
156

A Software System for Visual Processing of Graph Data

Ivan Moustakerov
Institute of Information Technologies, 1113 Sofia

Abstract: There exist a large number of combinatorial problems defined on graphs
(or networks). Many efficient algorithms for both directed and undirected graphs
problems solving are known and all of them need input of the graph structure data.
The current paper describes a software system for visual processing of graph data
for the purposes of combinatorial graph problems solving. It can be used as a tool for
teaching or learning the work of the combinatorial graph algorithms and for solving
of practical graph problems.

Keywords: software system, Java-application, graph data, visual editing, shortest
paths, Dijkstra’s algorithm.

I. Introduction

There exist a large number of combinatorial problems defined on graphs (or networks).
For example a fundamental problem in network optimization is calculating of the
shortest paths. Many efficient algorithms for both directed and undirected graphs
tasks are known and all of them need input of the graph structure data. Specific visual
representation of graphs naturally asks for visual graph data entering and processing.
A graphical approach to creating graphs or networks and visual editing, repositioning
and modifying of the corresponding data could be useful for all researchers, students,
specialists, etc., dealing with different graph problems solving.

The current paper describes a software system for visual processing of graph
data for the purposes of combinatorial graph problems solving. It can be used for
creating and editing of graphs with edge costs (distances or weights). Using simple
intuitive interface and mouse buttons, the user can create any kind of directed or
undirected graph up to 999 vertices and unlimited connecting edges. The limitation
of vertices was chosen because of typical computer screen size and from the size of
most practical graph problems. That limitation is not restrictive one and the system
could be modified to any practical need if such exists. The graphs elements – vertices,

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2

Sofia . 2005

Applications

157

edges, edges costs, source and destination vertices, can be visually (using mouse
buttons) chosen, moved, deleted, inserted with correspondent graph data structure
modifying. The created graphs can be saved as data files for loading, editing and
subsequent processing or as pictures (PNG-format) for illustration purposes.

The described software system is programmed as Java-application and is (at
least theoretically) independent of the computer platform. On its base different
combinatorial graph algorithms can be implemented and different practical graph
problems solver systems could be created.

As variant of the system for finding the shortest path for a single-source-
destination problem with nonnegative edges costs using Dijkstra’s algorithm will be
shown here as an illustration for practical usage .

II. Functional Purposes

The main functional purposes of the system are:
to serve as tool for visual (graphical) creating of any directional or unidirectional

graph and for visual processing of its structure (editing and modifying deleting,
inserting, moving of its elements, scaling for better viewing, inserting boxes and
explanatory texts, undoing last operation and allowing other operations known for
graphical data processing and making sense for graphs creating,

to save the graph structure as a system data file for subsequent loading and
using,

to save the current graph presentation as a image (in PNG-file format for using
as illustration in a report or paper for example),

to solve relevant combinatorial graph problems by using implemented different
combinatorial graph algorithms (finding of the shortest path for example),

to show visually working steps of the implemented algorithms for educational
purposes.

It should be pointed out that main attention was paid to editing functionality of
the system and to visualizing of the algorithm work. There exist many graph algorithms
ready to be implemented. The main goal is using of the system from operations research
teachers and students as a tool for using and studying the existing known combinatorial
graph algorithms. To serve that goal a number of different known algorithms will be
implemented gradually as the system evolves. It could be used also from researchers
for fast visual creating of graphs and solving combinatorial graph problems.

III. System’s menus and user interface

The user interface is traditional – using standard windows menus and buttons for
mouse clicking. The used graphical pictograms for buttons were chosen to be self-
explanatory and intuitive. The system windows also have standard look as known
from mass operating systems (Windows and Linux for example). The interface look
could be changed using Java possibilities for specific “look and feel” interface.
Although not shown on black and white examples of the paper magazine copies,
colors are widely used for clear pointing of the specific graph elements – source node
is blue, destination node and the shortest path are red, etc.

158

The system main window with a graph example and shortest path found from
node 1 to node 7, is shown on Fig.1. The buttons on the tool bar are mostly standard
and will be explained later. The main drawing panel is scrollable when big graphs
should be drawn and shown. The text panel on the left is for graph data structure in
text format. It is automatically loaded and updated with each change of the graph on
the drawing panel and is not editable in this version of the system. At the bottom of
the window a status line is provided for system messages – for example on Fig. 1 it
shows a message for shortest path found. The shortest path is drawn in red (visible as
light grey on black and white Fig. 1), source node is marked with blue and destination
node with red color. Next to the tool bar a text line for entering some explanatory
texts, titles, etc., is provided.

Fig. 1. Main window

The main functions of the system are activated by the following menus and
toolbar buttons (Figs. 2-7).

Menu “File” is shown in Fig. 2.

Fig. 2

159

Load: Loads a data file in system format that contains graph structure data of
a previously created by the system graph. The corresponding toolbar button is .

Save as data: Saves the created graph in system’s data format. The user names
the file and the system automatically adds the filename extension “.grph”. The
corresponding toolbar button is .

Save as image: Saves the graph on the display area as image png-file. The
user gives the filename and the system automatically adds the filename extension
“.png”. The corresponding toolbar button is .

Exit: Quits the session and exit from the system.

Menu “Edit” is presented in Fig 3.

Fig. 3

Undo: Reverts back the last operation repeatedly until that action makes sense.

The corresponding toolbar button is .

Node: Inserts a node with fixed size and automatically numbers it in the center
of the node (see Fig. 1), starting with 0 up to 999. The limit of 999 comes from fixed
diameter of the node – if the practical need for number of nodes greater than 999
exists that option of the system will be fixed as needed. The corresponding toolbar

button is .
 Unidirectional edge: Inserts unidirectional edge with automatically

positioning the edge on the line connecting both nodes centers and the both edge ends
on the nodes circles and automatically drawing of the ending arrow at the ending
node. It is impossible to create edge starting or ending from or to nowhere – just
between different existing nodes. When the edge is valid the system asks (by pop-up
window Fig. 4) for cost of that edge – it is also impossible to accept edge without
cost. Only positive numbers are accepted without theoretical upper limit. Clicking on
button “NO” means that edge will not be created or in case of modification of the
cost, the old cost will remain. The accepted cost is automatically position near the
ending arrow of the edge.

160

Fig. 4

The corresponding toolbar button is .

Bidirectional edge: Same as for unidirectional edge with the difference that
ending arrow is not drawn. That kind of edges are considered as passed in both
directions with equal cost in both directions. When a bidirectional edge with different
costs in different directions is needed it is created by inserting two unidirectional
edges with different starting and ending node. That kind of edge looks as a single
edge with arrows on both ends and two cost numbers around the both arrows. (for

example see the edge 1<—>2 in Fig. 1). The corresponding toolbar button is .
Box: Allows box drawing with mouse dragging, mainly for some visual aesthetic

purposes – Fig. 5. The corresponding toolbar button is .

Fig. 5

Text: Some explanatory text can be entered in the text line on the tools bar and
can be inserted by clicking the mouse at the desired position (Fig. 5). The

corresponding toolbar button is .
Select: This menu item is for selecting of graph elements for subsequent deleting

(cutting). That operation is dependable of the graph structure specifics. For example
– selecting the node selects also all adjacent edges to that node . It is possible to select
multiple elements at once (see Fig. 6), or single edge or just edge cost (if deleting it

and entering new cost is a goal). The corresponding toolbar button is .

161

Fig. 6

Fig. 7

 Cut selected: As the menu item suggests it cuts selected graph elements – for
example shown on Fig. 7, the result will be the graph shown on Fig. 8. The text graph
data on the left are automatically updated accordingly to the new graph structure.

11

162

Fig. 8

The menu “Algorithm” (Fig. 1) will contain main known combinatorial graph
algorithms. To start with, the “Dijkstra” algorithm is implemented as a typical shortest
path problem solving in the current version of the system.

The menu “Options” (Fig. 1) contains the single submenu item for now – “Font”
for changing the font of the entered explanatory text.

The last main menu “Help” contains standard items for “Help” and “About”
information.

The implemented specific buttons without menu analogs are as follows:

 , Zoom in/out of the graph picture by 10% with each click.

 , For determination of source/destination nodes respectively..

 , Shortest path calculating and clearing it.

 , - Moving (dragging) the cost numbers of directed and undirected
edges to some new topological positions for better viewing of the graph structure.
When costs for each edge are entered they are automatically positioned at some place
“above” the edge near to the its ending point. Sometimes that position overlaps edge
and should be manually changed.

As the system evolves some new menus and buttons would be implemented.

IV. Conclusion

The first variant of the system has been tested and has proven its functionality. It will
be expanded with other shortest path algorithms and presumably with other

163

combinatorial graph algorithms. It is planned to use the system for teaching of
operations research students for visualizing of the shortest path algorithms working
procedures.

R e f e r e n c e s

1. M o u s t a k e r o v, I., B. M e t e v, V. M o n o v. “INFO1” a File-based Management Information
System. Cybernetics and Information Technologies, Vol. 1, 2002, No 1, 103-109.

2. M o u s t a k e r o v, I. General purpose file-based information system. Problems of Engineering
Cybernetics and Robotics, 52, 2001, 72-76.

3. OR-Objects Tutorials Shortest Path, 1997-2000.
http://opsresearch.com/OR-Objects/tutorials/index.html

4. Image processing with Java 2D.
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-media-p3.html

5. Java Tip 109: Display images using JEditorPane.
http://www.javaworld. com/ javaworld/javatips/jw-javatip109.html

6. ICS 161: Design and Analysis of Algorithms. Lecture notes, February 8, 1996.
http://www.ics.uci.edu/~eppstein/161/960208.html

7. McGill University: School of Computer Science Winter 1997 Class Notes for 308-251B Data
Structures and Algorithms, Topic #29: Shortest Path Algorithms.
http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic29

