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Abstract: The aim of the present paper is to integrate a recurrent neural network
in two schemes of real-time soft computing neural control. There are applied the
following control schemes: an indirect and a direct trajectory tracking control,
using the state and parameter information, given by an identification recurrent
neural network. The applicability of the proposed control schemes is confirmed
by simulation and experimental results, which exhibits a good convergence.
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1. Introduction

The Neural Network (NN) modeling and application to system identification, prediction
and control was discussed for many authors [1-10]. Mainly, two types of NN models
are used: Feedforward (FFNN) and Recurrent (RNN). The main problem here is the
use of different NN mathematical descriptions and control schemes, according to the
structure of the plant model. For example, Narendraand Parthasarathy,
[1, 2], applied FFNN for system identification and direct model reference adaptive
control of various non-linear plants. They considered four plant models with a given
structure and supposed that the order of the plant dynamics is known. P a o et al. [3,
4] solved control and prediction problems by means of a flat-type functional FFNN,
used for direct inverse model learning control. Pham, Yildirim [5] applied Jordan
RNN for robot control. Sastry etal. [6] introduced two types of neurons — Network
Neurons and Memory Neurons to solve identification and adaptive control problems,
considering that the plant model is also autoregressive one. In [7], some schemes of
NN and RNN applications to control, especially of direct model reference adaptive
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control, are surveyed. In [8, 9, 10], Recurrent Neural Networks are applied for adaptive
control. All drawbacks of the described in the literature NN models could be
summarized as follows:

1. There exists a great variety of NN models and universality is missing, [1-10];

2. All NN models are sequential in nature as implemented for systems
identification. (The FFNN model uses one or two tap-delays in the input, [1, 2], and
RNN models usually are based on the autoregressive model [6] which is one-layer
sequential one;

3. Some of the applied RNN models are not trainable, others are not trainable in
the feedback part, [5]. Most of them are dedicated to a SISO and not to a MIMO
applications [3, 4];

4. In most of the cases, the stability of the RNN is not considered, [5], especially
during the learning;

5. In the case of FFNN application for systems identification, the plant is given
in one of the four described in [1] plant models. The linear part of the plant model,
especially the system order, has to be known and the FFNN approximates only the
non-linear part of the plant model [1];

6. All these NN models are non-parametric ones [1, 7] and so, not applicable for
an indirect adaptive control systems design;

7. All this NN models does not perform state and parameter estimation in the
same time [7-10].

The major disadvantage of all this approaches is that the identification NN model
applied is a nonparametric one that does not permit them to use the obtained information
directly for control systems design objectives. B ar u c h et al. [11] in their previous
paper, applied the state-space approach to describe RNN in an universal way, defining
a Jordan canonical two-layer RNN model, named Recurrent Trainable Neural Network
(RTNN). This NN model is a parametric one, permitting the use of the obtained
during the learning parameters for control systems design. Furthermore, the RTNN
model is a system state predictor/estimator, which permits to use the obtained system
states directly for state-space control. The aim of this paper is to use the RTNN as an
identification and state estimation tool in direct and indirect adaptive control systems
of nonlinear plants. The application of RTNN in two different indirect and direct
control schemes shall be confirmed by simulation and experimental results.

2. Topology and learning of the RTNN model

The Recurrent Trainable Neural Network model (RTNN), and its learning algorithm
of dynamic Backpropagation-type, (BP), is given in [11]. The RTNN model is
described by the following equations:

1) X = X ABU

2) z =T[x 1,

3) y, =®[C 2],

(4) J =b|ock—diag(Ji);|Ji <1,
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wherey, X, and u are, respectively, output, state and input vectors with dimensions I,
n, m; J = block—-diag(J)) is a (n?n)-state block-diagonal weight matrix; J. is an i-th
diagonal block of J with 1?1 or 2?2 dimension. Equation (4) represents the local
stability conditions, imposed on all blocks of J; B and C are (n?m)- and (I? n)-input and
output weight matrices; T", ® are vector-valued sigmoid or hyperbolic tangent-activation
functions [11] the sub-index k is a discrete-time variable. The stability of the RTNN
model is assured by the activation functions and by the local stability condition (4).
Block-diagram of the RTNN topology and its adjoint is given on Fig. 1 a, b. The adjoint
RTNN is derived using the diagrammatic method, given in [12]. The controllability and
observability of RNN are studied in [13, 14]. The most commonly used BP updating
rule, given in matricial form [15], is the following:

W =W +n7 AW +a AW
k+1 k k k k k-1

where W, is a general weight, denoting each weight matrix (C,, J,, B,) in the RTNN
model, to be updated; AW,, (AC,, AJ,, AB,), is the weight correction of W,; while n and
o are learning rate parameters. Following the block-diagram of the adjoint RTNN, the
next vector-matricial algorithm of learning [15] could be derived:
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Fig. 1. Topology and learning of the RTNN: block-diagram of the RTNN (a); block-diagram of the
adjoint RTNN (b)
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where AJ, , AB, , AC, are weight corrections of the of the learned matrices J,, B, C,,
respectively; e, = d —y, is an error vector of the output RTNN layer, where d, is a
desired target vector and y, is a RTNN output vector, both with dimensions [; x, is an
i-th element of the state vector, and e, are j-th error vectors, illustrated in Fig. 1 b; I, ”,
®,” are Jacobean diagonal matrices with appropriate dimensions, which elements are
derivatives of the activation functions. The equation (6) represents the learning of the
feedback weight matrix of the hidden layer, where it is supposed to be full (nxn)
matrix. The equation (7) gives the learning solution in the case when this matrix is
diagonal, which is our case. Stability proof of the learning algorithm s given in [15]. In
the next parts an indirect and direct adaptive control schemes, are described.

3. Indirect adaptive trajectory tracking control

The block-diagram of the indirect trajectory tracking control scheme is given in Fig. 2.
It contains one identification and state estimation RTNN which issued parameters and
states to the controller block. Let us linearize the activation functions of the neural
identifier, given by equations (1) to (4) so to obtain:

9 X(k+1)=IX(k)+BU(K),

(10) Y(k)= CX(K).

Following the design procedure, developed in [16], we could obtain the following linear
control law, which contain a built in first order reference model:

(12) U(K) =(CB){-CIX(K)+R(k+1)+1R(K)-Y(K)]}.

The substitution of the control (11) in the identified linear plant model (9), (10),
yields:

(12) E(k) = R(K) - Y(k); E(k+1) + yE(K) = 0,

where R(K) is the reference signal, Y(k) is the system output, vy is a constant control
parameter with values between —0.999 and 0.999, and (C, B,) # 0 is supposed.

R(K) Y (K)
— Controller »  Plant
k\ —
\RTNN
N Lei(k)

Parameters + States

Fig. 2. Block-diagram of the indirect adaptive NN control system
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4. Direct adaptive trajectory tracking control

The block-diagram of the direct adaptive trajectory tracking control system is given in
Fig. 3. The control system have tree RTNNSs: the firs one RTNN-1 is a neural identifier,
which issues plant states to the feedback neural controller RTNN-2; the third one
RTNN-3 is a feedforward neural controller which has as input the reference signal.

The plant control have the total input as a sum of the feedback and feedforward
control signals:

(13) U(k) = = N,[X(K)] + N,[R(K)],
where N, (*) is a feedback control, generated by RTNN-2; N, is a feedforward control,
generated by RTNN-3.

The identification RTNN-1 is trained by the identification error e (k), and the
feedback and feedforward controllers RTNN-2, RTNN-3, respectively — by the control
error e (k). Inthe following part, graphical simulation results, obtained using a nonlinear
plant model, and both indirect and direct adaptive control schemes, are given.

R(K) y(K) e
- +
Plant @
A .
RTNN-1— (5"

0
|7 X(9) \

Fig. 3. Block-diagram of the direct adaptive NN control system

5. Simulation results

The nonlinear plant is given by the following discrete-time nonlinear model:

ik +1) = YOOV =Dy (k=2u(k ~DIy(k =) -1+ u(k)
1+yk-1)2+y2(k-2)
The obtained simulation results using the on-line indirect adaptive control scheme,
are given on Fig. 4 a, b, and Fig. 5 a, b. The RTNN identifier has topology (1, 8, 1),
which means one input, one output and eight neurons in the hidden layer. The BP
learning parameters are: a=0.01, n=0.03, and the control parameter is y=0.001; the
period of discretization is Ts=0.001 sec. The reference signal is:

u(kT,)=0.5sin(2nkT )+0.5sin(4nkT )

The results of control shows a good convergence which is seen from the
comparison of the plants output and the reference signals (Fig. 4a) and the Means
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Squared Error of control (MSE%) which is below 1.5% (see Fig. 5b). The identification
results also exhibits a good convergence, which is seen on Fig. 4b. and it is a good
base for a good control (see Fig. 5a).

2 T T T T T T T T T

-2 1 L 1 L L 1 L 1 1
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(b)

Fig. 4. Graphical results of the Indirect Adaptive Neural Control: comparison between the plant
output (dashed line) and the reference signal (continuous line) (a); comparison between the plants
output (continuous line) and the RTNN output (dashed line) (b).
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Fig. 5. Graphical results of the Indirect Adaptive Control: control signal (a); MSE% of control (b)
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Fig.6. Graphical results of the Direct Adaptive Neural Control. a) comparison between the plant output
(dashed line) and the reference signal (continuous line); b) comparison between the plant output
(continuous line) and the RTNN output (dashed line).

The obtained simulation results using the on-line direct adaptive control scheme,
are given on Fig.6 a, b, and Fig. 7 a, b. The RTNN -1 identifier has topology (1, 2, 1).
The RTNN-2 feedback controller has topology (2, 2, 1). The RTNN-3 feedforward
controller has topology (1, 2, 1). The BP learning parameters for all three RTNNSs are:
a=0.01, n=0.03, and the period of discretization is T,=0.001 s. The reference signal is
the same as given above. The results of control shows a good convergence which is
seen from the comparison of the plants output and the reference signal (Fig. 6a) and
the Means Squared Error of control (MSE%) which is below 0.5% (see Fig. 7b), in
spite of the low dimension of the hidden layers of the RTNNs. The identification
results also exhibits a good convergence, which is seen on Fig. 6 b. and it is a good
base for a good control (see Fig. 7a).
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Fig. 7. Graphical results of the Direct Adaptive Control. a) control signal; b) MSE% of control
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6. Experimental results

The objective of this section is to describe the experimental results of a RTNN
application for real time identification and direct adaptive neural control of a DC motor
driven mechanical system. The system uses one RTNN for system identification and
two RTNNs for system control. The configuration of the experimental DC-motor
mechanical system platform, together with its control and measurement components,
are shown on Fig.8. We use a 25 V, 8 A DC-motor driven by a power amplifier and
connected by a data acquisition and control board (DACB), Multi-Q™ , with the
PC. The RTNN was programmed in MatLab™-Simulink™ and WinCon™ that is a
real-time Windows 95 application that runs Simulink generated code using Real-
time Workshop to achieve digital real-time control on a PC equipped with a DACB.
The block diagram of the soft-computing control scheme is given on the Fig. 3. The
feedback part of the control uses the state vector given from the state estimation/
identification RTNN. The identification RTNN is learned by the error between the
DC-motor output position and the RTNN output. The two control RTNNSs are learned
by the error between the DC-motor output and the reference signal. To preserve the
stability of the adaptive control system at the beginning of the working — first the
identification RTNN is put on work and learned until converges; then the feedback
control RTNN is put on work and learned until converges and finally the same is done
with the feedforward control RTNN. The first experiment (Figs.9, 10, 11) corresponds
to a closed-loop input/position real-time identification of the DC-Motor.

wWinCon' ™ winCon'"
Server Client

™
MatLab
Simulink :
[ e =—={ i \w MUt

DC Motor

Power
Amp

Encoder

Fig.8. Configuration of the experimental DC-motor mechanical system platform for real-time systems
identification and control.

The RTNN model has the following topology: one input neurone, four hidden neurone
nodes and one output neurone (1, 4, 1). The learning rate parameters are: 7=0.005,
and « = 0.005. The sampling period is T,= 0.001. The DC- Motor input is chosen as
a saturated sinusoid given by:
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u(kT)) = 0.277 sat[nsin(0.87k]

The Figs. 9, 10, 11 shows the graphical results of the firs experiment, where the output
position of the DC-motor, the mean squared error and the systems state signals,
generated by the RTNN, are given.

The second experiment is the real-time closed loop identification and state feedback/
feedforward control of the DC-motor. The control scheme is the same as in the first
experiment, but here the reference signal changes its frequency. The Fig.12 shows
the graphical results of the DC-motor control (DC-motor position output, control signal
and instantaneous control error). In this experiment the reference signal changes its
frequency from 0.8 to 0.5 and a good control systems reaction, is observed.

The third experiment is also a real-time closed loop DC-motor identification and
state feedback/ feedforward control, performed with another shaft load. The same
identification and control scheme is used. The Fig.13 gives the load configuration and
the Fig. 14, 15, 16, 17 show the graphical results of the DC-motor control (DC-motor
position, reference signal, control signal and control error).

The obtained results show a good convergence of al RTNNs and a good reaction and
adaptation to frequency and load changes.

6.1. First experiment

rad.

0 12 14 16 18 20
(@)

rad.

10 12 14 16 18 20
(b) Sec.

Fig. 9. Graphical results of the Real-Time DC-motor drive identification by a RTNN model,
n=0.005, a=0.005, RTNN topology (1, 4, 1); input signal: u(k)=0.277sat[rsin(0.87k)];
output position of the DC-motor (a); output of the identification RTNN (b)
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Fig. 10. Errors in the DC-motor drive identification, n=0.005, «=0.005, RTNN topology (1, 4, 1); input
signal: u(k) = 0.277sat[rn sin(0.87k)]; the sampling rate is T,=0.001 s.; instantaneous error of
identification (a); Mean Square Error (MSE) of the identification (b)

-0.05f
-0.1 i
0.3 T T T

0.2 ]
01f 4

0 2 4 6 8 (d) 10 12 14 16 18 sec 20

Fig. 11. Systems states estimated by a RTNN model, n = 0.005, o =0.005, RTNN topology (1, 4, 1);
input signal: u(k)=0.277 sat [nsin(0.8xnk)]; sampling rate T,=0.001 s.; x,(k+1) (a); x,(k+1) (b);
X(k+1) (©); x,(k+1) (d)
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6.2. Second experiment
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Fig. 12. Real-time state-feedback/feedforward control by two RTNN models and states, estimated by
an identification RTNN, n=0.001, «=0.0005, RTNN topologies (1, 4, 1) and (4, 4, 1); the reference
signal changes its frequency from u(k) = 0.277 sat [nsin (0.87k)] to u(k )= 0.277 sat [nsin(0.57k)]; the
sampling rate is Ts=0.001 s.: output position of the DC-motor (a); control signal of the DC-motor (b);
instantaneous control error (c)

6.3. Third experiment

The load configuration is given on the Fig.13. where an additional inercia and a
gravity force is applied on the shaft of the DC-motor.

{

—

DC MOTOR
(

Fig. 13. DC Motor load configuration
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Fig. 14. Comparison of the reference signal and the shaft position. Shaft position (solid line) and

reference signal (dashed line); the RTNN topology is (1, 4, 1);. the learning parameters are: for the
RTNN-1,2 n, «=0.0005; for the RTNN-3, n=a=0.01. The reference signal is a sequence of two sinusoid

functions, which are: u(kT )= 0.8nsin(T .k n/15) and u(kT,)= (1/9)nsin(T Kk 27/5)
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Fig. 15. The response of the RTNN-3 for identification. Output of the RTNN-3 (solid line) and shaft
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Fig. 17. Control signal, composed of feedback and feedforward components

7. Conclusions

The paper proposed to use two control schemes for an adaptive neural control of
nonlinear plants. The first one is an indirect adaptive neural control scheme where the
state and parameters, identified by a neural identifier are used to design a control law.
The second one is a direct adaptive neural control which uses three RTNN models —
one neural identifier which issued a state vector as input to the feedback controller.
The feedforward part of the control is generated by a feedforward controller which
input is the reference signal. The work of both adaptive neural control schemes is
confirmed by simulation results. The direct adaptive neural control scheme is
experimented also for real-time DC-motor driven mechanical system identification
and state feedback/feedforward control. The applied RTNN model is a Jordan canonical
model, permitting to use the generated vector of states directly for DC-motor feedback
control. The dynamic Backpropagation-type learning algorithm for RTNN model training
is also described. The three groups of experimental results, obtained in different
operational conditions, confirms the applicability of the described identification and
control methodology in practice and also show a good convergence of the applied
RTNN’s as elements of the adaptive control scheme.
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Cxemu 3a alanTHBHO YIpaBJIEHHE, OCHOBAaH! Ha PEKyPEHTHU
00y4yaeMu HEBPOHHU MPEXHU

Hepoxam Bapyx', Xoce Mapmun ®nopec', Foiika Henxosa?
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2Uncmumym no ungopmayuonnu mexnonozuu, 1113 Cogpus

(Pe3wme)

LlenTa Ha HAacTOAIIATA CTATHS € Jla MHTErpUpa €Ha PEKYPEeHTHA HEBPOHHA MpPEKa
B JIBe CXeMH 3a HeBpoHHO SOft computing ynpasnenue B peanno Bpeme. [Ipriioskenn
ca CJIEJIHUTE CXEMHU Ha YIpaBJIeHHWE: Ha WHIUPEKTHO M JIMPEKTHO YIIPABJIEHHE 10
TPAEKTOPHSI, U3MON3BANKK HH(POPMAIIUS 32 ChCTOSIHUETO M [TapaMETPHTE, TOIyYaBaHO
OT UACHTU()HUKAIIMOHHA PEKYpEHTHAa HEBPOHHA Mpeka. [IpuiokuMocTTa Ha
NPEMIOKEHUTE CXEMH 3a YIPABICHHE CE TMOTBbPXKAaBa OT CHMYJIAIHOHHUTE U
eKCIIEPHMEHTAITHUTE PE3y/ITATH, KOMTO MOKa3BaT J100pa CXOMUMOCT.
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