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Abstract: The paper proposed a new fuzzy-neural recurrent multi-model for systems
identification and states estimation of complex nonlinear mechanical plants with
backlash. The parameters and states of the local recurrent neural network models
are used for a local direct and indirect adaptive control systems design. The de-
signed local control laws are coordinated by a fuzzy rule based control system.
Simulation results confirm the applicability of the proposed intelligent control system,
where a good convergence of all recurrent neural networks, is obtained.
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1. Introduction

In the recent decade, the Neural Networks (NN) became universal tools for many
applications. The NN modeling, and application to system identification, prediction,
and control, was discussed for many authors [1-5]. Mainly, two types of NN models
are used: Feedforward (FFNN) and Recurrent (RNN). The main problem here is the
use of different NN mathematical descriptions, and control schemes, according to the
structure of the plant model. For example, N a r e n d r a  and  P a r t h a s a r a t h y [5],
applied FFNN for system identification and direct model reference adaptive control
of various non-linear plants. They considered four plant models with a given structure
and supposed that the order of the plant dynamics is known. Y i p  and P a o [2],
solved control and prediction problems by means of a flat-type functional FFNN
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used for inverse plant model learning control. P h a m  and  Y i l d i r i m, [3] applied
Jordan RNN for robot control. S a s t r y  and S a n t h a r a m, [4], introduced two
types of neurons Network Neurons and Memory Neurons to solve identification
and adaptive control problems, considering that the plant model is also auto-regressive
one. In [1], some schemes of NN and RNN applications to control, especially of
direct model reference adaptive control, are surveyed. All drawbacks of the described
in the literature NN models could be summarized as follows: 1) there exists a great
variety of NN models and their universality is missing, [1-5]; 2) all NN models are
sequential in nature, as implemented for systems identification (the FFNN model
uses one or two tap-delays in the input, [5], and RNN models usually are based on the
auto-regressive model, [1, 4], which is one-layer sequential one); the main drawback
here is that the sequential models with different order introduces a different time
delay in a parallel control scheme; 3) in more of the cases the stability of the RNN is
not considered, [2, 5], especially during the learning; 4) in the case of FFNN application
for systems identification, the plant is given in one of the four described in [5] plant
models, the linear part of the plant model, especially the system order, has to be
known and the FFNN approximates only the non-linear part of this model; 5) all
these NN models are non-parametric ones, [4, 5] and so, not applicable for an adaptive
control systems design; 6) all these models are appropriate for identification of
nonlinear plants with smooth, single, odd nonsingular nonlinearities, [5].

B a r u c h  et  al., [6], in their previous paper, applied the state-space approach
to describe RNN in an universal way, defining a Jordan canonical two– or three-layer
RNN model, named Recurrent Trainable Neural Network (RTNN). This NN model is
a system parameter and state estimator, which permits to use the obtained system
states and parameters directly for state-space control.

For a complex nonlinear plant, B a r  u c h,  et  al., [7, 9], proposed to apply a
fuzzy-neural multi-model, appropriate to use when the nonlinear function in the control
part of the plant is not invertible. Further, the proposed neural fuzzy-neural multimodel
has been applied for mechanical system with friction identification, [10, 11]. In [12]
the proposed multimodel approach has been used for an experimental DC motor
identification. Latter, few control methods, using the fuzzy-neural multimodel, has
been applied for mechanical plant with friction identification and control, [13-15].
Finally, in the last year, the results of some simulation and experimental work with a
DC motor fuzzy-neural-multimodel control, has been presented, [16, 17].

In [18], a wide scope of references using fuzzy-neural approach for nonlinear
plants approximation is given and the RNN architecture of Frasconi-Gori-Soda [19],
is used. The main disadvantage of this work is that the applied RNN model there is
sequential in nature. Depending on the model order, this RNN model generates different
computational time delays, which makes difficult the fuzzy system synchronization,
[18].

So, the aim of this paper is to go ahead, using a fuzzy-neural multimodel for
iden-tification and control of nonlinear mechanical plants with backlash. The present
paper proposes two adaptive neural multi-model control schemes  direct and indirect,
illustrated by simulation results, obtained with a DC motor mechanical system with
backlash.
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2. Models description

2.1. Recurrent neural model and learning
A discrete-time model of Recurrent Trainable Neural Network (RTNN) and a dynamic
Back propagation (BP) weight updating rule are given. The RTNN model is described
by the following equations, [6]:
(1)                                 X(k+1) = JX(k)+BU(k),
(2)                                       Z(k)=S[X(k)],
(3)                                     Y(k) = S[CZ(k)],
(4)                            J = block-diag (Ji); Ji 1,
where X(k) is an N-state vector of the system; U(k) is an M-input vector; Y(k) is an L-
output vector; Z(k) is an auxiliary vector variable with dimension L; S(x) is a vector
valued activation function with appropriate dimension; J is a weight-state diagonal
matrix with elements Ji; B and C are weight input and output matrices with appropriate
dimensions and block structure, corresponding to the block structure of J. The contro-
lability, observability, and stability of this model are considered in [6]. As it can be
seen, the given RTNN model is a completely parallel parametric one, so it is useful
for identification and control purposes. Parameters of that model are the weight
matrices J, B, C and the state vector X(k). The equation (4) is a stability preserving
condition. The general BP learning algorithm is given as:
(5)               Wij(k+1) = Wij(k) +Wij(k) +Wij(k–1),
where Wij(C, J, B) is the ij-th weight element of each weight matrix (given in
parenthesis) of the RTNN model to be updated; Wij is the weight correction of Wij;
,  are learning rate parameters. The updates Cij , Jij, Bij of model weights Cij, Jij,
Bij are given by:
(6) Cij(k) = [Tj(k)Yj(k)] Sj' (Yj(k)) Zi(k),
(7) Jij(k) = R Xi(k–1),
(8)                            R = Ci(k) [T(k) – Y(k)] Sj' (Zj(k)),
(9) Bij(k) = R Ui(k),
where T is a target vector with dimension L and [T–Y] is an output error vector also
with the same dimension; R is an auxiliary variable; S'(x) is the derivative of the
activation function, which for the hyperbolic tangent is Sj'(x) = 1–x2. The stability of
the learning algorithm and its applicability for systems identification and control, are
proven in [6], where a DC motor is controlled by a direct adaptive neural control
system, containing a neural identifier and a neural controller.

2.2. Fuzzy-neural multi-model
For a complex dynamic systems identification, the Takagi–Sugeno fuzzy rule, [20],
admits to use in the consequent part a crisp function, which could be a static or
dynamic (state-space) model, [1, 20, 21], which validation is determined by the
membership function. Some authors, referred in [18], proposed as a consequent crisp
function to use a NN function. B a r u c h  et  al. [7-11], proposed as a consequent crisp
function to use a RTNN function model, so to form a fuzzy-neural multi-model. The
following statement gives the fuzzy rule of the model:
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(10)             Ri: if x is Ai then yi(k+1) = Ni [x(k), u(k)], i = 1, 2, ..., P,
where Ni (.) denotes the RTNN function, given by equations (1) to (3); i  is the model
number; P is the total number of RTNN models, corresponding to fuzzy rules Ri. The
output of the fuzzy neural multi-model system is given by the following equation
(11)                             Y= i wi yi = i wi Ni(x, u),
where wi are weights, obtained from the membership functions, [13-15]. As it could
be seen from the equation (11), the output of the fuzzy-neural multi model, which
approximates the nonlinear plant model could be obtained as a weighted sum of RTNN
models, [7-17], given in the consequent part of (10). The weights of the neural model
could be learned, which is the great advantage of this neural multi-model. In the case
when the intervals of the variables given in the antecedent parts of the rules are not
overlapping, the weights obtain values one and the weighted sum (11) is converted in
a simple sum. This simple particular case, considered here, was called fuzzy-neural
multi-model, [7-17].

3. An adaptive fuzzy-neural control systems design
3.1. A direct adaptive fuzzy-neural control
Block-diagram of a direct adaptive fuzzy-neural multi model control system is given
in Fig. 1. The block-diagram contains one fuzzy-neural multi-model identifier, which
issued states to the fuzzy-neural multi-model controller. The structure of the entire
identification system contains a fuzzyfier, a Fuzzy Rule-Based System (FRBS), and a
set of RTNN models. The system does not need a defuzzyfier, because the RTNN
models are crisp limited state-space models. A possible adaptive control system
contains also a set of RTNN controllers incorporated in a FRBS, designed on the base
of the obtained set of RTNN’s.

                  Ui(k) = – Nfb,i [xi(k)] + Nff,i [ri(k)],
(12)              Ri: if x is Ai Then ui = Ui(k), i=1, 2 , ..., P,
where r(k) is the reference signal; x(k) is the system state; NFBi [xi(k)] and NFFi [ri(k)]
are the feedback (FB) and feedforward (FF) parts of the fuzzy-neural control. The
control issued by the fuzzy neural multi-model system is given by the following
equation:
(13)                               U(k)= i wi Ui (k),

Fig. 1. Block-diagram of a direct adaptive fuzzy-neural multi-model control system
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where wi are weights, obtained from the membership functions, [7, 17, 18], co-
rresponding to the rules (13). As it could be seen from the equation (13), the control
could be obtained as a weighted sum of controls, given in the consequent part of (12).
In the case when the intervals of the variables, given in the antecedent parts of the
rules, are not overlapping, the weights obtain values one and the weighted sum (13)
is converted in a simple sum. For sake of simplicity, this particular model, named
multi-model, is considered here.

3.2. An indirect adaptive fuzzy-neural control
The block diagram of the indirect adaptive fuzzy-neural control system is given in
Fig. 2. The structure of the entire identification system is the same as in the previous
control scheme, but here a linear control law is designed using the obtained state
(xi(k)) and parameter (Ji, Bi, Ci) information, issued by the local neural model identifiers
RTNN-1,2. The multi model control is given by the same equation (13), consequence
of the rule (12) application, but here the local control (see [13]), is given by:
(14)      Ui(k) = (Ci Bi) –1{Ci Ji Xi(k) + ri(k+1) +  [ri(k) – Yi(k)]}.

Fig. 2. Block-diagram of the indirect adaptive fuzzy-neural multi-model control system

In this particular case, we use only two neural nets for process identification.
The RTNN-1 corresponds to the positive part of the plant output signal, and the RTNN-
2 corresponds to the negative one. For this two neural models – two correspondent
controls U1(k) and U2(k) are computed using (14), where the value of the control
parameter  is chosen between –0.999 and 0.999, and ri(k) is the correspondent local
reference signal (also positive or negative). If the RTNN-i model is observable and
controllable, then the local matrix product Ci Bi is different from zero (Ci Bi  0).

4. Simulation results

Let us consider an electromechanical system, driven by a DC motor, [22-26], governed
by the equations:
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where ia(t) is the armature current; ea(t) is the applied voltage; Ra, La are the armature
resistance and inductance; Jm, JL are the rotor and load inertias; ωm(t) is the angular
velocity of the rotor; θm(t), θL(t) are the rotor and load angular positions; Kb , Ki are
electromechanical and electrical constants; bm is a viscose friction coefficient; TL is
the moment of load; λ is the gear ratio; N1, N2 are gear numbers. The backlash model,
[23-26], is illustrated in Fig. 3. The backlash characteristic θL(t) = B(θm(t)) =
B(m,CR,CL,θm(t)) is described by two parallel lines, connected by horizontal line
segments. The following up direction movement is active when both input θm(t) and
output θL(t) angular positions are incremented, e.g.

(17)                   θL(t) = m(θm(t) – CR), θm(t) > 0, θL(t) > 0.

The following opposite down direction movement is active when both input θm(t) and
output θL(t) angular positions are decremented, e.g.
(18)                   θL(t) = m( θm(t) – CL ), θm(t) < 0,  θL(t) < 0,
where m > 0, CL < CR  are constant parameters. The gear backlash model is taken from
the literature [23-26]. The DC motor driven electromechanical system governed by
equations (15), (16), together with the gear backlash equations (17) and (18), are
simulated using Matlab/Simulink TM version 6.1 software, and its output variables
are discretized by a sufficiently small period of discretization, taking into account the
Shannon theorem. The control signal is retained by zero hold. The DC motor and
backlash parameters used, are given in Table 1.

Fig. 3. Backlash model, where: v(t) is the input and u(t) is the output; CR > 0 is the right path and
CL < 0 is the left path
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                                              Table 1. DC Motor and backlash parameters

Simulation results obtained by means of the direct neural multimodel control
scheme are given on Figs. 4, a-e. The total time of learning is 500 s. The identification
and control RTNNs topologies are (1, 5, 1), (5, 5, 1) and (1, 5, 1), respectively. The
learning parameters are given in Table 2.

                                                 Table 2. Learning parameters

The reference signal is given by the following equation:

(19)                       r(k) = 10sin(k);     = 1 rad/s.
From the graphical results, shown in Figs. 4, a-e it is seen that all neural networks

are convergent and the output of the plant follows the reference signal in spite of the
backlash and the Means Squared Error of reference tracking is below 1%. Simulation
results obtained by means of the indirect neural multi-model control scheme are given
on Figs. 5, a-d. The learning and control parameters are given in Table 3. The reference
signal is given by (19). The total learning time is 120 s. The topology of the neural
identifier is (1, 5, 1).

                                                  Table 3. Learning and control parameters

From the graphical results, shown in Figs. 4-5, it is seen that the identification
neural networks are convergent and the output of the plant follows the reference
signal in spite of the backlash and the Means Squared Error of reference tracking is
below 2.5%.

Parameter Value 
La – inductance 
Ra – resistance 
Kb  constant 

Jm – inertia of the DC-motor rotor 
Bm–coefficient of viscose friction 

m – mass 
CR–backlash constant of the right pass 
CL – backlash constant of the left pass 

0.055 H 
7.56  

3.475 N.m.A–1 
0.068 kg.m2 

0.03475 N.m.s 
1 kg 

0.2 mm 
–0.2 mm 

 

Parameter Value 
 – learning rate constant 

 – momentum term constant 
Tm – period of discretization 

0.01 
0.01 

0.01 s 

 

Parameter Value 
 – learning rate constant 

 – momentum term constant 
Tm – period of discretization 

 – control parameter 

0.001 
0.01 

0.01 s 
0.5 

 



2 8

 

0  10   20   30   40   50   60   70 
-0.8

-0.6

-0.4

-0.2

0 

0.2 

0.4 

0.6 

0.8 

1 

seg 

 

430 440 450 460 470 480 490 500 -0.8

-0.6

-0.4

-0.2

0 

0.2 

0.4 

0.6 

0.8 

seg 

 

430 440 450   460 470 480 490    500 
-0.8

-0.6

-0.4

-0.2

0 

0.2 

0.4 

0.6 

0.8 

seg 

 

0   10   20   30   40   50   60   70 
-1 

-0.5

0 

0.5 

1 

1.5 

seg 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
x 10 

2 
0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

seg 

                         a)                                                                                        b)
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Fig. 4. Graphical results of the direct adaptive neural multi-model control for an electromechanical
plant with backlash: a) – comparison of the reference signal (continuous line), and the plant output
(dashed line), during first 70 s of simulation; b) – comparison of the reference signal (continuous line),
and the plant output (dashed line), during last 70 s of simulation; c) – graphical results of the closed-
loop systems identification. Graphics of the RTNN-1 output (continuous line), and the RTNN-2 output
(dashed line), during last 70 s of learning;  d) – control signal during first 70 s of simulation; e) – Mean
Squared Error (MSE%) of control
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Fig. 5. Graphical results of the indirect adaptive neural multi-model control for an electromechanical
plant with backlash: a) – comparison of the reference signal (continuous line), and the plant output
(dashed line), during 120 s of simulation;  b) – graphical results of the closed-loop systems identification.
Graphics of the RTNN-1 output (continuous line), and the RTNN-2 output (dashed line), during 120 s
of learning: c) – control signal during 120 s of simulation; d) – Mean Squared Error (MSE%) of control
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5. Conclusions

A two-layer Recurrent Neural Network (RNN) and an improved dynamic error
Backpropagation- method of its learning, are described. For a complex nonlinear
plant identification and control, a fuzzy-neural multi-model, is used. The fuzzy-neural
multi-model, containing two RNNs, is applied for real-time identification and adaptive
direct and indirect control of nonlinear mechanical system with gear backlash, where
the simulation results exhibits a good convergence. The obtained good simulation
results confirm the applicability of the proposed fuzzy neural multi-model control
scheme.



3 0

R e f e r e n c e s

1. H u n t, K. J., D. S b a r b a r o, R. Z b i k o w s k i, P. J. G a w t h r o p. Neural network for control
systems – a survey. – Automatica, 28, 1992, 1083-1112.

2. Y i p, P. P. C., Y. H. P a o. A recurrent neural net approach to one-step ahead control problems.– IEEE
Trans. Syst., Man, Cybern., 24, 1994, 678-683.

3. P h a m, D. T., S. Y i l d i r i m. Robot control using Jordan neural networks. – In: Proc. of the
International Conference on Recent Advances in Mechatronics, August 14-16, 1995, Istanbul,
Turkey, Vol. II, 888-893.

4. S a s t r y, P. S., G. S a n t h a r a m, K. P. U n n i k r i s h n a n. Memory networks for identification
and control of dynamical systems.  IEEE Transactions on NNs, 5, 1994, 306-320.

5. N a r  e n d r a, K. S., K. P a r t h a s a r a t h y.  Identification and control of dynamic systems using
neural networks.   IEEE Transactions on NNs, 1, 1990, 4-27.

6. B a r u c h, I., J. M. F l o r e s, F. N a v a, I. R. R a m i r e z, B. N e n k o v a. An advanced neural
network topology and learning, applied for identification and control of a DC Motor. – In:
Proc. of the First International IEEE Symposium on Intelligent Systems, IS’02, Varna, Bulgaria,
September 10-12, 2002, Vol. I, 289-295.

7. B a r u c h, I., E.  G o r t c h e v a. Fuzzy-neural model for nonlinear systems identification. – In: Proc.
of the 5th IFAC Workshop AARTC’98, Cancun, Mexico, April 15-17, 1998, 283-288.

8. B a r u c h,  I., T. A r s e n o v, E. G o r t c h e v a, R. G a r r i d o. A fuzzy-neural model for dynamic
systems identification and an intelligent control.  – In: Proc. of the 5th International Symposium
on “Methods and Models in Automation and Robotics”, Miedzyzdroje, Poland, 25-29 August.,
1998, Vol. 2, 624-630.

9. B a r u c h, I., E. G o r t c h e v a, F. T h o m a s, R. G a r r i d o. A neuro-fuzzy model for nonlinear
plants identification.  – In: Proc. of the IASTED Int. Conference on Modeling and Simulation,
MS?99, Philadelphia, PA, USA, May 5-8, 1999, 1-6.

10. B a r u c h, I., R. G a r r i d o,  A. M i t e v, B. N e n k o v a. A neural network approach for stick-slip
model identification. – In: Proc. of the 5th International Conference on Engineering
Applications of Neural Networks, EANN’99, Warsaw, Poland, September 13-15, 1999,
183-188.

11. B a r u ch, I., F. T h o m a s, R. G a r r id o, E. G o r t c h e v a. A hybrid multimodel neural network
for nonlinear systems identification. – In:  Int. Joint Conference on Neural Networks, IJCNN’99,
Washington D.C., USA, July 10-16, 1999, Vol. 6, 4278-4283.

12. B a r u c h, I., J. M. F l o r e s,  J. C. M a r t i n e z, R. G a r r i d o.  A multi-model parameter and
state estimation of mechanical systems. – In: Proc. of the IEEE International Symposium on
Industrial Electronics, ISIE’2000, 4-8 December 2000, Puebla, Mexico, Vol. 2, 700-705.

13. B a r u c h, I., J. M. F l o r e s,  J. C. M a r t i n e z, B. N e n k o v a. Fuzzy- neural models for real-
time identification and control of a mechanical system. (St. Cerri, D. Dochev Eds.) – In:
Artificial Intelligence: Methodology, Systems and Applications. – In: Proc. of the 9th
International Conference, AIMSA 2000, September 2000, Varna, Bulgaria, LNAI 1904, Berlin,
Heidelberg, New York, Springer Verlag, 292-300.

14. B a r u c h, I., J. M. F l o r e s, R. G a r r i d o. A fuzzy-neural recurrent multimodel for systems
identification and control.  – In: Proc. of the European Control Conference, ECC’01, Porto,
Portugal, September 4-7, 2001, 3540-3545.

15. B a r u c h, I., J. M. F l o r e s, F. T h o m a s,  E. G o r t c h e v a.  A multimodel recurrent neural
network for systems identification and control. – In: Proc. of the International Joint Conference
on Neural Networks, IJCNN’01, Washington D.C., USA, July 14-19, 2001, 1291-1296.

16. B a r u c h, I., R. B e l t r a n, J. L. O l i v a r e s, R. G a r r i d o.  A fuzzy-neural multi-model for
mechanical systems identification and control. (Raul Monroy, Gustavo Arroyo-Figueroa, Luis
Enrique Sucar, Humberto Sossa, Eds.) – In:  Advances in Artificial Intelligence, MICAI 2004,
Proc. of the 3th Mexican International Conference on Artificial Intelligence, Mexico City,
Mexico, April 2004, LNAI 2972, Berlin, Heidelberg, New York,  Springer Verlag, 2004, 774-
783.

17. B a r u c h, I., R. B e l t r a n, B. N e n k o v a.  A mechanical system backlash compensation by
means of a recurrent neural multi-model.  – In: Proc. of the 2nd International IEEE Conference
on Intelligent Systems, Varna, Bulgaria, June 22-24, 2004, Vol. II, 514-519.



3 1

18. M a s t o r o c o s t a s, P.  A., J. B. T h e o c h a r i s.  A recurrent fuzzy-neural model for dynamic
system identification. – IEEE Trans. on Syst., Man, Cybern. Part B: Cybernetics, 32, 2002,
176-190.

19. F r a s c o n i, P., M. G o r i, G.  S o d a. Local feedback multilayered networks. – Neural Computation,
4, 1992, 120-130.

20. T a k a g i, T. M., S u g e n o. Fuzzy identification of systems and its applications to modeling and
control. – IEEE Trans. Syst., Man, Cybern., 15, 1985, 116-132.

21. T e i x e i r a, M., S. Z a k. Stabilizing controller design for uncertain nonlinear systems using fuzzy
models. – IEEE Trans. Syst., Man, Cybern., 7, 1999, 133-142.

22. W e e r a s o o r i y a, S. M., A. E l-S h a r k a w i. Identification and control of a DC-motor using
backpropagation neural networks. – IEEE Trans. on Energy Conversion, 6, 1991, 663-669.

23. T a o, G a n g, P. V. K o k o t o v i c. Adaptive Control of Systems with Actuator and Sensor
Nonlinearities. London, John Wiley and Sons Inc., 1996.

24. C i n c o t t i, S., L. D a n e r i. Neural network identification of a nonlinear circuit model of
hysteresis. – Electronic Letters, 33, 1997, 1154-1156.

25. M e n o n, K., K. K r i h n a m u r t h y. Control of low velocity friction and gear backlash in a
machine tool feed drive system. – Mechatronics, 9, 1999, 33-52.


