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Abstract: A portfolio optimization problem with assets is discussed in the paper.
The portfolio motion equations are deduced in the phase space based on the
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Introduction

In the financial world there exist two main directions of solving the problem of portfolio
optimization. Namely, these are the discrete time optimization  and the continuous time
optimization. The first direction was initially developed by H. M a r k o w i t z [4, 5], and
besides J. Tobin’s work (see T o b i n [10, 11]), etc. M e r t o n [8] and W i e s e -
m a n n [12] have also some contributions.

The philosophy of the first approach according to Markowitz’s point of view can
be summarized:in the following two formulae.

 For a given upper bound 2 of the portfolio-return variance, choose a feasible
portfolio  such that the expectation () is maximal under all feasible portfolios ,
with 2()  2. This corresponds to the optimization problem:
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 For a given lower bound  for the mean portfolio return, choose an admissible
portfolio such that 2() is minimal under all admissible portfolios , with   ()
Analogically, this corresponding to the optimization problem:
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Finally we can deduce the following relation between the two problems (1) and
(2), which is widespread formulation of the Markowitz’s idea, thus:
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Merton uses the following formulation:
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with a utility function U(.), where R is the portfolio return.
Besides all aforesaid, we remark that the future price of the securities are modeled

via returns, at the end of the fixed trading period, i.e. at moment T.
The second direction (the continuous time portfolio problem) consists of maxi-

mizing the total expected utility of consumption over the trading interval [0, T] and/or
the terminal wealth. Again the dynamics of the owned stocks price are driven by
independent Wiener processes.

There are two main approaches for solving the continuous time portfolio problem:
 the stochastic control approach developed by M e r t o n [6, 7];
 the martingale approach, presented in P l i s k a [9], K a r a t z a s, L e h o c z k y,

S h r e v e [3], K a r a t z a s [2].
The first approach is based on the standard results of stochastic control theory.

The optimal solution is computed by solving the so-called Hamilton-Jacobi-Bellman
Equation (HJBE) in two steps. The first step consists of searching for the optimal
portfolio strategy as a function of the (unknown) optimal expected utility. When insert-
ing this portfolio and consumption strategy into the HJBE, the result is a non-linear
partial differential equation and this is the second step. In the special case of the
Black-Scholes model and HARA (Hyperbolic Absolute Risk-Averse) utility function,
Merton was able to find closed form solutions for this problem. In general, it is very
hard to get explicit solution to the HJBE.

The second approach is based on the martingale theory and the stochastic inte-
gration. Besides, he depends crucially on the completeness of the market model.

The model that we suggest is based on popular result of dynamic optimization
theory. Namely, this is the principle of maximum of Pontryagin. We construct an ap-
proach for flow (moving) states of the portfolio via simple observations over the nature
of the portfolio management. The result is a system of Ordinary Differential Equation
(ODE). So, the portfolio problem receives a typified dynamic optimization problem
formulation when maximizing the market price of a portfolio at each moment. Finally,
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we hope that the optimal solution of the aforesaid problem may be computed after we
use the Pontryagin’s principle of maximum.

Equations for describing portfolio motion

Here we will introduce a system of equations describing the portfolio motion. Thus it
will be possible to approximate the phase trajectory of a portfolio (according to the
chosen control with its characteristics).

Now, we have a set of n assets, an initial time moment t0 and an interval [t0, +).
We will use the following five assumptions.
1) Let ckj(t)is the price at moment t, t  t0, for one unit of k-th asset expressed in

the units of j-th asset, k j. For all these functions  ckj,  k j, k, j=1, 2, ..., n (a total
number of n(n  1)), it can be said that

(1.1)       ,
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on the base that every asset has a positive price at each moment t ; t  t0. Further, a
number of n(n  1)/2 functions are sufficient for calculations. These functions we will
call a price system.

They satisfy the following relations:
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based on the cross price property.
 Let us assume that these functions are:
 differentiable within the interval [t0, t1] except a finite number (possibly equal to

zero) points from (t0, t1) (different points for different functions in general), i.e. the
right derivative exists;

 the right derivatives are right partial continuously at [t0, t1]; here t1 is a time
moment in the future, it will be discussed in details later on.

2) The portfolio state at each moment will be defined by a number of  “n” real
parameters (values), denoted by  x1, x2 , ..., xn and called phase coordinates. These
parameters will represent corresponding parts (positions) from fixed “n” number as-
sets, which we will hold at our portfolio. In other words,  xj  represents the position from
 j-th asset, j = 1, 2, ..., n, in current moment. For more convenience we will consider
the values  x1, x2 , ..., xn as the coordinates of the point x = (x1, x2 , ..., xn) from Rn

(n-dimensional Euclidean space). This point is called the phase state of a portfolio.
3) Feasible control:

 (1.3)              njkkjtttRtutu
kjkj

...,,2,1,;],,[;)(:
10

 .

These values  )(),()( tctcutu kjkj
   at  moment t are equal to the managerial

decisions for defining the positions that have to be sold not later than a given future
moment t + t. In other words, the value ukj(t) will represent the position from k-th



7 2

asset, which we must sell through j-th asset, j k, at the moment tt k
j  . We will

remember that the time period  tk
j  is the period when we must perform transaction

from  k-th asset to  j-th asset.
This means that the value ukj(t) represents the position from j-th asset from the

interval  ),[ ttt k
j  . According to that the feasible control must satisfy the following

inequalities:
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These inequalities express the consideration that a time moment for control does
not exist for which we could sell a position bigger than the kept one at the moment.
The so defined functions (1.2) are called by us control parameters. Their number is
n(n1)  and their characteristics are the parameters nkjkjtk

j
...,,2,1,,,  .

The vector function 10
)1( ,)(: tttRtutu nn   ,  with a value of

 )(),...,(),(),...,(),...,(),(),(),...,(),()( 1212232111312 tutututututututututu nnnnnn 
is called by us “feasible control” with characteristics for realization
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 (of managerial deci-
sions. Here  n
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   represents a period between two
neighbour feasible controls. It follows from the above said that a set U exists,
U Rn(n1). The control parameters have such values that the point u(t) belongs to U
for each time moment t of control [t0, t1]. We will call the set U a set of feasible
control. According to (1.3) the set U is defined as
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4) We will postulate that the characteristics of control u (the times for realization
tk

j  ) must be constant in the interval [t0, t1]. On this base the inertia time could be
regarded as constant for the time interval [t0, t1] with a parameter tk

j when relaxing
a position of k-th asset, k = 1, 2, ..., n through j-th asset, j  k, j = 1, 2, ..., n.  This value
is non-negative and close to zero; we will assume also the time for decision making to
be to be sufficiently small and it will not be taken into account (non-inertia decision
making). This means the times  n

k
k
j
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  will be used for realiza-
tion of corresponding controls. Also the next decision making will be made after time,

n
k

k
j

njkjtt
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   i.e., after realizing all the predecessor deci-
sions.

5) The condition for “non-inertia” of control decisions means that they can be
switched instantly when it is necessary from one condition to another feasible condi-
tion. Mathematically we accept that the control parameters have the possibility to
change their values at a leap. In other words, feasible control parameters are not only
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continuous functions, but partial continuous ones, too. For more convenience (and
definiteness) in our presentation we will assume that the controls in each break-point
from I type are right-continuous. Or their values could be defined by the equality
u() = u(+0) at any break-point  for any component of control 10),( ttttuu  .
We will assume also that all break points are internal for the interval [t0, t1]. And now
the conclusion is that a feasible control is every partially continuous function from the
right vector function  10

)1( ,)(: tttRtutu nn   , with values in the set U of
feasible decisions and it is also continuous at the ends of the interval [t0, t1].

The motion-equations’ system will describe the approximate change of the mo-
ment portfolio condition for the time of control. Let as assume that t is an arbitrary and
a fixed moment from the interval of control [t0, t1]. The corresponding managerial
decisions for the portfolio are accepted in this moment. As we postulated, the realiza-
tion of these decisions (the vector function u(t)) needs time t. Let us denote:

 )( ttak   is the position to be released from k-th asset, k = 1, 2, ..., n by the
moment  t +t (this is realized by using another asset on the basis of a decision made at
the moment t). Then we have the following expression:
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 )( ttb j   is the amount that could be adopted by j-th asset from the other ones
up to the moment t +t then we have

(1.7)   
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It is easy to see that at the moment t +t of realization of manager decisions ( it
was accepted at the moment t in the form of value u(t)) the change of the holding
position amount over j-th asset is given by
(1.8)       )()()()( ttattbtxttx jjjj   .

Let us assume that:
 The function  10,)(: tttRtxtx jj   describing a position in the portfo-

lio of the j-th asset, is differentiable at the control time interval [t0, t1].
It is known that we can substitute (with some approximation) the increase

)()( txttx jj    of function  xj with its differential at the  moment, i.e. with tx.j(t).
NB! It is known that when t  is small (but t >0 for us, intuitively it is clear for

successful management), the increment of the function xj differs very little from its
differential. In the linear case the difference is zero.

In other words the following relations are true
(1.9) )()()( txttxttx jjj   .
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 They realize the assumption that future position amounts of the j-th asset, which
we will hold after a fixed moment t, depend on the value of the future time  t and by
the position amount at the current moment t and by its behavior x.j.

Analogically and according to the definition of ideal price processes we could
accept with some approximation the following relations to be true:

(1.10)                         
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 They express the assumption that the future asset price depends on both the
current level  ckj(t) and also the “future” tendency. The last is expressed in terms of the
right derivative )(tckj

  and the duration tk
j
 :  )(tct kj

k
j

 .
And now according to (1.6) and (1.7) the equality (1.8) has the form
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and after substituting with (1.8) and (1.9) the equality below follows
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After differentiating the equalities (1.2) (according to the right differential ) the
following equalities are true:
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and using the introduced price system c = c(t), the equation (1.11) has the form:

(1.12)
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Let us mention that the above equation was derived without taking into account
the time moment, the manager decisions and the finance asset  j  Then, equality (1.12)
is true for each time moment, each feasible manager’s decision (with corresponding
characteristics) and for each financial asset (a total number of n) forming the portfolio.
The last means that the following system of differential equations is true:
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(according to the phase coordinates x1,  x2, ..., xn). Here the unknown functions are the
phase coordinates and the control functions n

kkj
njkju

1
}...,,2,1,,{


  and their cor-

responding characteristics  n
k

k
j

njkjt
1

}...,,2,1,,{


 . The price system and resp.
their right derivatives have a sense of input data (given and defined functions in the
interval [t0, t1]). Note that for a given type of control, i.e.:

 chosen way of reaction or suitable defining of control parameters
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 chosen speed of reaction, i.e. fixing of parameters
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The system (1.13) will have the type of non-autonomous system in a normal
form:
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and according to the theory of differential equations.
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NB! We rely on the mathematical result known as the Theorem for existence
and uniqueness of Cauchy’s problem for non-autonomous homogenous system of
differentiall equations in a normal form. According to this theorem we deduce the
solution of (1.13). It is differentiable anywhere in the interval [t0, t1] with the exception
of a finite number of points from the considered interval.

For a given initial condition (at the moment t = t0) of a portfolio (x(t0) = x0), we
could synonymously derive from the above system one approximation of its (true)
trajectory, resp. one approximation of the law of portfolio motion according to some
conditions that we will discuss in the next paragraph. Therefore the system (1.13) we
will call also the law of motion (in differential form) of a portfolio.

During the above discussion a need for initial condition arises. Such initial condi-
tion could easily be constructed. Indeed, let us imagine an existing portfolio for man-
agement after a given moment t0. This moment t0 could be considered as a starting
point for the examined management period. Also, the financial assets’ positions of the
portfolio at the moment t0 could be considered as coordinates of a point from the phase
space. This point we will use as the initial phase state of a portfolio in the phase space.

In case we still do not have a portfolio, then we will construct it after some initial
time moment t0 with the suitable controls, and again this moment could be assumed to
be a starting point for the management period. The resources (different types of finan-
cial assets) given for the portfolio construction could be considered as an initial state of
the portfolio at the moment t0, their amounts respectively.

Finally, when we change the management in (1.13) with another one (but keeping
the initial state x0), we will get another trajectory with the point  x0 as its left end;  by
using new change we will get another trajectory with the point x0 as its left end, and so
on. In this way different possible managements could lead one portfolio at one moment
to have different states of positions.

Theorem for existence and uniqueness

Again, we solve the problem for portfolio management starting from a given initial
moment and a given initial state. By using feasible controls 10),( ttttuu  , we
want to have the portfolio value to be  maximal at each moment from a given time
interval (horizon) [t0, t1]. Additionally, we could (or not) have final values/goals for
some of the assets. We will use for that purpose the Theorem for existence and unique-
ness for Caushy’s problem. It is applied for a non-autonomous system of first order
linear homogenous ordinary differential equations in a normal form:
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defined in some open interval (0, 1) is called a solution of the above system (2.1),
when:

 these functions are differentiable everywhere in the interval (0, 1);
 they satisfy the above system after the substitution.
The space line of variables txxx n ,,...,, 21 , defined by parametric equations:

(2.3)                                    ,
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  are the solutions of the system (2.1),
is called an integral curve of the system. It is known also that this curve will go through
the point ),,...,,( 0

00
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0 txxx n  from the space { txxx n ,,...,, 21 } if and only if the
corresponding solution  nkxtx

kk
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(it is necessary that the number t0 belongs to the interval (0, 1); otherwise, the values
00

2
0
1 ,...,, nxxx  cannot be defined). The relations (2.4) are called initial conditions and

the above problem is just Caushy’s problem.

Theorem for existence and uniqueness

Let the functions ,...,,2,1,,)(: njiRtata
ijij

  are defined and continuous in the
interval (a, b). Then there exists an unique solution for Caushy’s problem  (2.1),(2.4)
defined in the interval (a, b) if we take a number t0 from the interval (a, b), and

00
2

0
1 ,...,, nxxx  are real numbers.

The proof of this theorem could be found in the courses of ordinary differential
equations.

We will use the following formulation for our purposes.
Corrolary. Let us consider Caushy’s problem (2.1),(2.4) and that the functions

,...,,2,1,,)(: njiRtata
ijij

 are defined and continuous in the interval (a, b)
and also that they have left and right bounds at points “b” and “a” respectively and t0
belongs to the interval  (a, b). Then a number of “n” functions defined and continuous
in the closed interval  [a, b] exist and they are an unique solution of Caushy’s problem
in the open interval (a, b).

P r o o f. To prove the above corrolary it is sufficient to extend the functions
,...,,2,1,,)(: njiRtata

ijij
 for each values of t outside the interval (a, b):
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In this way the functions ,...,,2,1,,)(: njiRtata
ijij

  are defined and
continuous over the real line  t  + and it contains t0. According to the Theorem
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of Caushy for the extended problem an unique solution exists and it is defined on the
real line. In other words, a number of “n” functions  ,...,,2,1,)(: nkRtxtx

kk


exist and they are defined and continuous in the interval. They are an unique solution of
Caushy’s problem in the open interval (a, b).

An application of the theorem of existence and identity

Let us see the equations of motion (1.11) to finish the discussion from the above para-
graph. Namely, to illustrate the application of the theorem for existence and identity
(corollary) let us choose the phase trajectory (the change of moment conditions) of a
portfolio as a result of an applied/used definite feasible control 10),(: ttttutu 
with characteristics for realization ),...,,,...,,...,,,( 121

11
3

1
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n   .  For
that reason let us take the components of the chosen control  u: t u(t) and  “p” in the
equation (1.11). Then we can represent these expressions in the following system:
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Let us denote with k
 ,...,,

21 all the time moments (in ascending order) from the
time interval [t0, t1], in which some of the control components u = u(t) have a break-
point, i.e. 1210 ,..., tt n   . Also we consider the system (3.1) for all values of  t
from the interval [t0,  1]. It is easy to see that the functions

,...,,2,1,,)(: njiRtata
ijij

 forming the system (3.1),  whose values are calcu-
lated from (3.2), are continuous in the open interval  (t0, 1) if and only if the “input
data” – the functions: )(: tctc  and )(: tctc     are continuous at each point
from the interval.

 Let us assume that the above is true, i.e. vector-functions )(: tctc   and
)(: tctc     are continuous at each point from the interval (t0, 1).
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Then for some of the components of  u: t u(t), c: t c(t), and )(: tctc   
the ends of the interval   t0 and 1 will be the break-points from the first kind (according
to the introductory remarks from point 1) and for the rest of the functions they will be
simply points of continuity. This will guarantee that the functions

,...,,2,1,,)(: njiRtata
ijij

  will have a finite right limit when t  leans to t0 from
the right and to 1 from the left. At the end taking the initial condition ),...,,( 00

2
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it follows that for Caushy’s problem:
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we can apply the corollary from the above paragraph. The answer is that the func-
tions, ,...,,2,1,)(: nkRtxtx

kk
  exist, that they are defined and continuous in the

whole [t0, 1] closed interval. These functions are unique solution of (3.3) in the open
interval (t0, 1). Analogically we can consider the system (3.1) for values of t from the
closed interval [1, 2] and by the help of the point  x(1 0)we define the following
Cauchy’s problem:

(3.4)
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 For this problem according to the assumptions: vector functions  c: t c(t) and
)(: tctc     are continuous at each point in the open interval (1, 2).

The corollary from the above paragraph would be applicable again and according
to it a continuous vector function defined in the interval [1, 2] and with values Rn

exists as unique solution in the interval  (1, 2) of (3.4). Let us denote this function
again by nRtxtx  )(: . In this way the change of moment conditions of a portfo-
lio from the time point t0 to the time point 2 will be described by the function. It is
defined in the interval [t0, 2] and it is continuous at each point (rf. to Fig. 1).

Further, by using the point x(20) as an initial condition for the system (3.1) we
could enhance the function nRtxtx  )(: ,  20  tt , on the closed interval [2,
3] and so on. At the end we will receive a function defined on the whole interval [t0, t1],
see Fig. 2. This function is:

 continuous at each point in the interval [t0, t1];
 partially differentiable (namely at points ( k ,...,, 21 );

)(tx  

t  
         0t      1     2  

Fig. 1 
 

)(tx  

t  
         0t      1  2     3      k    1t  

Fig. 2 
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 satisfying the initial condition x(t0) = x0;
 describing uniquely the change of time conditions of a portfolio as a result of the

given control ,),(:
10

ttttutu   with times for realizing managerial decisions
(transactions) “p”.

Let us repeat that the above discussions were based on the assumption: the func-
tions c = c(t) and )(tcc     are continuous in every interval (t0, 1), (1, 2),
(2, 3),..., (k,, t1). This guarantees that all time points of prices’ jumping are between
points  k ,...,, 21  (for the selected price system). And this means that the so defined
control decisions will react immediately for each jump of the price motion.
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Апроксимация на моментните състояния на портфейл
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(Р е з ю м е)

В настоящата статия се разглежда задачата за оптимално управление на
портфейл от финансови активи.

Изведени са уравнения за движението във фазовото пространство на базата
на теоремата за съществуване и единственост на задачата на Коши за обикновени
диференциални уравнения.

Чрез изведените уравнения се апроксимира фазовата траектория на
портфейла.
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