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Abstract: The results from an experimental comparative study of three robust features
intended for trajectory-based speech detection are presented in the paper. These
features are the Mean-Delta (MD) feature [6], the Spectral Entropy (SE) [3] and the
Spectral Entropy with Normalized frame Spectrum (SENS) [7]. Two experiments with
noisy speech samples from two databases (the SpEAR database [2] and the BG-
SRDat corpus [5]) are carried out. In the first experiment, the trajectory’s variations
of the features are compared by visual evaluation on their graphical representations.
In the second one, the noise influence on the features trajectories is estimated by
computing of the Euclidean distances between  z-normalized trajectories of clean
speech examples and their noisy versions. Based on experimental results two main
conclusions are made: in comparison with other two features the MD feature
trajectories are significantly less influenced by different type of noises; the SENS and
especially the MD feature are more suitable for trajectory-based speech detection
than the SE.
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1. Introduction

When the speech or speaker recognition systems operate in noisy environment, it is
often necessary to determine the speech and non-speech fragments in the analyzed
signal. The speech segments provide data for speech or speaker model estimation,
while the noise parameters estimated in the non-speech segments are used to
compensate the influence of the noise on the recognition performance.
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The finding of speech fragments in a given signal has many names, of which
some are speech detection, endpoints detection, voice activity detection, and speech/
non-speech segmentation [4].

The algorithms for automatic speech detection can be divided into two general
categories. The first one includes the algorithms that analyze the time variations
(trajectories) of selected parameters and utilize a set of thresholds and finite-state
automata in order to produce a speech/non-speech decision for a particular segment.
The second category is comprised of algorithms based on a pattern recognition
technique. In these algorithms, reference models for two classes (i.e., speech and
non-speech) are created during the training phase based on selected speech features.
In the classification phase, each segment is associated with one of the classes based
on a selected similarity measure [3, 4, 9].

The selection of features intended for speech detection is usually composed of
two stages. The first stage is a preliminary selection. It is based on a visual evaluation
on the graphically represented parameters. This selection is a feasible task only in
cases when the parameters possess reasonable graphical representation. The latter
stage is the final feature selection and a recognition scheme is usually applied. The
developed speech detection algorithm is embedded as a component of a complete
speech or speaker recognition system. The effectiveness of different speech detection
features is estimated experimentally based on their indirect influence on the recognition
performance [3, 4, 7].

In last few years, the often-used features for speech detection in noisy
environment are based on the spectral entropy characteristics [1, 3, 7]. In this case,
the main assumptions are, firstly, the signal spectrum is more “organized” in the
speech regions than in the noise ones and secondly the Shannon’s entropy can be
used as an appropriate measure of signal organization [7].

In the paper, we study experimentally two different kinds of features intended
for trajectory-based speech detection – one feature based on spectral autocorrelation
and two others based on spectral entropy. The spectral autocorrelation-based feature
is the mean-delta feature [6] while the spectral entropy-based features are the spectral
entropy [3] and the spectral entropy with normalized frame spectrum [7].

Two experiments are carried out with different noisy speech examples. In the
first experiment, the trajectory’s variations of the features are compared by visual
evaluation on their graphical representations. In the second one, the noise influence
on the features trajectories is estimated by computing of the Euclidean distances
between z-normalized trajectories of clean speech examples and their noisy versions.

2. Robust features

2.1. The Mean-Delta feature
The Mean-Delta (MD) feature is proposed in [6] and it is defined as the mean of the
absolute values of the delta spectral autocorrelation function of the power spectrum
of speech signal. Let )(ix  is a discrete speech signal, where i = 0, ..., I – 1, I is the
number of samples and the spectrum X(k) of x(i) is obtained by the Discrete Fourier
Transform (DFT), where k = 0, ..., K/2, K is the number of points in the DFT.

The spectral autocorrelation function Rp(l) is defined with the power spectrum
as [6]
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where l = 0, ..., L, L is the number of correlation lags and L = K/2 – 1.
The Delta Spectral AutoCorrelation Function (DSACF) is the first-order

derivative of the spectral autocorrelation function obtained by a polynomial
approximation in a manner similar to the delta cepstrum evaluation [6]. For particular
frame it is computed using only frame’s spectral autocorrelation lags (intra-frame
processing).

For the n-th frame the DSACF Rp(n, l) is computed as
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where: l = 0, ..., L; Q is typically between 2 and 5, i.e. regions from 5 to 11 lags are
analyzed in the autocorrelation domain; n = 0, ..., N – 1, and N is the number of
frames.

For n-th frame the MD feature md(n) is computed as follows:
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where Rp(n, l) is the DSACF in (2) for lag l, L1 and L2 are the boundary lags and
L = L2 – L1 + 1.

In this study, two minor changes are made to the basic MD feature estimation
algorithm proposed in [6]. Firstly, the trajectory smoothing by a local maximal value
is not applied and secondly, instead of md(n) in (3), the square root of it is used as MD
feature. These minor changes are done in order to compensate partly the extra trajectory
smoothing for some low-level speech sounds as was observed in some preliminary
experiments. For more details about the MD feature, see [6].
2.2. The spectral entropy
The Spectral Entropy (SE) for the n-th frame is estimated in the following steps [3].
First, the probability density function P(|X(n, k)|2) for the spectrum |X(n, k)|2 is computed
as
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where k = 0, ..., K/2 and n = 0, ..., N – 1. The heuristic rule is added, namely if
P(|X(n, k)|2) 0.9 then P(|X(n, k)|2) = 0. After this constrain is applied, the spectral
entropy Hc(n) for n-th frame is computed as follows:
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The negative SE Hc
–(n) is defined as Hc

–(n) = –Hc(n). It is more convenient in the
trajectory-based speech detection algorithms to be used the negative SE, especially
when this entropy will be combined or will be compared with the energy-based features.
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2.3. The spectral entropy with normalized frame spectrum
It is known that the entropy curve of the speech regions with colored noise is very
similar to the entropy curve of the non-speech regions [7]. To make the speech detection
with entropy feature under colored noise conditions more reliable, in [7] is proposed
to divide the spectrum of each frame by the average spectrum computed over all
frames of the analyzed speech data (i.e. to normalize the frame spectrum). If  is the
magnitude spectrum for the n-th speech frame, where n = 0, ..., N – 1; k = 0, ..., K/2
and K is the number of points in the DFT and N is the number of frames, so the

normalized spectrum ),(? knX is computed as follows:
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knXP for the spectrum ),(? knX  is estimated

by normalizing the frequency components
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and the Spectral Entropy with Normalized frame Spectrum (SENS) Hw(n) for n-th
frame is computed as
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The negative SENS Hw
–(n) is defined as Hw

–(n) = –Hw(n).

3. Experiments

We carried out series of experiments that can be divided into two groups. The aim of
first group of experiments is to display graphically the trajectories of the analyzed
features and evaluate visually how suitable they are for the trajectory-based speech
detection. The second group of experiments is intended to provide a preliminary and
rough estimation of the noise influence on the feature trajectories.

During the experiments, we used selected noise-corrupted speech samples from
two speech databases  the SpEAR database [2] and the BG-SRDat corpus [5].

In order to make a correct comparison between different features we have to
compute all of them in the same frequency range. We selected the range accepted in
[3], i.e. from 250 Hz to 3750 Hz. In all experiments, the obtained trajectories are
normalized in order to allow direct comparison between them. The frame length is 30
ms, the frame shift is 10 ms and the FFT-points are 1024. The mean spectrum in the
denominator of (6) is estimated over entire analyzed speech phrase. All contours are
smoothed by 3-points moving-average filter.
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Hereafter in the text, the attribute “negative” will be omitted in all names of
entropy measures for more convenience.

As a rough measure of the noise influence on the feature trajectory, we decided
to use the similarity between feature trajectories of the clean speech record and its
noisy version. This similarity, more exactly the shape similarity, can be estimated by
the Euclidean distance between both normalized trajectories. The trajectory
normalization is recommended in [8] in order to obtain the distance between
trajectories that is invariant to the trajectories’ scaling and shifting. In the study, the
z-normalization trajectory technique is applied [8]. In this case, the normalized
trajectory has a zero mean and a unit standard deviation. It is possible to apply this
simple technique because the analyzed trajectories are with equal lengths and there is
not local time shifting along them.

The normalized trajectory TN(n), n = 1, ..., N, where N is the number of trajectory’s
frames, is estimated as
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where mT, T are the mean and standard deviation, respectively, computed over entire
trajectory T(n).

The average spectrum in the denominator of (6) is computed over all frames in
the analyzed phrase. For some signals, this average spectrum can be small for certain
frequencies. This fact leads to significant variations in normalized spectrum and further
in the entropy estimation. To overcome this effect the authors in [7] recommend
adding a white noise with small amplitude to the signal before the spectrum
computation. During the experiments, only for the SENS calculation, white Gaussian
noise is added to the analyzed signal. In this case, the achieved Signal-to-Noise Ratio
(SNR) is 20 dB. This additional noise smoothes the SENS trajectory as was found in
some preliminary experiments.

3.1. Experiment No 1
We selected three examples from “Lombard Speech” section and two others from
“Noisy Speech Recordings” section in the SpEAR database. All examples have clean
speech reference and corresponded noisy versions (time-aligned) with different SNR.
All selected wave files are with sampling frequency of 16 kHz at 16 bits per sample,
PCM format and mono mode [2].

The examples from the “Lombard Speech” section are:
 factory noise example – it contains speech corrupted with factory noise

recorded in a car production hall. For the clean reference SNR = 27.28 dB and for
its noisy version SNR = –9.96 dB;

 car noise example – it contains speech corrupted with noise recorded inside a
driving car (Volvo 340). For the clean reference SNR = 27.00 dB and for its noisy
version SNR = –14.58 dB;

 pink noise example – it contains speech corrupted with pink noise; the noise is
acquired by sampling the signal from a high-quality analog noise generator. For the
clean reference SNR = 21.23 dB and for its noisy version SNR = –10.33 dB.

The examples from the “Noisy Speech Recordings” section are:
 white noise example – it contains speech corrupted with white noise. The

noise is acquired by sampling the signal from a high-quality analog noise generator;
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for the clean reference SNR = 40 dB (no noise) and for its noisy version SNR = 2.37
dB;

 bursting noise example – it contains speech corrupted with bursting noise; the
noise is computer generated using a white Gaussian random number generator; for
the clean reference SNR = 40 dB (no noise) and for its noisy version SNR = 0.16 dB.

In Figs. 1-5 are shown the noisy speech examples from SpEAR database and the
corresponded z-normalized trajectories of the SE, SENS and MD feature. The factory
noise, the car noise and the pink noise examples are shown in Figs. 1-3, respectively.
The white noise and bursting noise examples are shown in Figs. 4 and 5.

The BG-SRDat is a corpus in Bulgarian language collected over analog telephone
lines and intended for speaker recognition. The speech data included in the BG-SRDat
are sampled at 8 kHz with accuracy 16 bits, PCM format and mono mode [5].

We selected one speech data file, which is typical of the BG-SRDat. In this file,
there are some segments with high-level pulse noise and some others with low-level
harmonic noise probably due to the crosstalk. The BG-SRDat corpus comprises only
real-world noisy speech records and it does not provide clean speech examples and
their noisy versions as SpEAR database [2]. In order to obtain a clean reference for
selected noisy speech data file a wave editing and a noise reduction technique are
applied. This additional processing is done here only for illustration purposes only.

In Fig. 6 are shown the noisy speech example, its clean version, the corresponded
z-normalized trajectories of the analyzed features and the results from manual speech
detection task.

Fig. 1. Examples from the SpEAR database: (a) – clean speech sample; (b) – noisy version of (a) with
factory noise; (c) – SE trajectories for speech samples in (a) and (b); (d) – SENS trajectories for speech
samples in (a) and (b); (e) – MD feature trajectories for speech samples in (a) and (b)
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Fig. 2. Examples from the SpEAR database: (a) – clean speech sample; (b) – noisy version of (a) with
car noise; (c) – SE trajectories for speech samples in (a) and (b); (d) – SENS trajectories for speech
samples in (a) and (b); (e) – MD feature trajectories for speech samples in (a) and (b)

Fig. 3. Examples from the SpEAR database: (a) – clean speech sample; (b) – noisy version of (a) with
pink noise; (c) – SE trajectories for speech samples in (a) and (b); (d) – SENS trajectories for speech
samples in (a) and (b); (e) – MD feature trajectories for speech samples in (a) and (b)
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Fig. 4. Examples from the SpEAR database: (a) – clean speech sample; (b) – noisy version of (a) with
white noise; (c) –  SE trajectories for speech samples in (a) and (b); (d) – SENS trajectories for speech
samples in (a) and (b); (e) – MD feature trajectories for speech samples in (a) and (b)

Fig. 5. Examples from the SpEAR database: (a) – clean speech sample; (b) – noisy version of (a) with
bursting noise; (c) – SE trajectories for speech samples in (a) and (b); (d) – SENS trajectories for
speech samples in (a) and (b); (e) – MD feature trajectories for speech samples in (a) and (b)

4
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Fig. 6. An example from the BG-SRDat corpus: (a) – clean speech sample; (b) – noisy speech sample;
(c) – SE trajectories for speech samples in (a) and (b); (d) – SENS trajectories for speech samples in (a)
and (b); (e) – MD feature trajectories for speech samples in (a) and (b), (f) – manual speech detection
results

3.2. Experiment No 2
The Euclidean distances between z-normalized trajectories of the clean speech
examples and their noise versions for different features are shown in Table 1. The
different features are noted in the table as follows: MD – Mean-Delta feature, SE –
spectral entropy and SENS – spectral entropy with normalized frame spectrum.

Table 1. Euclidean distance between z-normalized trajectories of the clean speech examples and
corresponded noisy versions

4. Discussion

In the experiments with noisy speech data, we compared the trajectories of the MD
feature with the trajectories of two spectral entropy-based features. We decided to
use the frame feature value (trajectory level) as measure for the presence of speech.

SpEAR database examples 
No Features Factory noise 

(Fig.1) 
Car noise 

(Fig.2) 
Pink noise 

(Fig.3) 
White noise 

(Fig.4) 
Bursting noise 

(Fig.5) 

BG-SRDat 
example 
(Fig.6) 

1 MD 0.4972 0.1247 0.7161 0.0528 0.1603 0.5584 
2 SE 1.3701 0.9509 1.1543 0.7976 1.0123 1.1701 
3 SENS 1.0703 0.6926 0.8755 0.8953 1.1162 0.9043 

 



5 1

This is a so-called “energy-type” approach for speech detection. It is based on the
assumption that the low levels in feature’s trajectory correspond to the non-speech
frames or frames with consonants and the high levels ones – mainly to the voiced or
semi-voiced frames.

As can be seen in Figs. 1-4  subplot (c), it is very difficult to make reliable
decision (based only on the SE trajectory level) about the positions of the speech and
non-speech parts in the analyzed data. On the contrary, the trajectories of the SENS
and especially of the MD feature allow easily finding the speech and non-speech
fragments – see Figs. 1-4 – subplots (d) and (e). The results shown in Fig. 5 are
obtained with bursting noise. The varying noise amplitude partly complicates the
utilizing of the SE and SENS contours for trajectory-based speech detection. Again,
the MD feature performs itself very well.

In the MD feature trajectory can be noticed some segments with an extra
smoothing, especially for fricative sounds. This effect can be clearly seen in Fig. 1
(e) (between time axis ticks 3.2 s and 3.4 s); in Fig. 2 (e) (between time axis ticks 2.9
s and 3.3 s) and in Fig. 4 (e) (between time axis ticks 2.3 s and 2.6 s).

The results obtained for speech example from BG-SRDat corpus are shown in
Fig. 6. Again, the SE provides the worst result (see Fig. 6 (c) – between time axis
ticks 4.7 s and 5.5 s – in this file position there are segments with low level harmonic
noise probably due to the crosstalk), while the SENS and especially the MD feature
allow easily finding the speech and non-speech fragments based only on trajectory
levels.

The results shown in Table 1 reveal interesting fact – the MD trajectory shape is
influenced by the different noises significantly less than the trajectories of the entropy
features (the Euclidean distances for the MD feature are always the minimal). We
suppose that this fact can facilitate the MD feature-based speech detection in the
non-stationary noise environment (e. g. bursting noise).

5. Conclusions and future work

In the paper, three features intended for trajectory-based speech detection are analyzed.
Two experiments are carried out with noisy speech samples selected from two
databases. During the first experiment, the visual evaluation on features trajectories
is done in order to estimate how suitable they are for “energy type” speech detection.
A rough measure of the noise influence on the feature trajectory is computed during
the second experiment. This measure is based on the Euclidean distance between z-
normalized trajectories of the clean speech records and their noisy versions.

Based on experimental results the following conclusions are made:
 the behaviour of features’ trajectories depends on the type of noise – this

dependence is more significant for the spectral entropy-based features;
 in comparison with other two features the MD feature trajectories are

significantly less influenced by different type of noises – see Table 1;
 in most cases the SE feature is not suitable for trajectory-based speech detection;
 the SENS is promising feature but it is more influenced by non-stationary

noises (as bursting noise) than the MD feature;
 in the MD feature trajectory can be noticed an extra smoothing, especially for

the fricative speech sounds.
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Our further work will include the development of an integrated feature-based
speech detection algorithm (e.g., a combination of the MD feature and SENS). We
will evaluate this algorithm in the context of speaker recognition system, in order to
estimate the efficiency of this new feature as a component of a complete system.
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