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Software Decisions for a Neutral Portfolio of Securities*

Ivan Popchev, Nadya Velinova
Institute of Information Technologies, 1113 Sofia

Abstract: The aim of this article is to demonstrate how some software programs
and products can be used to solve problems, connected with the construction of
a neutral portfolio of securities. Some practical examples for analyzing the
neutral portfolio of securities are presented. The primary motivation for
constructing a neutral portfolio of securities is to create an exposure to specific
risk without mixing any directional risk.

The software programs used for solving the financial problems have many
advantages. These programs are highly portable and integratable Internet based
portfolio management systems. They are helping major corporations, government
entities and smaller companies to realize their goals.
Keywords: risk neutrality, Neutral Portfolio of Securities, the “Greeks”,
sensitivities, software programs and calculators.

I. Characteristics of the basic model

I. 1. Basic functions
It is well known that in 1973 Fischer Black and Myron Scholes developed the Black/
Scholes’ model to evaluate European call options. The Black-Scholes models assumes
that the options can be exercised only at expiration. It requires that both the risk free-
rate and volatility of the underlying stock price remain constant over the period of
analysis. The model also assumes that the underlying stock does not pay the dividends;
adjustments can be made to correct such distributions.[5, 7]

The Black-Scholes formula is a mathematical formula for the theoretical value
of the European put and call stock options that may be derived from the assumptions
of the model:
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The variables are: C is a current value of the call option; P  a current value of the put
option; S  a stock price; Xa strike price; t – time remaining until expiration; r – a
current continuously compounded risk-free interest rate;  – annual volatility of the
stock price; N(x) – standard normal cumulative distribution function.

In mathematical finance, the “Greeks” (delta, gamma, theta, vega, rho) are the
quantities representing the market sensitivities of options or other derivatives, each
measuring a different aspect of the risk in an option position and corresponding to the
set of parameters on which the value of an instrument or portfolio of financial
instruments is dependent. The name is used because most of the parameters are
denoted by Greek letters [8, 11]

For computing the sensitivities to option analysis, the following mathematical
formulas are used:

For the coefficient delta:
c = N(d1),

p = N(d1) – 1;
For the coefficient gamma:
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For the coefficient vega:
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For the coefficient rho:
c = Xte–rtN(d2),

p = –Xte–rtN(–d2).
The “Greeks” may be calculated using the different software calculators. In

practice some calculators such as Option Pricing Calculator by Peter Hoadley,
Black-Scholes calculator, etc. are used [15, 21, 22, 24, 32].

It is known that the term, ‘coefficient of sensitivity‘ is given a broad
interpretation to cover components of variance so that the sensitivity coefficient shows
the relationship of the individual uncertainty component to the standard deviation of
the reported value for a test item. The coefficient of sensitivity relates to the result
that is being reported and not to the method for estimating components of uncertainty.
The coefficient of sensitivity of a given root variable is the partial derivative of the
parameter value equation with respect to the root variable. The measure of the sensitivity
of the call option price is the derivative of the call price with respect to time. This
derivative is the precise measure of the instantaneous rate of change of the call option
value that is due to passing of time. It is customary to assign Greek names to the
sensitivity measures of options [8, 23]

I. 2. Practical examples
The practical examples for using the software calculators are presented below. The
Option Pricing Calculator by Peter Hoadley is used to compute the coefficient of
sensitivity and it will analyze the results obtained, depending on the change of given
input parameters.

Example No 1. This example analyzes the call options by the stock price with
measuring the price of the option.  The input data are the following:

After the use of the calculator by Peter Hoadley the following data are received:

The sensitivity chart is show in Appendix No 1.
Example No 2. This example analyzes the put option by the stock price

measuring the coefficient Delta. The input data are the following:

Input data 
1. Stock price $ 81 
2. Strike price $ 80 
3. Time to Expiration  60 days 
4.Volatility 30 % 
5. Risk-free rate 6% 

Call Option 

Option price Delta Gamma Theta  Vega Rho Position 
$ 4.842 0.596 0.039 –0.039 0.127 0.072 in the money 

 

Input data 
1. Stock price $ 131 
2. Strike price $ 120 
3. Time to Expiration  90 days 
4.Volatility 25 % 
5.Risk-free rate 5% 
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After using the calculator by Peter Hoadley the following data are available:

The sensitivity chart is show in Appendix  No 2.
Example No 3. This example analyzes the put option by the volatility measuring

the coefficient Gamma. The input data are the following:

After the use of the calculator by Peter Hoadley  the following data are obtained:

The sensitivity chart is shown in Appendix No 3.
Example No 4. This example analyzes the call option by the days to expiration

with a measure of the coefficient Theta.  The input data are thefollowing:

After use of the calculator by Peter Hoadley the following data are obtained:

The sensitivity chart is shown in Appendix No 4.
Example No 5. This example analyzes the call option by the strike price

measuring the coefficient Rho. The input data are the following:

Put Option 

Option price Delta Gamma Theta  Vega Rho Position 
$ 1.838 –0.193 0.017 –0.021 0.180 –0.066 out the money 

 

Input data 
1. Stock price $ 93 
2. Strike price $ 90 
3. Time to Expiration  60 days 
4.Volatility 20 % 
5.Risk-free rate 7% 

Put Option 

Option 
price 

Delta Gamma Theta  Vega Rho Position 

$ 1.356 –0.279 0.045 –0.016 0.128 –0.044 out the money 
 

Input data 
1. Stock price $ 73 
2. Strike price $ 60 
3. Time to Expiration  60 days 
4.Volatility 30 % 
5.Rsk-free rate 6 % 

Call option 

Option price Delta Gamma Theta  Vega Rho Position 
$ 13.738 0.960 0.010 –0.016 0.027 0.093 in the money 

 

Input data 
1. Stock price $ 84 
2. Strike price $ 80 
3. Time to Expiration  90 days 
4.Volatility 15 % 
5.Risk-free rate 6 % 
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After the use of the calculator by Peter Hoadley the following data are obtained:

The sensitivity chart is shown in Appendix No 5.
On the basis of the obtained results from the reviewed examples, the following

conclusions can be drawn:
The Delta coefficient has a max value with a lower value of the underlying

asset and of course, the highest option price, and a min value – for an option with the
lowest price.

The Gamma coefficient has a max value with an average value of the underlying
asset and of course, the lowest price of the option, and a min value – for an option with
the highest price.

Coefficient Theta has a max value with the lowest value of the underlying
asset and of course the highest option price, and a min value – for an option with an
average price.

Coefficient Vega has a max value with the highest value of the underlying
asset and with a comparatively low price of the option, and a min value – for an option
with the highest price and a high value of the standard deviation.

Coefficient Rho has a max value with a lower value of the underlying asset
and with a comparatively high price of the option and a min value – for an option with
the highest price of the base share and the lowest value of the risk-free interest rate.

These conclusions are corresponding to the conclusions in [8, 11].

II. Construction and analysis of the neutral portfolio of securities

II. 1. Construction of the delta neutral portfolio

Delta-neutral positions are very often used by options traders to create or offset
exposure to option risks without being subject to directional market risk.

The term “delta-neutral” refers to any strategy where the sum of the deltas of
the positions is equal to zero. Being delta-neutral means your portfolio consists of
positions with positive and negative deltas that balance out, or that bring the net change
of the position to zero. In other words, the response to market movements is neutralized.
Given that the delta changes with fluctuating underlying prices, this neutralization is
only valid for a certain narrow price range. Depending on whether a delta-neutral
position is based on a long or on a short option leg, market volatility may be beneficial
(long options) or harmful (short options) [1, 9, 18, 29, 30]

For the example of the theoretical model a delta-neutral portfolio is set in two
given securities, choosing n1 and n2 so that n11 + n22 = 0. Solving this, we must set
n1/n2 = –2/1. Such portfolios are useful for option market makers who must take
positions in options but do not want to risk losses because of unfavorable asset price
changes. They are also useful for investors who believe that  options can be identified
which are mispriced relatively to each other, but do not have any opinion about the
direction of changes in the underlying asset price.

Call option 

Option price Delta Gamma Theta  Vega Rho Position 
$ 5.837 0.814 0.043 –0.020 0.114 0.155 in the money 
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Delta-Neutral Portfolios:  n11 + n22 = 0  n1/n2 = –2/1

Case 1: Neutral Hedge
buy 1 share (1 = 1)
sell 2 call options (2 = 0.5)
n1/n2 = –2/1 =  –0.5/1 = –0.5.

Case 2: Neutral Bullish Time Spread
buy 6 call options (1 = 0.75)
sell 5 call options (2 = 0.91)
n1/n2 = –2/1 =  – 0.91/0.75 = –1.2.

Case 3: Buy Neutral Straddle
 buy 86 call options (1 = 0.52)
 buy 100 put options (2 = – 0.45)
n1/n2 = –2/1 =  –(– 0.45)/0.52 = 0.865.

In connection with the previous example, the next example presents results, which
are calculated using Delta Hedging. The investment company has written 10 European
call options on a stock and wishes to:

hedge this portfolio to make its value insensitive to small changes in the stock
price (equivalently, require portfolio’s delta to be zero);

make the portfolio self-financing (equivalently, make $0 net investment in a
portfolio, which is created by going to long or short different securities including the
riskless bond).

* A 365-days year is assumed.
** A 360-days year is assumed.

The investment company writes (sells) 10 calls, the investing proceeds in mS
shares of the stock and B dollars in the riskless bond. Selling 10 calls (each contract is
on 100 shares) gives

10  (100  $2.3740) = $2374.
The value of the initial portfolio is zero:

– 2374 + mS50 + B = 0.

Part В 
Option price 

Value of option Delta Gamma Vega Theta 
$ 2.3740 0.5620 0.0747 8.3158 –0.0203 

 

Part А 
Input data Value 
1. Stock price $ 50 
2. Strike price $ 50 
3. Time to Expiration 65 days 
4.Volatility * 25 % 
5. Risk-free rate** 6% 
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Portfolio delta = call delta + stock delta. Thus,
p = –10(1000.5620) + mS =0.

Solving two linear equations in two unknowns:
mS = 562,
B = 2374 – 562  50 = –$25 726.

To summarize:
Sell 10 calls and  receive $2374. 
Buy 562 shares of stock at a cost of $28 100.
Remainder $25 726 (28 100 – 2374 = $ 25 726) is borrowed to finance stock

purchase. 
Portfolio net value as well as delta is zero. 
When the delta neutral portfolio is constructed, the following problems with Delta

hedging appear:
The portfolio is designed to be delta neutral. Yet, its value changes, even when

the stock price remains unchanged.
Although the portfolio is designed under continuous rebalancing assumption, it

is not revised for a day. This generates a hedging error.
Moreover, the portfolio already is not to be self-financing. It will now require a

cash inflow or outflow to rebalance it to a delta neutral position. [1, 5, 9, 19]

The following example is used to analyse the problems with Delta hedging:

   * A 365-days year is assumed.
     ** A 360-days year is assumed.

Black-Scholes model assumes constant volatility. In reality, volatility can change
sometimes fairly quickly. This is another model misspecification. Suppose that the
volatility increases to 30% from 25 %. The reason for this is a change in the value of
the liability. Our hedged portfolio incurs substantial losses. This loss is due to “volatility”
risk, a well-know hazard. The following table presents changes in hedged portfolio
due to volatility changes:

Stock 
price  
(in $) 

Option 
price  
(in $) 

Value of option 
position  

(in $) 

Value of stock 
Position 

(in $) 

Value of 
portfolio  

(in $) 
48.00 1.3811 –1 384.40 26 976.00 –138.73 
49.00 1.8303 –1 830.30 27 538.00 –22.59 
49.50 2.0824 –2 082.40 27 819.00 6.31 
50.00 2.3536 –2 353.60 28 100.00 16.11 
50.50 2.6437 –2 643.70 28 381.00 7.01 
51.00 2.9521 –2 952.10 28 662.00 –20.39 
52.00 3.6208 –3 620.80 29 224.00 –127.09 

Volatility*  25% 
Risk-free rate** 6% 
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                * A 365-days year is assumed.
                ** A 360-days year is assumed.

II. 2. Construction of the gamma neutral portfolio

Delta neutral hedge has gamma risk, which needs to rebalance when  changes.
 (gamma) measures sensitivity of to large stock price. Gamma hedge requires

another hedging option:
 = r  +  neural portfolio value,

where r is the current continuously compounded risk-free interest rate.
Example No 6. The investor has 1 share and 5.1917 calls with X=100 and

5.0251 calls with X = 110. Thus,
p = 1 + [–5.1917  0.6151] + [5.0251 0.4365] = 0,
p = 0 + [–5.1917  0.0181] + [5.0251 0.0187] = 0.

Immune to small and large price changes requires rebalancing over time and is
vulnerable to  changes [7, 13].

II. 3. Construction of the vega neutral portfolio

Another type of portfolio hedging is the so called “vega” hedging. It is related to the
decrease in the extent of volatility (standard deviation) and this targets at reduction of
the risk expositions values. In this relation in order to construct a vega neutral portfolio,
the rate of the vega coefficient of the considered portfolio must be equal to 0.

In the securities portfolios management this is most often done changing the
number of options, covered by the portfolio. In constructing a vega neutral portfolio,
the availability of a short-term position is required with one option and one long-term
with another option from the very beginning [2, 19].

Example No 7. The next example presents Vega Hedging. The input data are
the following:

Part А 
Volatility Increase 

Stock Price 
(in $) 

Option Price 
(in $) 

Value of option 
position (in $) 

Value of stock 
position (in $) 

Value of  
portfolio (in $) 

48.00 1.7770 –1 777.00 26 976.00 –531.29 
49.50 2.4950 –2 495.00 27 819.00 –406.29 
50.00 2.7665 –2 766.50 28 100.00 –396.79 
50.50 3.0538 –3 053.80 28 381.00 –403.09 
52.00 4.0054 –4 005.40 29 224.00 –511.69 

Volatility *    30% 
Risk-free rate **   6% 
Time to Expiration – 64 days 

Coefficient Call option 1 Call option 2 Stock 
Delta Call1 = 0.6 Call2 = 0.6 stock = 1.0 

Gamma Call1 = 0.5 Call2 = 0.7 stock = 0.0 
Vega Call1 = 1.5 Call2 = 1.2 stock = 0.0 
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Case 1: Delta Hedging with Call option 1
By definition of ΔCall1 = 0.6. This is one short American call contract (100

shares) and long 60 shares of stock.
Compute Delta = 601 – 100(0.60) = 0 (Neutral)
Compute Gamma = 600 – 100(0.50) = –50 (risky)
Compute Vega = 600 – 100(1.50) = –150 (risky)
Case 2: Make Gamma/Vega neutral by adding Call  option 2
Buy 50 Call 2’s to create Gamma neutrality
Gamma = –50 (Case1) + 50(1) (Call2) = 0
(Notice that this changes initial Delta:  0 + 50(0.7) = 35 )
Now, sell 35 shares to eliminate Delta exposure:
New Gamma = 0 = 0 – 35(0)
New Delta =0 = 35 – 35(1)
Final Portfolio:  15 Shares, 100 short Call option 1 and 50 Long Call option 2.

II. 4. Construction of the “delta–gamma–vega” neutral portfolio

Very often a combination of gamma and vega () hedging is used. The main
characteristics are:

can also change;
 measures sensitivity of option price to  
Two more assets are needed to hedge  and 
Example No 8. This example analyzes the following data:
Asset:  neutral portfolio;  = –5000;  = –8000;
Option 1: = 0.6;  = 0.5;  = 2.0;
Option 2: = 0.5;  = 0.8;  = 1.2;
Portfolio of 3240 of asset, 400 of option 1, and 6000 of option 2 has zero 


The portfolio needs rebalancing due to time decay (hedge with ) .
In practice the various traders and investors have different preferences. Some

want to construct “delta-neutral” portfolios. Others wish to protect their options portfolio
from big changes in the base assets prices and thus to create a portfolio, whose values
both of delta and gamma are equal to 0 or the so called “gamma-neutral” portfolio.
Third want to protect their portfolio against small changes in the value of the standard
deviation from the base asset as addition to the “delta and gamma” neutral portfolios
and this is the so called “delta-gamma-vega” neutral portfolio.

Using the Black-Scholes model for European options, this example creates an
equity option portfolio that is simultaneously delta, gamma, and vega neutral. The
value of a particular greek of an option portfolio is a weighted average of the
corresponding greek of each individual option. The weights are the quantity of each
option in the portfolio. Hedging an option portfolio thus involves solving a system of
linear equations, an easy process in MATLAB [13, 15, 35].

Let us analyze the following example, applying MATLAB.
Example No 9. For analysis of this example it is assumed that the annualized

risk-free rate is 10 % and is constant for all maturities of interest. The arbitrary portfolio
value is $21000 and solves the linear system of equations such that the overall option
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portfolio is simultaneously delta, gamma, and vega-neutral. The input data are presented
in the following table:

Finally, compute the market value, delta, gamma, and vega of the overall portfolio
as a weighted average of the corresponding parameters of the component options.

You can verify that the portfolio value is $21,000 and that the option portfolio is
indeed delta, gamma, and vega neutral, as desired. Hedges based on these measures
are efficient only for small changes of the underlying variables.

Thus, for the portfolio:

Example No 10. The prtfolio consists of eight instruments: two bonds, one bond
option, one fixed rate note, one floating rate note, one cap, one floor, and one swap.
Both hedging functions require some common inputs, including the current portfolio
holdings (allocations) and a matrix of instrument sensitivities. To create these inputs:

The current portfolio sensitivities are a weighted average of the instruments in
the portfolio. The function targetSens = holdings’  Sensitivities :

Stock 
price 
(in $)  

Strike 
price 
(in $) 

Time to 
expiration 

(years) 

Volatility 
 

Dividend 
rate 
% 

Type 
option 

100  100 0.2 0.3 0 Call 
119  125 0.2 0.2 0.025 Put 
87  85 0.1 0.23 0 Call 

301  315 0.5 0.25 0.0333 Put 

Option 
No 

Price option 
(in $) 

Delta Gamma Vega 

1 6.3441 0.5856 0.0290 17.4293 
2 6.6035 –0.6255 0.0353 20.0347 
3 4.3993 0.7003 0.0548 9.6837 
4 23.6694 –0.4830 0.0074 84.5225 

Portfolio value $ 21 000 .00 
Portfolio Delta              0.00 
Portfolio Gamma             –0.00 
Portfolio Vega              0.00 

No of  
securities 

Price 
(in $) 

Part in 
portfolio 

Delta Gamma Vega 

1 98.72 100 –272.65 1030.00 0.00 
2 97.53 50 –347.43 1622.69 –0.04 
3 0.05 –50 –8.08 643.40 34.07 
4 98.72 80 –272.65 1029.90 0.00 
5 100.55 8 –1.04 3.31 0.00 
6 6.28 30 294.97 6853.56 94.69 
7 0.05 40 –47.16 8459.99 93.69 
8 3.69 10 –282.05 1059.68 0.00 

Coefficient Delta Gamma Vega 
Portfolio  –62 200.22 79 046.21 5 852.91 
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The function hedgeopt is used to determine the minimum cost of hedging a
portfolio given a set of target sensitivities. When the function was used, portfolio
target sensitivities are treated as equality constraints during the optimization process.
To illustrate the use of hedgeopt, it is supposed that the existing portfolio must be
maintained. The first form of hedgeopt minimizes the cost of hedging a portfolio given
a set of target sensitivities. The existing portfolio composition and exposure should be
able to do so without spending any money. To verify this, set the target sensitivities to
their current. The portfolio composition and sensitivities are unchanged, and the cost
associated with doing nothing is zero. The cost is defined as the change in the portfolio
value. This number cannot be less than zero because the rebalancing cost is defined
as a nonnegative number. If Value0 and Value1 represent the portfolio value before
and after rebalancing, respectively, the zero cost can also be verified by comparing
the portfolio values.  Thus, Value0= Value1 =24674.62.

Building upon the previous example, it is assumed the cost to achieve an overall
portfolio dollar sensitivity of [–25000 –3500 3000], while allowing trading only in
securities 2, 3, and 6 (holding positions of securities 1, 4, 5, 7, and 8 fixed.) To find the
cost, first set the target portfolio dollar sensitivity. Finally, call hedgeopt and again
examine the results.

After this the part of securities in the portfolio was changed for the second
position (–141.03); for the third (137.26) and for the sixth  (–57.96). This change will
be reflected in the value of the portfolio and it is 19974.02. Recomputing Value1, the
portfolio value after rebalancing, Value1 = 4700.60.

As expected, the cost of $19974.02, is the difference between Value0 and Value1,
$24674.62 $4700.60. Only the positions in securities  2, 3, and 6 have been changed.

The above example illustrates a partial hedge, but perhaps the most interesting
case involves the cost associated with a fully-hedged portfolio (simultaneous delta,
gamma, and vega neutrality). In this case, set the target sensitivity to a row vector of
zeros and call hedgeopt again. At computing these values, the part of the securities in
the portfolio must be changed, for the second position to –182.36; for the third 19.55
and for the sixth  –32.97. This change will be reflected in the value of the portfolio and
it is $ 24055.90. The new value of the portfolio Value1= 618.72.

Assume, for example, that it is necessary to spend as much as $40000 and the
intention is to see what portfolio sensitivities will result along the cost frontier. Assume
the same instruments are held fixed and that the cost frontier is evaluated from $0 up
to $40000 at increments of $1000. In Fig. 1 are illustrate a rebalancing cost profile and
in Fig. 2 are illustrate funds available for rebalancing.

Example No 11. The table lists the portfolio of OTC Euro options on a security:

Coefficient Delta Gamma Vega 
Portfolio  –25 000 –3 500 3 000 

Type 
option 

Value of securities 
(in $) Delta Gamma Vega 

Call –1000 0.5 2.2 1.8 
Call –500 0.8 0.6 0.2 
Put –2000 –0.4 1.3 0.7 
Call –500 0.7 1.8 1.4 
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Fig. 1. Rebalancing cost profile

Fig. 2. Funds available for rebalancing
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This translates into the following portfolio Greeks:

To summarize:
Portfolio delta = –450.
Investor should be long 450 contracts.
A traded option is available with =0.6, =1.5 and =0.8.
Delta- and gamma-neutral portfolio is obtained at currency position of

–1950 and position in traded option of 4000.
To make the portfolio both delta- and vega-neutral a currency position of

–2550 and position in traded option of 5000 is needed [25, 26].

II. 5. Construction of the “delta-gamma-theta-vega-rho” neutral portfolio

Greeks based strategies are opened and maintained in order to attain a specific level
of sensitivity. Mostly, these strategies are set to attain zero sensitivity.

Example No 12.  The underlying asset is the S&P100 stock index. The options
on this index are European. Note that the stocks in the index pay dividends that affect
the options prices.

The data for the sensitivities are:

The constructed Delta-Gamma-Vega-Rho-neutral portfolio is as follows:

Input data 
1. Stock price S $300 
2. Strike price X $300 
3. Time to Expiration T 1 year 
4.Volatility  18 % 
5.Risk-free rate r 8% 
6. Dividend rate q 3 % 
7. Call option price  $28.25 

Call Option 

Option price Delta Gamma Vega Rho 
$ 28.25 0.6245 0.0067 0.0109 0.0159 

Type 
option 

Value of securities 
(in $) Delta Gamma Vega 

Call –1000 –500 –2200 –1800 
Call –500 –400 –300 –100 
Put –2000 800 –2600 –1400 
Call –500 –350 –900 –700 
Portfolio  –450 –6000 –4000 

Call 0 1 2 3 
X 300 305 295 300 

T (days) 365 90 90 180 
Volatility 18 % 18 % 18 % 18 % 

r 8 %  8 % 8 % 8 % 
Dividends 3 %  3 % 3 % 3 % 

Price call option $ 28.25 $ 10.02 $ 15.29 $ 18.59 
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After the analysis the delta-gamma-vega-rho-neutral portfolio must be again
constructed:

In order to neutralize the portfolio to all risk exposures, following the sale of the
initial call,the portfolio’s proportions  of the other calls and the stock index are determined
such that all the portfolio sensitivity parameters are zero simultaneously [10, 34].

Thus, = = =    =  =  = 0 simultaneoulsy.
Therefore:

Delta =  = 0 –
nS+n0(0.6245)+n1 (0.4952)+n2(0.6398)+n3(0.5931)  = 0;

Gamma =  = 0 –
        n0(0.0067)+n1(0.0148)+n2(0.0138)+n3(0.0100)  = 0;

Vega  =  = 0 –
       n0(0.0109)+n1(0.0059)+n2(0.0055)+n3(0.0080) = 0;

Rho =  = 0 –
          n0(0.0159)+n1(0.0034)+n2(0.0044)+n3(0.0079) = 0.

Thus, the short position is the call 0, i.e., n0  = –1 and after this the
simultaneous equations are solved.

The solution is:

To see what this solution means in practical terms, multiply all the weights by
10 000. The portfolio becomes:

Short 100 CBOE calls No 0;
Long 84 calls No 1;
Short 190 calls No 2;
Long 204 calls No 3;
Long 2120 units of the index.

Every index unit is $100, so buying $212 000 is worth for the index.
Another delta-gamma-vega-rho- neutral portfolio was constructed  if S increases

from $300 up to $310, r increases from 8% to 9% and  increases from 18% to 24%.
The new data for the portfolio is:

Call Delta Gamma Vega Rho 
0 0.6245 0.0067 0.0109 0.0159 
1 0.4952 0.0148 0.0059 0.0034 
2 0.6398 0.0138 0.0055 0.0044 
3 0.5931 0.0100 0.0080 0.0079 

Neutrality 1.0   0.0           0.00 0.0 
 

n0 = –1.000  short call No 0 
n1 =   0.840  long  0.840 call No 1 
n2 = –1.900 short 1.900 call No 2 
n3 =   2.040 long 2.040 call No 3 
nS =   0.2120 long 0.212 of the index 
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III. Concluding remarks

The most straightforward form of hedging is a buy-and-hold strategy. This involves
finding the optimal mix of cash and equity which will, for example, minimize the variance
of the hedging error at the maturity date of the derivative. However, this method can
only reduce the risk by a small amount. To improve it the invesors must consider
dynamic portfolio strategies, particularly ones where the optimal mix of cash and
equity depends on the state of the market at given moments in future.

On the basis of the examples mentioned, in relation to the application of the
Greek letters for hedging, definite conclusions can be drawn and frequently met
problems to be indicated.

The approach is referred to as Delta hedging. Delta hedging works well if:
using the correct model (for example, the Black-Scholes-Merton model) for S

with the correct values for r and ;
able to rebalance the portfolio continuously;
there are no transaction costs.
An example of the effect of discrete-time rebalancing is given in Fig. 3 for an

European call option. The plots present the correct volatility for pricing and hedging.
Approximately, the surplus (accumulated hedging error at T) is centred around zero.
The plots show histograms of the hedging errors based on 1000 independent simulations.
Comparison of the plots shows the effect of the time between rebalances and of
incorrect estimation of the volatility. S = $ 100,  = 0.08, r = 0.06, T = 0.5, X = $ 100,
true   = 0.2. The correct value for   (0.2) and an incorrect value for   (0.15) have
been used for pricing and hedging.

The plots show the impact of underestimating the volatility (for both pricing and
hedging). First, we can see that the average surplus is now negative, because we
have undercharged. Second, the standard deviation of the errors is larger. Third,
rebalancing more frequently does not reduce significantly the standard deviation
because the wrong  has been used [4, 12].

Thus two sources of a hedging error have been identified:
due to discrete-time rebalancing;
due to errors in the estimated parameters.
The plots shown in Fig. 4 (left) are presented in a different way in Fig. 4 (right)

in order to show some of this dependency. The hedging errors have tended to be
larger when the final share-price is close to the option strike price of $ 100. This is
because   is most sensitive to changes in S (largest errors as noted above). The
parameter  t is close to T and S is close to the strike price X. In Fig. 4, S = $ 100,   =
0.08, r = 0.06, T = 0.5, X = 100, true   = 0.2. The example shows how the size of
hedging errors is related to the final share price, S. The plot shows results for 4-day
rebalancing and on the right  1-day rebalancing.

Portfolio Initial value New value Change 
– 1.0(#0) – $28.25 – $42.81 – $14.56 
(0.212)S $63.60 $65.72 $2.12 
(840)#1 $8.40 $16.42 $8.02 
(–1.9)#2 – $29.05 – $48.97 – $19.92 
(2.04)#3 $37.97 $62.20 – $24.25 

Error– $ 0.09 
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A simple example showing the impact of Gamma hedging on hedging errors is
indicated in Fig. 5. The plot (see also Fig. 4) shows hedging errors when there is
hedged portfolio every 4 days using cash plus S. The plot is conctructed using a
combination of cash, shares and a new, exchange-traded put option for hedging the
portfolio. In Fig. 6, S = $100,   = 0.08, r = 0.06, T = 0.5, X = $100, true   = 0.2. The
plot shows no Gamma hedging and  Gamma- neutral portfolio consisting of one
European call option T = 0.5, X = $100 plus a variable number of units of an exchange-
traded European put option with T = 1 and X = $ 105.

With Vega hedging we aim to invest in a mixture of shares and derivatives which
make the total portfolio Vega neutral: that is the sum of the Vega’s for the individual
investments is zero. If  the assets are enough (exchanged-traded derivatives) this can
be combined with Gamma and Delta hedging.

Vega hedging measures the impact of the parameter errors on derivative pricing.
If the Vega is large then there may be significant bias in prices. However, simulations
show that Vega hedging has only a small effect on the performance of hedging strategies:
it removes some of the bias in the mean surplus but does not significantly reduce its
variance [12].

Fig. 3. Hedging errors for an European call option



3 0

In practice an investor will want to look at their portfolio of derivatives as a
whole rather than individually. They will regularly calculate the portfolio total Delta,
Gamma and Vega. They will aim to keep the portfolio Delta neutral most of the time.
Maintaining full Gamma and Vega neutrality is more difficult because of the costs of
trading and the relative lack of a deep market in appropriate traded derivatives.
However, if these deviate too far from zero then they will need to rebalance. If the
portfolio is far from neutral then this might even mean that the investor should dispose
some of its derivative liabilities in order to reduce their exposures to certain types of
risk.

Fig. 4. Hedging errors for a European call option based on 1000 simulations

Fig. 5. Hedging errors for an European call option based on 1000 simulations with rebalancing every
4 days
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Appendix No 2

 

X

Y 

Put option delta by stock price
Description:
Let X = Stock price;
Let Y =  Delta.

 

X

Y 

Call option price & time value by stock price
Description:
Let X = Stock price;
Let Y = Option Price.

Appendix No 1
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Appendix No 3

 
X 

Y

Put option gamma by volatility
Description:
Let X = Volatility;
Let Y = Gamma.

Appendix No 4

 
X 

Y

Call option theta by time remaining to expiry
Description:
Let X = Time Remaining to Expiry;
Let Y = Theta.

3
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Appendix No 5

 
X

Y 

Call option rho by strike
Description:
Let X = Strike price;
Let Y = Rho.


