ontology Manager WSDL Processor

Business Logic

User Interface Logic

Export / Import

Case Memory Manager

105

the data-type (build in, simple, or complex) of the WSDL file selected in the left
middle tree. To help the user in the process of type – sub-concept mapping our tool
selects (filters) only the concepts from the opened ontologies that contain less or
equal number of attributes to the number of the elements of the selected XML Schema
type. Fig. 3 shows the original ontology (on the right) and the filtered one (on the left)
when the user selects a type that has no sub-elements (simple type). In this case all
concepts that have attributes are skipped. When the appropriate concept is selected
the user clicks the annotate button (we will probably rename it in the next versions)
and the mediation step is performed internally? i.e. the tool creates a new sub-concept
to the selected concept and if the schema type has more elements that the concept
attributes it creates the new attributes that correspond to these extra elements. As the
attributes are global in respect to WSMO ontologies we use internally the unique
names discussed above. As a logical consequence to the above, in the future versions
of our tool all restrictions found in the XML Schema will be converted to axioms
(WSMO axioms). At the moment the axiom language is still not specified formally in
the WSMO working drafts. That is why we decided to postpone the implementation
of this step for now. The next version will have on this place a text editor or directly
will be integrated to the axiom editor that will allow the user to manually convert the
XML Schema restrictions to WSMO axioms.

Fig. 2. INFRAWEBS Grounding Editor tool – WSDL file on the left, WSML ontology on the right

106

Fig. 3. An ontology (on the right) and the filtered one (on the left) when the user selects a type that has
no sub-elements (simple type)

When the WSDL document messages and types are mapped (annotated) to the
semantic concepts the tool creates internally a table of correspondences between the
variable names and their corresponding syntactic type (XML Schema) and semantic
type (WSMO concept). This step is needed as the semantic types will be used during
discovery and composition (and probably by the semantic executors) but the syntactic
types are used at run-time. We intended to follow the approach proposed in the recent
versions of the WSMO grounding [3] that is based on the introduction of new non-
functional properties. If it appears that the WSDL files have to be annotated as well
and this is not specified in the WSMO working drafts at the time the need arises we
can use the approach similar to the one employed by the OWL-S grounding [4]. It is
based on the extensibility elements. The extensibility elements of WSDL are used for
a straightforward means of combining WSDL with any other XML-based language.
For example reusing the OWL-S approach the correspondence between the syntactic
and semantic names of the message parts and operation names can be done as follows:

<part name=“BookName” wsmo-wsdl:wsmo-variable=“serviceOntology:BookName”/>
<operation name=“BuyBook” wsmo-wsdl:wsmo-service=“serviceOntology:CongoBuy”>

Conclusions

The work presented in this paper is work in progress. It is not completed but outlines
the general directions of solving the problem of making semantic and syntactic web
service worlds to coexist and leverage each other’s strengths. Given the incompleteness
of the WSMO specifications and the introduction of some very complicated approaches
in it we developed custom approach for converting existing web services to semantic
ones. Our solution is simple enough to be used by the people with only superficial
knowledge of semantic technologies and at the same time it is general enough to be
employed in most of the practical situation.

107

R e f e r e n c e s

1. WSDL 1.1 specification
http://www.w3.org/TR/2001/NOTE-wsdl-20010315/

2. H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, Eds. XML Schema part 1: Structures, W3C
Recommendation, 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

3. Working Draft D24.2v0.1.
http://wsmo.org/TR/d24/d24.2/v0.1/

4. M a r t i n, D., M. B u r s t e i n, O. L a s s i l a, M. P a o l u c c i, T. P a y n e, S. M c I l r a i t h.
Describing Web Services using OWL-S and WSDL.
http://www.daml.org/services/owl-s/1.1/owl-s-wsdl.html

5. Web Service Modeling Ontology (WSMO).
http://www.wsmo.org

6. P a t i l, A., S. O u n d h a k a r, A. S h e t h, K. V e r m a. METEOR-S web service annotation
framework. In: Proc. of the 13th conference on World Wide Web, July 2004.

7. N e r n, H.- J o a c h i m, G. A g r e, T. A t a n a s s o v a, J. S a a r e l a. System framework for
generating open development platforms for web-service applications using semantic web
technologies, distributed decision support units and multi-agent systems – In: INFRAWEBS
II. - Trans. on Information Science and Applications, Issue 1, Vol. 1, July 2004, 286-291.

8. R o m a n, D., H. L a u s e n, U. K e l l e r, J. de B r u i j n, C h. B u s s l er, J. D o m i n g u e, D.
F e n s e l, M. K i f e r, J. K o p e c k y, R. L a r a, E. O r en, A. P o l l e r e s, M. S t o l l -
b e r g. D2v1.1. Web Service Modeling Ontology (WSMO) WSMO Final Draft, 10 February
2005.
http://www.wsmo.org/TR/d2/v1.1/

9. R o m a n, D., J. S c i c l u n a, C. F e i e r, M. S t o l l b e r g, D. F e n s e l. D14v0.1. Ontology-based
Choreography and Orchestration of WSMO Services, WSMO Final Draft 1 March 2005.
http://www.wsmo.org/TR/d14/v0.1/

10. D e B r u i j n, D., H. L a u s e n, R. K r u m m e n a c h e r, A. P o l l e r e s, L. P r e d o i u, M.
K i f e r, D. F e n s e l. D16.1: The Web Service Modeling Language WSML. WSML final
draft, DERI, March 2005.
http://www.wsmo.org/TR/d16/d16.1/v0.2/

