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Abstract: We propose a learning-oriented interactive algorithm for solving
multicriteria linear integer programming (MCLIP) problems, considered as
multicriteria decision making problems. At each iteration, the DM may partition
the criteria set into at most seven classes, namely: improvement, improvement by
a desired amount, deterioration, deterioration by at most a certain amount, non-
deterioration, changes allowed within limits, and free changes. Based on the
partition of the criteria set, two types of scalarizing problems are formulated –
linear and mixed integer programming problems. One or more (weak) nondominated
solutions of the continuous relaxation of MCLIP problem are computed at most
of the iterations.  A mixed-integer scalarizing problem is solved, only at some
iterations, in order to find one or more (weak) nondominated or near (weak)
nondominated solutions (close to the nondominated surface of the MCLIP
problem). At some iteration, when the DM wants to see more than one solution,
he/she may select the preferred solution based on nonformalized information
about his/her preferences or may use a ranking procedure based on additional
formal information. Based on the proposed algorithm, we have developed a
research decision support system.
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1. Introduction

Interactive algorithms are widely used for solving multicriteria linear programming
(MCLP) problems (considered as multicriteria ddecision making problems), see
B e n a y o u n  et al. [2], S t e u e r [31], W i e r z b i c k i [39], K o r h o n e n, L a a-
k s o [20], and K a l i s z e w s k i, M i c h a l o w s k i [17]. The quality of an interactive
algorithm depends, to a large extent, on the quality of the dialogue with the decision-
maker (DM), namely:

 the type of information given by the DM to improve the current preferred
nondominated solution;

 the time needed to solve the scalarizing problem;
 the type and the number of new solutions computed at an iteration;
 the ability to change search strategies for computing new solutions;
 the possibility for the DM to learn about the multicriteria problem.
When solving multicriteria linear programming (MCLP) problems, linear

programming problems are used as scalarizing problems. These problems are
comparatively easy to solve. For this reason, the time needed to solve the scalarizing
problems in interactive algorithms for solving MCLP problems plays a minor role.

Interactive algorithms are also used (C l i m a c o  et  al. [5]) to solve multicriteria
linear integer programming (MCLIP) problems. These algorithms may be divided into
two groups.  The interactive algorithms in the first group, e.g., K a r w a n  et  al. [19],
M a r c o t t e,  S o l a n d [21], R a m e s h  et  al. [28], D u r s o [7], and A l v e s,
C l i m a c o [1], are modifications of single criterion integer algorithms, in which the DM
is involved in the iterative computational process to obtain efficient integer solutions of
the MCLIP problems. The main purpose in the development of the first group of
algorithms is to reduce the number of computational interruptions and the number of
comparisons the DM has to make.

The interactive algorithms that form the second group, e.g., T e g h e m, K u n s h
[33], G a b b a n i, M a g a z i n e [9], H a j e l a, S h i h [15], N a r u l a, V a s s i l e v
[24], K a r a i v a n o v a  et al. [18], V a s s i l e v a [34], are modifications of interactive
approaches for solving MCLP problems. These interactive algorithms use linear integer
programming problems as scalarizing problems, which are NP-hard, G a r e y,
J o h n s o n [11]. Therefore, the time to solve the scalarizing problems in these
interactive algorithms plays a major role.  That is why some efforts are made in the
design of these algorithms to reduce the number of the integer problems solved, to use
heuristic algorithms that solve integer problems, to solve continuous instead of integer
problems at most of the iterations and to present continuous solutions to the DM for
evaluation, especially during the learning phase.

We propose a learning-oriented (G a r d i n e r, V a n d e r p o o t e n [10]), interactive
algorithm that belongs to the second group of algorithms. In the proposed algorithm we
attempt to improve the dialogue with the DM to describe his/her preferences, to reduce
the time to find new solutions and to help the DM evaluate more than one solution.

The proposed algorithm uses a scalarizing problem based on the partition of the
criteria, implicitly done by the DM.  In this classification, the DM specifies what changes
he/she would like to see in the criteria values of the current preferred solution.
Depending on the desired or acceptable changes, each criterion may belong to one and
only one of the seven classes – improvement, improvement by a desired amount (if
possible), deterioration, deterioration by at most a certain amount, non-deterioration,
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changes allowed within limits and free changes. This offers the DM more possibilities
to express his/her preferences with respect to current preferred solution compared to
the well known algorithms for solving linear and nonlinear multicriteria programming
problems such as STEP algorithm, B e n a y o u n  et  al. [2], the reference point
algorithms, W i e r z b i c k i [39], reference direction algorithm, K o r h o n e n, L a a k s o
[20], the NIMBUS algorithm, M i e t t i n e n,  M a k e l a [22], and algorithms used for
solving multicriteria integer linear and nonlinear programming problems, e.g. N a r u l a,
V a s s i l e v [24] and V a s s i l e v  et  al. [36].

In the proposed algorithm, the DM is given a choice, at each iteration, to either
solve a continuous or an integer scalarizing problem. The DM is encouraged especially
during the learning phase or when solving large problems to solve continuous scalarizing
problems or to solve integer scalarizing problems approximately at many iterations. This
considerably reduces the computational time at each iteration.

At an iteration, when the DM wants to see more than one solution, the DM may
select the current preferred solution based on nonformalized information about his/her
preferences or may use a ranking procedure based on additional formal information.

The rest of the paper is organized as follows: Some notation and definitions are
introduced in the next section. The description and properties of the scalarizing
problems are given in Section 3, and the formal ranking procedure is presented in
Section 4. A brief description of the proposed interactive algorithm is given in Section
5, and the research DSS and some experimental results are described in Section 6. A
few concluding remarks are given in Section 7.

2. Problem formulation

Many practical problems, e.g., location-allocation, transportation, scheduling, assignment,
planning problems, etc., can be formulated as MCLIP problems. For a survey of
multicriteria programming formulation and the methodology applied to solve some of
these problems, the reader may refer to O s l e e b,  R a t i c k [26], C u r r e n t   e t
a l. [6], B l a z e w i c h   et  al. [3], W e b e r,  C u r r e n t [37], R i t z e l  et  al. [30]
and F e r r e i r a  et  al. [8].

The MCLIP problem may be formulated as:
(1)            “max”{fk(x)}, Kk  ,
subject to:
(2)              
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(4)            jx – integer,
where fk(x), Kk  , are linear criteria (objective functions); 
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“max” means that all the objective functions have to be maximized simultaneously;
                                   is the vector of the decision variables; and K = {1, 2, ..., p},
M = {1, 2, ..., m}, N = {1, 2, ..., n}, and                                    denote the index sets
of the criteria (objective functions), the linear constraints, the decision variables and the
integer decision variables, respectively.
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Constraints (2)-(4) define the feasible region  X1 for the integer variables.  Problem
(1)-(3) is a MCLP problem, which is a relaxation of MCLIP problem. The feasible
region for MCLP problem variables is denoted by X2.

For clarity of exposition, we introduce a few definitions:
Definition 1. The feasible solution x is called an efficient solution of MCLP or

MCLIP problem, if there does not exist any other feasible solution x– , such that the
following inequalities are satisfied:

 ),()( xfxf kk  for every Kk  and ),()( xfxf kk  for at least one index

Kk .
Definition 2. The feasible solution x is called a weak efficient solution of MCLP

or MCLIP problem if there does not exist another feasible solution x–  such that the
following inequalities hold:

),()( xfxf kk   for every Kk .

Definition 3. The feasible solution x  is called a (weak) efficient solution of MCLP
or MCLIP problem if x is an efficient or weak efficient solution of the corresponding
problem.

Definition 4.The vector                                          is called a (weak) nondomi-
nated solution in the criteria space, if x is a (weak) efficient solution in the variable space.

Definition 5. A near (weak) nondominated solution of MCLIP problem is a
feasible solution in the criteria space obtained by solving an integer scalarizing problem
using an heuristic algorithm.

Definition 6. A current preferred solution is a (weak) nondominated solution of
MCLIP or MCLP problem or a near (weak) nondominated solution of MCLIP problem,
chosen by the DM at the current iteration. The most preferred solution of MCLIP
problem is a current preferred solution of MCLIP problem that satisfies the DM to the
greatest degree.

Problems MCLIP and MCLP do not possess a mathematically well-defined
optimal solution. Therefore, it is necessary to select one of the (weak) nondominated
solutions that satisfies the DM to the greatest degree. This choice is subjective and
depends entirely on the DM.

3. Scalarizing  problems

The DM evaluates the current (weak) nondominated solution of MCLIP or MCLP
problem, or the near (weak) nondominated solution of MCLIP problem at each
iteration.  If the DM wants to look for a “better” solution, he/she sets the preferences
for desired or acceptable changes in the values of some or all of the criteria. Depending
on these preferences, the criteria set is partitioned into seven or fewer criteria classes

.and,,,,, 0KKKKKKK  Criterion Kkxf k ),( , may belong to one and
only one of the following classes:

'))(),...,(()(
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 Kk , if the  DM wishes the value of criterion )(xf k to be improved;
 Kk , if the DM wishes the value of criterion )(xf k  to be improved  by a

desired (aspiration) amount 0Δ,Δ 
kk

;
 Kk , if the DM agrees to worsen the value of criterion )(xf k ;
Kk , if the DM agrees to worsen the value of criterion )(xf k  by  no more

than 0, 
kk

 ;
 Kk , if the DM wishes the value of criterion )(xf k to lie within limits of the

current value ))((,  
kkkkkk

tfxftff  , ;0, 
kk

tt
 Kk  if the DM does not want to worsen the value of criterion )(xf k ;
0Kk   if the DM agrees that the criterion )(xf k may be changed freely.

On the basis of the partition of the criteria set, we propose the following scalarizing
problem  to compute a (weak) nondominated solution of the MCLIP problem.

Minimize

(5)                  '' /max,/maxmax)(
kkkKKkkkkKk

fxfffxffxS 
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where fk is the value of the criterion with an index Kk  in the current preferred
solution,

kkk
ff  – the aspiration level of the criterion with an index Kk ,

'
k

f – a scaling coefficient, and   is a small positive number.
The objective function of the scalarizing problem E1 shows that it is a sum of two

values. For each ,1Xx the first value is the maximum of two sets of numbers.  Each
number in the first set represents the difference between the aspiration level of the
criterion with an index  Kk   and )(xf k . Each number from the second set is the
difference between the value of the criterion with an index Kk  K  in the current
preferred solution and )(xf k . For each ,1Xx  the second value is the maximum of
one set of numbers. Each number in this set is the difference between the value of the
criterion with an index  Kk  in the current preferred solution and )(xf k . The optimal
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solution of problem  E1 may assure not great improvement of the criteria from the sets
Kk  K  and a small deterioration of the criteria from the sets   Kk  K .

Theorem 1. The optimal solution of the scalarizing problem E1 is a weak efficient
solution of the MCLIP problem.

For a proof, please see the Appendix.
To obtain a weak nondominated solution for MCLP problem, we may use the

scalarizing problem E2, which is obtained from E1 by replacing constraint (10) with
constraint (12):
(12)                             2Xx .

The optimal solution of the scalarizing problem E2 is a weak efficient solution of
MCLP problem. This follows from Theorem 1 because the nature of the variables  xi,

ni ,...,1 , is not explicitly used to prove it.
Because the objective function of the scalarizing problem E1 is non-differentiable,

we may solve the following equivalent mixed integer programming problem E1':
(13)                              )min(  
subject to:

(14)                                   ,,/ '  Kkfxff
kkk



(15)                                ,,/ '   KKkfxff
kkk



(16)                                      ,,/ '  Kkfxff
kkk



(17)                                   ,,   KKKkfxf
kk

(18)                                        ,,  Kkfxf
kkk



(19)                                          Kktfxf
kkk
, ,

(20)                                           Kktfxf
kkk
, ,

(21)                                      1Xx ,

(22)                                 ,   arbitrary.
Theorem 2. The optimal values of the objective functions of problems E1 and  E1'

are equal, i.e.,

|}.|/))((max                                    

|]|/))((max|,|/))((max{max[min)(min

'
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For a proof, please refer to the Appendix.
The scalarizing problem  E1'  is formulated on the basis of the partition of the criteria

set, implicitly done by the DM. It is a generalization of the scalarizing problems
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suggested in N a r u l a,  V a s s i l e v [24], V a s s i l e v a [34], V a s s i l e v   et
al. [36], and has the following properties: The first property is related to the information
given by the DM. To improve the current (weak) nondominated solution, the DM may
present his/her  preferences not only as desired and acceptable levels (as it is in the
different scalarizing problems of the reference point, W i e r z b i c k i [39]), but also
as desired and acceptable directions and intervals of change in the values of the criteria.
The second property is that the improvement in the value of one criterion may not result
in big loss in the value of another criterion. Thus the DM can realize the search strategy
“no great benefit – little loss”. The third property is that the current (weak) efficient
preferred solution can be used as an initial feasible solution for the next integer
programming problem E1'.  This facilitates the single criterion algorithms, especially the
heuristic algorithms, because they can start with a feasible integer solution. The fourth
property is related to the fact that the feasible region of problem  E1' is a part of the
feasible region of MCLIP problem and depending on the values of parameters


kkkkk

ttf ,,,,  , this region can be relatively narrow. The solutions obtained using
heuristic algorithms to solve integer programming problem E1' may lie near  the non-
dominated surface of  MCLIP problem. The use of near (weak) nondominated solutions
may considerably reduce DM’s waiting time to obtain new solutions. When applying
an heuristic integer algorithm to solve scalarizing problem E1' , a set of near (weak)
nondomonated solutions is obtained, ranked according to their “proximity” to the
“desired” (weak) nondominated solution. Because the search strategy “no great benefit
- little loss”, not only the first-ranked solution, but all the remaining solutions found are
comparatively close to the “desired” (weak) nondominated solution. If the DM wishes
to re-rank the near (weak) nondominated solutions obtained on the basis of additional
local preference information (pairwise comparison of the criteria or inter- and intra-
criteria information) he/she may use a formal ranking procedure and choose the next
preferred solution on the basis of the two ranked sets.

The problem E2'  is the linear programming problem obtained from E1'  by replacing
constraint (21) with constraint (12). One (weak) nondominated solution of MCLP can
be obtained by solving problem E2', which is easy to solve, see Garey and Johnson
(1979).

According to the reference direction approach, Korhonen and Laakso (1986), the
presence of more (weak) nondominated solutions may speed-up DM’s understanding
of the problem solved. More than one (weak) nondominated solutions of MCLP
problem can be obtained by solving parametric extension of E2'. A parametric extension
of problem E2' denoted by '

2E  may have the form, M u r t a g h [23].
(23) )min(  
subject to:

(24)                             tfffxf
kkkk

 ' , Kk ,

(25)                        tfffxf
kkkk

 ' ,   KKk ,
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(26)                             tfffxf
kkkk

 ' , Kk ,

(27)                              
kk

fxf  ,   KKKk ,

(28)                                    
kkk

fxf  , Kk ,

(29)                                      
kkk

tfxf , Kk ,

(30)                                      
kkk

tfxf , Kk ,

(31)                                                 2
Xx ,

(32)                                                  0t ,
(33)                                             ,  arbitrary,
where fk  is a parameter.

The parametric problem '
2E  is also easy to solve, see M u r t a g h [23]. The first

solution is supposed to best satisfy the DM’s preferences. In the remaining solutions,
the desired improvements and the acceptable deteriorations are increased. Depending
on parameter fk , kK, the parametric (weak) nondominated solutions obtained may
be comparatively close, but may also differ significantly.

Let us assume that we have computed a (weak) nondominated solution of MCLP

problem using scalarizing problem E2' or  '
2E and wish to find a (weak) nondominated

solution of MCLIP problem, which is close to the (weak) nondominated solution of
MCLP problem.  Let us denote a (weak) nondominated solution of MCLP problem by

.
To find a (weak) nondominated solution of  MCLIP problem close to the (weak)

nondominated solution kf?  of MCLP problem, we may solve the following  Chebychev
problem E3, W i e r z b i c k i [39]:

minimize

(34)              |,?|/))(?(max)( '
kkkKk

fxffxS 


subject to
(35)                                     ,1Xx
where

(36)                   '?
kf =
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f
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and  is a small positive number.
This problem is equivalent to the following mixed integer linear programming

problem E3':

T
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(37)                                 min
subject to

(38)                      |,?|/))(?( '
kkk fxff 

(39)                                  ,1Xx
arbitrary.

4. Ranking procedure

Heuristic integer algorithms, namely, I b a r a k i   et  al. [16], G o l d b e r g [13], W e r r a,
H e r t z  [38], V a s s i l e v,  G e n o v a [35], R e e v e s [29], P i r l o t [27], and G l o v e r,
L a g u n a [12], find solutions of the scalarizing problem E1'   that  lie comparatively close
to the efficient (nondominated) surface of the MCLIP problem. These near (weak)
nondominated solutions are computed relatively quickly and presented to the DM for
evaluation. The interruption of an exact integer algorithm, N e m h a u s e r,  W o o l s e y
[25] (if the waiting time is too long) is also appropriate and the near (weak)
nondominated solutions obtained so far can be presented to the DM for evaluation. The
solution of scalarizing problem '

2E  using a linear parametric programming algorithm will
lead to more than one (weak) nondominated continuous solutions of MCLP problem.
To select the current preferred solution, the DM has three possibilities:

– to select the first-ranked near (weak) nondominated integer solution or to choose
the first-ranked (weak) nondominated continuous solution;

– on the basis of additional nonformalized information, the DM may choose one
solution, other than the first-ranked, from the set of ranked near (weak) nondominated
integer solutions or from the set of ranked (weak) nondominated continuous solutions;

– on the basis of additional intra- and inter-crirteria  information or information
about the pairwise comparison of the criteria provided by the DM, the set of near (weak)
nondominated integer solutions or the set of (weak) nondominated continuous solutions
can be re-ranked by the RP ranking procedure. The DM may choose the first-ranked
or another solution from one of these ranked sets.

Let us denote the set of solutions (alternatives) by ),...,,( 211 siiiM  , where s
is the number of alternatives computed at the current iteration and  i1 is the first feasible

solution obtained when solving scalarizing problem E1' or '
2E .  The RP procedure

includes two modules for complete ranking of the alternatives.  The first module uses
Promethee II outranking method, B r a n s,  M a r e s c h a l [4]. To rank the alternatives
with the help of the outranking procedure, the DM provides two types of local
information.  The first (intra-criteria) type of information consists of two thresholds.  For
each criterion kK, the DM defines an indifference threshold qk and a preference
threshold pk. The indifference threshold qk  is equal to the difference between the values
of the two criteria that have no practical significance for the DM. The preference
threshold  pk  is equal to the difference between the values of the two criteria that
indicates that one of them is preferred over the other. The second type of local
information provided by the DM is the inter-criteria information that refers to the

4
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relative importance of the criteria for the DM.  This importance is expressed in weights
defined by the DM.

The second module uses the AHP method, S a a t y [32].  To rank the alternatives
using this method, the DM provides local pairwise comparison of the criteria.

The algorithmic scheme of RP procedure is in 5 steps.
Step 1. Record near (weak) nondominated solutions of MCLIP problem or

(weak) nondominated solutions of  MCLP problem obtained from set  M1  as
alternatives in matrix A.

Step 2. Ask the DM to choose which type of additional local information he/she
is able or willing to provide. If he/she prefers to provide local inter- and intra-criteria
information, go to Step 3; otherwise, go to Step 4.

Step 3.  Ask the DM to provide the weights  wk , kK , for the criteria.  The DM
may use the weights defined at a previous iteration or offer new weights.

Ask the DM to provide the thresholds qk  and pk , kK. The DM may wish to use
the thresholds from at a previous iteration or offer new thresholds.

Rank the alternatives of matrix A by Promethee II method and go to Step 5.
Step 4. The DM provides the matrix of pairwise comparisons of the criteria. The

DM may wish to use the matrix from a previous iteration, or offer a new matrix of
pairwise comparisons.

Rank the alternatives of matrix A by AHP method.
Step 5. Present the ranked set of alternatives to the DM for evaluation and

selection of the preferred solution for MCLIP or MCLP problem.

5. A  partition-based interactive algorithm

A partition-based interactive algorithm to solve MCLIP problems can be developed on
the basis of scalarizing problems E1', E2',

'
2E , E3' and the ranking procedure RP. The

scalarizing problems E1' and E3' are mixed integer programming problems. The
problems of mixed integer programming are NP problems, i.e., the time for their exact
solution is an exponential function of their dimensions. When solving integer problems,
especially problems of large dimension (above 100 variables and constraints), heuristic
algorithms, e.g., I b a r a k i  et  al. [16], V a s s i l e v,  G e n o v a [35], R e e v e s [29],
P i r l o t [27], G l o v e r,  L a g u n a [12]. Because finding an initial solution of the integer
problems is as difficult as finding an optimal solution, the heuristic algorithms do not
guarantee finding even an initial feasible integer solution in the general case. But, if an
initial feasible integer solution is known and the feasible region is comparatively
“narrow”, then using heuristic algorithms, especially those that include meta-heuristics
such as “tabu search”, G l o v e r,  L a g u n a [12], some good, and in many cases, optimal
integer solutions can be obtained.

The proposed interactive algorithm is learning-oriented. That is, the DM may
search freely for the most preferred solution from the sets of (weak) nondominated or
near (weak) nondominated solutions. For this reason during the learning phase, the DM
is encourage to explore these sets, get some idea about the feasible ranges of criteria
values, and some relations among the criteria. To achieve this and to overcome some
computational difficulties (especially when solving a large problems), three different
strategies for computing new solutions are used in the interactive algorithm. The first
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strategy, called integer strategy, searches for a (weak) nondominated integer solution
at each iteration by solving the integer scalarizing problems exactly. The second
strategy, called approximate integer strategy, searches for near (weak) nondominated
integer solutions at some iterations by computing approximate solution of integer
scalarizing problems. During the learning phase, and for large problems until the very
end, only near (weak) nondominated solutions may be searched. The third strategy,
called the mixed strategy, searches for continuous (weak) nondominated solutions by
solving continuous scalarizing problems at most of the iterations, and only sometimes
searches for a (weak) nondominated integer or near (weak) nondominated integer
solution that is close to the continuous (weak) nondominated solution.

The integer strategy is appropriate when solving small multicriteria integer
problems. The approximate integer and mixed strategies are appropriate for solving
medium and large multicriteria integer problems.

The basic steps of the algorithm are 11.
Step 1. Find an initial (weak) nondominated solution of MCLP problem by setting

fk=1,  kK, ,2kf  kK,  and solving problem E2'. Let it be the current preferred
solution.

Step 2. Ask the DM to specify the desired or acceptable levels, directions or
intervals of changes in the values of some or all of the criteria in relation to the current
preferred solution.

Step 3. If the DM chooses to search for (weak) nondominated solutions of MCLP
problem, execute Step 4; if the DM chooses to find (weak) nondominated solutions of
MCLIP problem, go to Step 9.

Step 4. Ask the DM, if he/she wants to see more than one (weak)
nondominated solutions of MCLP problem, go to Step 6. Otherwise, go to Step 5.

Step 5. Solve the scalarizing problem E2' using linear programming algorithm to
find a solution of MCLP problem. If the DM wants to see one (weak) nondominated
solution of MCLIP problem close to the current solution of MCLP problem, go to Step
7. If the DM wants to see one or more near (weak) nondominated solutions of MCLIP
problem close to the current solution of MCLP problem, go to Step 8. Otherwise go to
Step 2.

Step 6. Ask the DM to specify parameter s – the number of (weak) nondominated
solutions of MCLP problem, that should be saved in set M1.  Solve the scalarizing

problem  '
2E by a linear parametric programming algorithm.  Present the set  M1 to the

DM for evaluation and selection of a current preferred solution.  If the DM wishes, he/
she may use the ranking procedure RP to aid him/her to select the current preferred
solution of the MCLP problem.  If the DM wants to see a (weak) nondominated solution
of MCLIP problem close to the current preferred solution, execute Step 7. If the DM
wants to see a near (weak) nondominated solution of MCLIP problem close to the
current preferred solution, go to Step 8. Otherwise go to Step 2.

Step 7. Solve problem E3'. Show to the DM the (weak) nondominated solution of
MCLIP problem. If the DM selects this solution as a current preferred solution of
MCLIP problem, go to Step 2. If this is the most preferred solution of MCLIP problem,
Stop.
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Step 8. Solve problem E3'. Show to the DM near (weak) nondominated solution
of MCLIP problem. If the DM selects this solution as a current preferred solution of
MCLIP problem, go to Step 2. If this is the most preferred solution of MCLIP problem,
Stop.

Step 9. If the DM choose to see one (weak) nondominated solution of MCLIP
problem go to Step 11. If the DM wants to see one or more near (weak) nondominated
solutions of MCLIP problem, go to Step 10.

Step 10. Ask the DM to specify s–the number of near (weak) nondominated
solutions of MCLIP problem, which should be stored in set M1.  Solve the scalarizing
problem E1'  by an heuristic integer programming algorithm and present the set M1 to
the DM for evaluation and selection.  If the DM wishes, he/she may use the ranking
procedure RP to help him/her to select the current preferred solution of MCLIP
problem.  If the current preferred solution is the most preferred solution of MCLIP
problem, Stop; otherwise go to Step 2.

Step 11. Solve problem E1'. Show the (weak) nondominated solution or near
(weak) nondominated solution (if the computational process is interrupted because the
computation time is too long) to the DM.  If the DM approves this solution as a current
preferred solution of MCLIP problem, go to Step 2.  If it is the most preferred solution
of MCLIP problem, Stop.

The proposed interactive algorithm for solving multicriteria linear integer problems
is learning-oriented in which the DM controls the dialogue, the computations, and the

stopping rules. Linear parametric programming problems (scalarizing problems '
2E )

are often used when solving medium or large MCLIP problems. A few mixed integer
linear programming (scalarizing problems E1' and E3' ) are also solved when the DM
either feels uncomfortable to work with continuous variables, or when he/she is looking
for an integer solution close to the current preferred continuous solution.  When solving
a medium or a large MCLIP problems, it is appropriate (especially, in the learning phase)
to solve the integer scalarizing problems by heuristic algorithms.  Many heuristic
algorithms operate well in a “narrow feasible region” and a known initial feasible integer
solution helps them to find good and, in many cases, optimal solutions of the integer
scalarizing problems. The evaluation of more than one solution, even near (weak)
nondominated solutions, enables the DM to learn quickly about the problem being
solved. The use of RP procedure may help the DM to evaluate these solutions.

6. Implementation and experimental results

We have developed a research decision support system, called MOLIP, for solving
multicriteria linear integer programming problems. It consists of three main parts: a
control program, interface modules and optimization modules.

The basic functions of the control program can be divided in three groups. The first
group includes the possibility of using resources of MS Windows operating system in
the program environment. The second group of control program includes creating,
modifying, and saving files containing the description and the interactive process of
solving MCLIP problems, and the localization of different errors. The third group of
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control program includes the visualization of important information for the DM and
about the system operation as a whole.

The interface modules realize the dialogue between the DM and MOLIP system
during the entry and correction of the input data, the interactive process of problem
solution, and the dynamic visualization of the main parameters of the process.

The optimization modules implement the proposed partition-based interactive
algorithm. These modules include one exact branch-and-bound algorithm (based on
one-sided branching, including heuristics, N e m h a u s e r,  W o o l s e y [25], and three
heuristic algorithms, namely, algorithm of  I b a r a k i  et  al. [16], algorithm of internal
feasible directions, V a s s i l e v,  G e n o v a [35], and a “tabu search” type algorithm,
G o u l j a s h k i,  V a s s i l e v [14], for solving single criterion linear integer programming
problems. Linear and linear parametric programming algorithms, AHP, and Promethee
II procedure are also included in the optimization modules.

The software for all single criterion algorithms were developed at the Institute of
Information Technologies – BAS. Particular attention has been paid to the heuristic
algorithms. Extensive tests of the algorithm of  I b a r a k i  e t   a l. [16] and the algorithm
of internal feasible directions were conducted in V a s s i l e v,  G e n o v a [35] with
respect to the speed of the algorithms and the quality of the solutions obtained. The
algorithm of  I b a r a k i  et  al. [16] is one of the first good heuristic algorithms for solving
linear of integer programming problems. It formulates and solves linear sub-problems
on the basis of several heuristics and rounds off the values of the variables to integer
values. It is especially useful for finding initial feasible integer solutions. The algorithm
of the internal feasible integer directions belongs to the class of component algorithms
and improves the feasible integer solutions comparatively quickly. The quality of the
solutions generated by these two algorithms is generally good. For example, in 66% of
the cases the algorithm of Ibaraki et al. (1974) generated a solution (that is, the criteria
values) within 3% of the optimal criteria values, and in 85% of the cases, the solution
was within 10% of the optimal criteria values, see V a s s i l e v, G e n o v a [35].
The performance of the internal feasible integer directions algorithm was similar.
Better results were obtained by “tabu search” type heuristic algorithm in some cases
when an initial feasible integer solution existed and feasible region was “narrow”, see
G o u l j a s h k i,  V a s s i l e v [14].

The speed and the quality of the solutions obtained by the three heuristic algorithms
are comparatively good. Nevertheless, the quality of the solution obtained by each
algorithm depends, to a great extent, on the type and the structure of the problem. To
expand  the class of the problems that can be solved with high probability quickly and
efficiently, these three algorithms in DSS MOLIP are used together as one generalized
algorithm, first executing the algorithm of I b a r a k i  et  al., then the algorithm of internal
feasible directions, and at the end – a “tabu search” type algorithm. On the basis of the
properties described above, we decided to use this order for operation of the three
algorithms.

Recently a number of new heuristic algorithms have been proposed to solve single
criterion integer problems, which use some of the meta-heuristics, namely “evolutionary
search”, R e e v e s [29], “simulated annealing”, P i r l o t [27], and “tabu search”,
G l o v e r,  L a g u n a [12]. In DSS MOLIP, we have included the heuristic algorithms
described earlier because we have their software and have gained significant experience
in relation to their computational behaviour.
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Two types of tests were conducted on the research DSS MOLIP. The first test
was directed toward computational analysis of the single criterion integer algorithms
included in the system, where as the second test was performed to learn some aspects
of DM’s behavior in the operation of the proposed partition-based interactive algorithm.

In the first test, we solved several multicriteria problems. The purpose of this test
was to observe the difference between the computing times for obtaining exact and
approximate integer solutions, and the quality of the obtained approximate integer
solutions. These problems were taken from V a s s i l e v,  G e n o v a [35] and by adding
two new criteria to each problem, we modified them as three criteria problems.

The number of constraints and variables for only eight problems are given in Table
1. In the table, we also give percent of the non-zero elements for all the problems. It
may be noted that the first five problems are binary where as the last three are all
integer. For the first three problems, the coefficients of the variables were zero or one;
for the fourth problem, they ranged over zero to 100; and for the fifth problem over zero
to 200. The coefficients for problems 6, 7 and 8, ranged over zero to 600,  zero to 1000,
and  zero to 100, respectively. For each of these eight problems, three iterations of the
interactive algorithm were executed using the exact or generalized heuristic single
criterion integer algorithms. Three approaches were used, namely: 1) an exact
algorithm at each iteration, denoted by EEE ; 2) a generalized heuristic algorithm at the
first two iterations and an exact algorithm at the third iteration, denoted by HHE  and
3) a generalized heuristic algorithm at each iteration, denoted by HHH. For these
approaches we report the average CPU time (in seconds) for performing these three
iterations in Table 1. The computations were performed on a PC Pentium II, 400 MHZ,
128 MB RAM. In the last two columns, we present the average deviation and average
percent deviation of the approximate solutions from the exact solutions for the second
and third approach, respectively.
          Table 1. Computational Results

From Table 1, we observe that the average CPU time needed for the three
iterations to compute an exact (weak) nondominated or near (weak) nondominated
solutions differs considerably. The larger the dimension of the problem, the greater is
this difference. Clearly, this difference reflects the lack of guarantee in the quality of
the near (weak) nondominated solution. During the learning phase, this compromise in
the quality of the solutions may be acceptable, while this may be the only practical option
for solving large problems.

A second test was performed to learn how DMs familiar with different interactive
algorithms may use the possibilities offered by the proposed algorithm with DSS

Number of Computational Time 
(CPU seconds) 

Prob- 
lem  

num- 
ber 

Const- 
raints 

Vari-
ables 

Percent 
non- 
zero  

elements EEE HHE HHH 

f
 

Per-
cent 

f  

1 15 15 50 1.2 0.5 0.30 0 0.0 
2 31 31 50 24.3 8.7 0.60 1 6.1 
3 50 32 10 64.5 24.8 0.85 0 0.0 
4 50 50 30 4860.0 1632.0 11.70 3 2.6 
5 87 48 10 9360.0 3348.0 116.00 0 0.0 
6 12 50 10 31.2 11.4 1.30 10 4.3 
7 30 60 100 3720.0 1210.0 10.10 0 0.0 
8 82 108 50 16831.0 4852.0 64.00 16 3.9 
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MOLIP to solve the MCLIP problems. Ten students of economics and mathematics
at Sofia University and the New Bulgarian University, who had learned the theory and
practice of multicriteria optimization and multicriteria decision making were used as
DMs. Each student was given a different set of three problems, from the problems used
in the first test, to solve. The students were instructed to find a solution such that the
relative difference between the single objective optimum value of a criterion and its
value in the most preferred solution should be in a non decreasing order of the criterion
number. Furthermore, the values of the criteria in the most preferred solution should be
relatively close to the ideal point. Since the proposed interactive algorithm is learning-
oriented, they had complete freedom to express their preferences, to use continuous or
integer single criterion algorithms, to apply the ranking procedure RP in the selection
of the current and the most preferred solution. The decision makers worked independently
and their experience in solving different problems may be summarized as follows:

1. The DMs used all the choices offered by the DSS MOLIP in stating their local
preferences. However, at different phases of the solution process, some options were
used more often than others. For example, in the initial solution phase, the DMs
preferred to set more desired or acceptable directions of the criteria, where as in the
final phase they mainly preferred to set desired or acceptable amount of changes in
terms of levels and intervals of the criteria values. This behavior is understandable
because in the initial phase every DM desires to know a rough estimate of the ranges
for changes of the separate criteria, while in the final phase, he/she wants to maked
more precise search for the most preferred solution.

2. In the initial phase, the DMs showed tendency to mainly solve continuous
scalarizing problems or to solve integer scalarizing problems approximately. In the final
phase, they chose exact solutions of the integer scalarizing problems. For large
problems (after the DMs realized how long it takes to solve an integer scalarizing
problem), many preferred not to use the exact single criterion algorithm.

3. At a given iteration, when the DMs desired more solutions to choose the current
preferred solution, he/she used the RP ranking procedure to rank these solutions. They
realized early on that it was easier to set additional preference information than to
compare many solutions directly.

4. For each problem, most DMs found the same or very close most preferred
solutions.

Based on these observations, we believe that the proposed interactive algorithm
possesses some relatively good characteristics. Still better results could be obtained if
DSS MOLIP were further developed, with improved interface with the DM, and
included more recent single criterion algorithms.

7. Concluding remarks
We have proposed a learning-oriented interactive algorithm to solve multicriteria linear
integer programming problems. The algorithm offers the DM flexibility to express his/
her preferences with respect to the current preferred solution. At each iteration, the
DM has the choice to compute one or more (weak) nondominated (continuous or
integer) solutions or near (weak) nondominated integer solutions. The DM is encouraged,
especially in the learning phase or when solving large problems, to solve continuous
scalarizing problems or the integer scalarizing problems approximately at many
iterations. This considerably reduces the computational time at each iteration. When the
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DM wants to see more than one continuous or integer solutions at an iteration, the DM
may select the current preferred solution based on nonformalized information about his/
her preferences or may use a ranking procedure based on additional formal information.

We have developed a research decision support system based on the proposed
algorithm. Our experimental results confirm that the DMs use all the choices in stating
their preferences, some choices more often than others, and different choices at
different stages of solving the problem. Furthermore, the computational effort and time
are reduced considerably by using continuous and heuristic integer algorithms in the
learning phase and for solving large MCLIP problems.

Appendix
Theorem 1. The optimal solution of the scalarizing problem E1 is a weak efficient
solution of the MCLIP problem.

P r o o f.

Let K  or K .

Let 1
* Xx   be an optimal solution of problem E1. Then the following

conditions are satisfied:
(40)                     1

* every for ),()( XxxSxS 
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Let us assume that 1
* Xx   is not a weak efficient solution of the MCLIP

problem.  There must exist 1
' Xx   for which:

(41)                        ,),()( '* Kkxfxf
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The condition (41) follows from the definition of weak efficient solution and the
remaining conditions follow from the fact that x' must satisfy the constraints of the
scalarizing problem E1.
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After transformation of the objective function S(x) of the scalarizing problem E1,
using inequalities (41), the following relation is obtained:

(42)  
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From (42), it follows that S(x') < S(x*), which contradicts (40). Hence, x*  X1 is
a weak efficient solution of the MCLIP problem. Therefore, the corresponding solution
f(x*) is a weak nondominated solution.

Theorem 2. The optimal values of the objective functions of problems E1 and E1'
are equal, i.e.
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P r o o f.
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Since this inequality is true for every Kk , it is also true that
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If the left and right sides of inequalities (45) and (46) are summed, we obtained:
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Let 
1

* Xx    be an optimal solution of problem E1'. Then
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The right side of (47) can be rewritten as:
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which proves the theorem.
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многокритериалното линейно целочислено програмиране

Васил Василев1, Субхаш Нарула2, Марияна Василева1,
Красимира Генова1

1 Институт по информационни технологии, 1113 София
2 School of Business, Virginia Commonwealth University,  Richmond, USA

(Р е з ю м е)

Предлага се интерактивен алгоритъм, ориентиран към обучение, за решаване на
задачи на многокритериалното линейно целочислено програмиране (МКЛЦП),
които се разглеждат като многокритериални задачи  за вземане на решение. На
всяка итерация лицето, вземащо решение (ЛВР), може да раздели множеството
на критериите най-много в седем класа, а именно: подобрение, подобрение с
желана стойност, влошаване, влошаване до определена степен, невлошаване,
промени, позволени в определен интервал, и свободни промени. Въз основа на
разделянето на множеството на критериите, се формулират два типа скала-
ризиращи  задачи  на  линейното и  на смесеното целочислено програмиране. На
повечето итерации се намират едно или повече (слаби) недоминирани решения
на  непрекъснатата релаксация  на  задачата на МКЛЦП. Само на  някои
итерации се решава смесена целочислена скаларизираща задача, за да се
намерят едно или повече (слаби) недоминирани или близки (слаби) недоминирани
решения (близо до недоминирата повърхност на задачата на МКЛЦП). При
определена итерация, ако ЛВР желае да види повече от едно решение, той/тя
може да избере предпочитано решение на основата на неформализирана
информация за неговите предпочитания или да използва процедурата за
подреждане, основана на допълнителна формална информация. На основата на
предложения алгоритъм е разработена  изследователска  система за подпомагане
вземането на решения.


