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Introduction

The notions of invariant and reducing subspaces are well known in linear algebra and
matrix theory. Invariant and reducing subspaces play a key role in studying the spectral
properties and canonical forms of matrices and have a number of important applica-
tions [2]. The problem of existence of a non-trivial subspace which is a common invari-
ant subspace of two or more matrices is of considerable interest and is treated in [1] and
[6]. Under certain assumptions, a procedure to check whether such a subspace exists is
proposed in [1], and a general necessary and sufficient condition is obtained in [6]. The
approach developed in the latter reference is based on the concepts of multilinear alge-
bra and utilizes certain properties of Grassmann representatives of the invariant sub-
space. In the present paper, this approach is further developed to characterize and study
the existence of non-trivial reducing subspaces. In particular, we have obtained a crite-
rion for reducibility of a single matrix which is also applicable to the case of simulta-
neous reduction of several matrices. The next section of the paper contains the neces-
sary background theory and the main result is stated in Section 3. The application of
the criterion is illustrated by an example in Section 4.
* The work of this author was supported by project No 010062 “Matrix methods in control systems
modeling and two-step procedures in the analysis of multicriteria optimization problems“.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ  .  BULGARIAN ACADEMY OF SCIENCES

КИБЕРНЕТИКА  И  ИНФОРМАЦИОННИ ТЕХНОЛОГИИ · Том  4,  №  2
CYBERNETICS AND  INFORMATION TECHNOLOGIES · Volume 4, No 2

София  .  2004  .  Sofia



6 2

2. Preliminaries

Let be the usual inner product on C n, i.e., x, y= x*y,where * denotes complex
conjugate transposition. Recall first that the sum of two subspaces L and  M of C n is
defined as L +  M = {z C n : z = x + y, x L, y M}.The sum is said to be direct  if
L M={0}, in which case it is denoted by L +

.
  M.  The subspaces L and  M are

complementary (direct complements) if  L M={0}and  L +
.
  M = C n. Subspaces

L and  M are orthogonal  if x, y= 0 for every  x L and y M; they are  orthogonal
complements if, in addition, they are complementary. In the latter case we write L =
M and  M = L

For any AC nn and SC n, AS denotes the set {Ax: xS}. A subspace LC n
is invariant for AC nn (or A-invariant}) if  AL L. An  A-invariant subspace L is
A-reducing  if there exists a direct complement  M to  L in  C  n  that is also A-invariant;
the pair of subspaces (L ,  M) is then called a reducing pair for A. Clearly, {0}, C  n
and the generalized eigenspaces of  AC nn are examples of  A-reducing subspaces.

The following basic notation and facts from multilinear algebra will be used; see
e.g., [4]. Given positive integers k n let Qk,n be the set of all k-tuples of {1,...,n} with
elements in increasing order. The members of Qk,n are considered ordered lexicographi-
cally.

For any matrix XC nn and nonempty {1,..., m}, {1,..., n}, let X []
denote the submatrix of X in rows and columns indexed by and respectively. Given
an integer 0 k min{m, n}, the k-th compound of X is defined as the (mk)(nk) matrix

                                           X(k) = (det X [])Qk,m,Qk,n .

Matrix compounds satisfy (XY) (k)  = X (k)Y (k). The exterior product of the vectors
xiC n, i = 1,..., k, denoted by x1... xk is the (nk)-component vector equal to the k-th
compound of X = [x1 ... xk]; i.e.,

   x1... xk = X(k).
Consequently, if AC nn and 0k n, the first column of A(k) is precisely the

exterior product of the first k columns of A. Exterior products satisfy the following:
(1)                    x1... xk = 0 x1... xk are linearly dependent.
                                                         k
(2)                           1x1... kxk = i (x1... xk), iC.
                                                        i=1

(3) A(k)(x1... xk ) = Ax1... Axk .

When a vector xC
 (n

k) is viewed as a member of the k-th Grassmann space over
C  n, it is called decomposable if  x =  x1... xk  for some xi.C  n, i  = 1, ..., k. We refer
to x1xk  as the factors of  x. By conditions (2) and (3), those decomposable vectors
whose factors are linearly independent eigenvectors of  AC nn are eigenvectors of
A(k). The spectrum of  A(k) coincides with the set of all possible k-products of the
eigenvalues of A. In general, not all eigenvectors of a matrix compound are decompos-
able.

Consider now a k-dimensional subspace L C n spanned by {x1xk}. By (1)
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and the definition of the exterior product it follows that
L = { xC n : x  x1... xk  = 0}.

The vector  x1... xk  is known as a Grassmann representative of  L. As a
consequence, two k-dimensional subspaces spanned by {x1 xk} and {y1 yk}
respectively, coincide if and only if for some nonzero C,

x1... xk  =  ( y1... yk );
that is, Grassmann representatives for a subspace differ only by a nonzero scalar
factor.

Finally, let  AC nn and let L C n be an A-invariant subspace with basis
{x1xk}. We shall use the fact that any Grassmann representative of  L is an eigen-
vector of  Ak. This is seen by noting that if  A L L, then  properties (1) and  (3)  imply
that A(k) (x1... xk ) is either 0 or a Grassmann representative of  L; that is,
A(k) (x1... xk ) is indeed a scalar multiple of  x1... xk  0.

3. Reducing subspaces

In this section, we present reducibility conditions for a matrix and for a pair of matrices
based on a relationship between Grassmann representatives of reducing subspaces and
eigenvectors of matrix compounds. First is an auxiliary result characterizing comple-
mentary subspaces.

Lemma 1. Let  L,  MC n be subspaces with  dim L = k and  dim M = n  k,
1  k  n, and let  x, yC(n

k) be Grassmann representatives of  L and   M, respec-
tively. The following are equivalent.
(i)  L and  M are direct complements in C n;
(ii) vectors x and y satisfy x, y   0.

P r o o f. Since dim L + dim  M = n, condition (i) is equivalent to
 L M ={0}.

Let {x1xk} and {y1yk} be bases of  L and  M, respectively, and consider
the nk  matrices X = [x1...xk] and  Y = [y1...yk]. Then, up to nonzero scalar mul-
tiples, x = x1... xk  and  y = y1... yk. By Cauchy-Binet,s formula for the determi-
nant it can be seen that x, y= det X*Y. Hence, in order to prove the lemma, we need
only show that (5) is equivalent to det X*Y  0.

Assume first that X*Y  is singular. Then there exists a nonzero vector uC k such
that u*X*Y v = Xu,Yv = 0 for all vC k.Thus, 0  XuL and since M= {Y v :
vC k}, it follows that XuM, which contradicts to (5). Conversely, if  L and  M have
a common nonzero vector z, then z = Xu for some uC k and also z is orthogonal to all
vectors in  M; i.e., u*X*Y v = 0 for all vC k. This implies that X*Y is singular.

Recall that if  AC nn and   are distinct eigenvalues of A, then by the
biorthogonality principle (see e.g., [3], each left eigenvector of A corresponding to  is
orthogonal to each right eigenvector of A corresponding  to 
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Theorem 1. Let AC nn and 1k n. The following are equivalent:
(i) there exist subspaces L,  MC n, of dimensions k and n  k, respectively,

such that (L,  M) is a reducing pair for A;
(ii) for all sC k, (A + sI)(k) has a pair of right and left eigenvectors x, yC(n

k) that
are decomposable and satisfy  x, y   0;

(iii)} there exists sC such that (A + sI) is nonsingular and (A + sI)(k) has a pair of
right and left eigenvectors  x, yC(n

k) that are decomposable and satisfy x, y    0.
Moreover, when either of these conditions hold, x and y in (ii)} and (iii) are

Grassmann representatives of  L and  M, respectively, and they correspond to the
same eigenvalue of (A + sI)(k).

P r o o f. (i) (ii). Let (L,  M) be a reducing pair for A with dim L = k and
dim  M = n k; i.e.,  L and  M are A-invariant subspaces that are complementary in Cn.
Let {x1xk} and {y1yk} be bases of  L and  M, respectively. Since A L L  if and
only if (A + sI) L L for all sC, it follows by the discussion in Section 2, that
x = x1... xk  is a right eigenvector of (A + sI)(k). Similarly, (A + sI) M M for all sC,
which is also equivalent to (A + sI)* M M. Thus, y = y1... yk  is a right eigenvec-
tor of ((A + sI)*)(k); due to the compound matrix property ((A + sI)*)(k) =
((A + sI)(k))*, we have that y is a left eigenvector of (A + sI)(k).  Since  L and  M are
complementary, it follows by Lemma , that  x, y   0.

(ii) (iii). Follows trivially.
(i) (ii). Let  s be such that (A + sI) is nonsingular and let x = x1... xk ,

y = y1... yk  be right and left eigenvectors of (A + sI)(k), respectively, such that x, y
  0.
Then (A + sI)(k) is nonsingular and there exists nonzero C such that

(6)              (A + sI)(k) x = (A + sI) x1...(A + sI) xk = (x1... xk).
By the biorthogonality principle,  x, y    0 implies that y corresponds to the

same eigenvalue   of (A + sI)(k), i.e.,
(7)                                  ( (A + sI)(k) )* y = ((A + sI)*)(k) y

    = (A + sI)* y1...(A + sI)* yk

= (y1... yk).

By (6) it follows that the subspace spanned by {x1 xk} coincides with the
subspace spanned by {(A + sI)x1((A + sI)xk}. Thus,  L = span{x1xk} is an
invariant subspace of (A + sI) and hence of A. Similarly, it follows from (7) that
span{y1yk} is an invariant subspace of A* or, equivalently, that  M = (span{y1
yk}) is an invariant subspace of A. By Lemma 1, the inequality x, y   0 implies that
the A-invariant subspaces L and  M are direct complements, completing the proof.

Given an integer k, 1k n, the classical Schur triangularization theorem shows
that every matrix ACnn has an A-invariant subspace of dimension k. However, con-
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sidering the Jordan normal form of a matrix, it can be seen that not every ACnn has
an A-reducing subspace of arbitrary dimension k. For instance, if A is an n-dimensional
Jordan block, it can be shown that the only A-reducing subspaces are {0} and Cn. In
the next example, we illustrate how Theorem 1 can be employed to rule out the exist-
ence of reducing subspaces of a certain dimension.

Example 1. Let n = 4, k = 1 and

A=                              .

The distinct eigenvalues of  A are 1=1 and 2= 1; A(1) = A has a pair of right and left
eigenvectors x1= [1 0 0 0]T and y1= [0 1 0 0]T  corresponding to 1=1, and a pair of right
and left eigenvectors x2= [0 0 1 0]T and  y2= [0 0 0 1]T  corresponding to 2= 1. Notice
that x1, y1  = x2, y2  =0, showing that conditions (ii) and (iii) of Theorem 1 are not
satisfied and thus A does not have any reducing subspaces of dimension k =1; neither
does any matrix similar to A. A similar argument applies to the case k = 3.

The special case of  M =  L in condition (i) of Theorem 1 is treated in the
following result.

Corollary 1. Let  AC nn and 1k n. The following are equivalent:
(i) there exists a  subspace AC n of dimension k such that (L , L) is a reducing

pair for A;
(ii) there exists decomposable xC

 (n
k)such that for all sC,  x is a common

eigenvector of (A + sI)(k) and (A* + sI)(k);

(iii) there exists decomposable xC
 (n

k) and s C such  that (A + sI)  is nonsingular
and x is a common eigenvector of (A + sI)(k) and (A* + sI)(k).

Moreover, when either of these conditions hold, x in (ii) and (iii) is a Grassmann
representative of  L.

It should be noted that the above corollary also follows from [6, Theorem 2.2 ] by
recalling that (L , L) is a reducing pair for A if and only if  L is a common invariant
subspace of A and A*.

Theorem 1 provides a reducibility criterion for a single matrix in C nn. It can be
extended to the case of simultaneous reduction of a pair of matrices as follows. Let
A,BC nn and x, yC n. We shall say that (x, y) is a common pair of right and left
eigenvectors of A and B if x is a common right eigenvector of A and B and y is a
common left eigenvector of A and B.

Theorem 2. Let A, BC nn and 1k n. The following are equivalent:
(i) there exist subspaces  L,  M C n of dimensions k and n  k, respectively,

such that ( L, M) is a common reducing pair for A and B;
(ii) for all sC, (A + sI)(k) and (B + sI)(k)) have a common pair (x, y) of right and






















1000
0100
0010
0011

5



6 6

left eigenvectors (x, y)C
 (n

k) that are decomposable and satisfy x, y    0;
(iii) there exists s C such  that (A + sI) and (B + sI) are nonsingular, and such

that (A + sI)(k) , (B + sI)(k))  have a common pair (x, y) of right and left eigenvectors
x, yC(n

k) that are decomposable and satisfy x, y    0.
Moreover, when either of these conditions hold, x and y in (ii)} and (iii) are

Grassmann representatives of  L and  M, respectively.
The proof of Theorem 2 is similar to that of Theorem 1. It is also easily seen that

the above result can be extended to the case of any number of matrices having a
common pair of reducing subspaces. As in Corollary 1, we can now obtain a criterion
for simultaneous reducibility of A and B by orthogonal complements.

Corollary 2. Let ACnn and 1k n. The following are equivalent:
(i) there exists a subspace  L Cn of dimension k such that (L , L) is a common

reducing pair for A and B;
(ii) there exists decomposable xC(n

k) such that for all sC, x is a common eigen-
vector of (A + sI)(k) , (A* + sI)(k), (B + sI)(k) , (B* + sI)(k) ;

(iii) there exists decomposable xC(n
k) and s C such  that (A + sI) and (B + sI)

are nonsingular and x is a common eigenvector of (A + sI)(k), (A* + sI)(k), (B + sI)(k) and
(B* + sI)(k).

Moreover, when either of these conditions hold, x in (ii) and (iii) is a Grassmann
representative of   L.

4. Illustrative example

The next example illustrates the applicability of Theorem 2 for finding out a common
reducing pair of subspaces. We will use the following criterion for the existence of a
common eigenvector among two matrices.

Theorem 3 [5]. Let X,YC pp and

where [Xm, Yl] denotes the commutator Xm Yl Yl Xm. Then X and Y  have a common
eigenvector if and only if K is not invertible.

Example 2. Let us consider whether

A = and B =

have a common reducing pair of  subspaces of dimension k = 2. For that purpose,
recall Theorem 2 and in particular its third clause. The spectrum of A is {1, 2, 3} and

],[*],[),(
1

1,

lm
p

lm

lm YXYXYXK 






























5.0665.1
5.0205.0
5.0135.0
5.1665.0

























5.2235.0
5.0205.0
5.0425.0

5.0435.2
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the spectrum of B is {2, 1, 3}. Thus A and B are nonsingular and we can take s = 0.
Next compute the second compounds of A and B.

       X = A(2) =                                                                 ,

         Y = B(2) =                                                               .

Referring to Theorem 3, the matrices K = K(X, Y) and K' =K(XT,YT) are singular and so
X,Y  have common right and left eigenvectors. Note that if either K or K' were
nonsingular, Theorem 2 would imply that A and B do not have a common reducing pair
of subspaces.

Using Matlab’s routine, we find that
Nul (X + 3I) = span {x}, where x = [1 0 0 0 1 0]T;

notice that Yx =  6x and thus x is a common right eigenvector of  X, Y. Similarly, we
see that
                         Nul (Y T + 6I) = span{y}, where y = [1 1 0 0 1 1]T;
notice that X Ty =3y and thus y is a common left eigenvector of X,Y.

Next we examine the decomposability of x, y. The quadratic Plucker,s relations
for decomposability can be used in this instance (see [4, Vol. II, 4.1, Definition 1.1]).
For example, [x1, ..., x6]C (

4
2) is decomposable if and only if  x1x6x2x5 + x3x4 = 0.

It follows that  x, y are decomposable. In fact, x = 1 2 and  y = 1 2 , where
1  = [1 1 0 1]T, 2  = [11 0 1]T, 1  = [0 1 1 0]T, 2  = [1 0 0 1]T.

Notice that x, y    0. Hence, letting
                             L = span{12} and  M = (span{12}),
by Theorem 2, we have that (L,  M) is a common reducing pair for A and B. Indeed, if

      L =                              ,
































43125.063
5.25.1125.05.15.1

5.15.1605.15.1
1212021212
03125.023
5.45.7125.05.35.4



































65.165.165.1
115.685.115.0
114011
966636
35.165.135.1

45.245.185.3
























1101
0010
1110

1101
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where the first two columns of L have been computed to be a basis for  M as defined
above, we obtain the following simultaneous reductions of A and B:

     L1AL =                               and  L1BL =                           .

In conclusion, the main results of the paper are necessary and sufficient condi-
tions for the existence of non-trivial complementary subspaces which are reducing
subspaces for a single matrix (Theorem 1) and for a pair of matrices (Theorem 2). Our
study utilizes notions from multilinear algebra and is motivated by the numerous appli-
cations of the reducibility problem in different areas and especialy in the area of linear
control systems theory. The above example is an illustration of the reducibilty criterion
in finding out a pair of common reducing subspaces for two matrices and computing
bases vectors of these subspaces. The results and their implementation also rise the
questions of whether or not a subspace of  k-th Grassmann space over Cn contains a
nonzero decomposable vector and, on the other hand, how to find the factors of a
decomposable vector. These issues are of particular interest from both theoretical
and computational point of view and are discussed in more details in [6].
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