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Abstract: The present paper discusses the sampling and restoration of periodic
signals using systems of evenly shifted analyzing and synthesizing functions. The
influence of these functions on the approximation accuracy as well as the re-
guirements towards them concerning optimization of the error obtained, are shown.
Some methods are considered for perfect interpolation of periodic frequency-
limited functions. For such functions the interpolation with sincx functions, dif-
fering from the non-periodic ones, can be reduced to a finite number of summations.
The methods for achieving computing stability are depicted.
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1. Introduction

The interpolation and sampling are main procedures in signals digital processing. They
are used not so intensely for the representation and restoration of continuous functions,
as for their processing — alteration of the scale, deriving of desired parameters, realiza-
tion of different geometric transformations such as translation, rotation, scale altera-
tion, presenting with a different degree of resolution, etc.

The approximation accompanies every signal processing. Its participation is most
sensitive in re-filtration, sampling and interpolation. The first two processes cause
unrestorable alterations in the real continuous function. With a continuous function
already presented in a discrete form, the interpolation may be executed with the help of
different approaches depending on the purpose of processing. It however has its limited
capacities with regard to the proximity to the initial continuous function. Moreover, it
will be exposed that the requirements towards the functions for interpolation are stricter
than those for re-filtration.
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The question for quantitative evaluation of the changes introduced in interpolation
gains particular importance. It has been regarded rather in its qualitative than in the
guantitative aspect until recently. In the last several years a great number of research-
ers have developed tools for defining these changes, most often considered as noise
components. They play a significant role in the geometric transformations in computer
tomography.

I1. Presentation and approximation

The classical signal processing assumes the paradigm that the continuous signal can be
presented in the form of discrete convolution of the type:

(1) S =2 a¢p (t-k),

where a, are measurers of the continuous function s(t), and o =olt- k)} is a set of

translated functions at equidistant intervals. The wavelet theory shows that all the
orthogonal scale functions [2] can be used as such interpolation functions.
In a stricter sense in order that {¢, } can form a linear subspace in Hilbert space

H, ie. V. =span  _fe H, it is necessary {¢, } to form Reisz basis, the set of
P

linearly independent vectors {p,, k € Z }, if the double inequality below given is satis-
fied:

2
C?|lay] < <Cllaff V.iezclZ,

Zai‘/’ (t-1i)

0<C,<C, <.
At C, =C,, ¢, forman orthonormal basis

@ (0.0 )={ot-iLot-K)=5(-kK).,
The upper constraint can be reduced to the condition:
3) C2<o(w)<C?, where o ()= |@(w+27k)[,

Aw)=3J [go (t)] , 3 is an operator of the Fourier transform.
This condition can be shown as follows:

Let s(t) = > a,p(t—k)and s(t) c L,
Slw)=Sae @) Aw)=Xae ",
SO =ls@)]" = J|A@) | @) df,

Alw + 27k) =Xa e loe iz = Alw),
k
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2

2
[s@) = [|A@)[e@)df + [|A@+27)[ @@+ 27) +...
0 0 y
s @) =3 [|A( + 27 K)[|@(e + 27 k[ df =

[ @) Tl + 22k) df = T | @) o(w)df
AtC’<o(w)<C}, Voc0+2rx

2 2 2
ci|a@) <|8@)| <cila@) .

The “measures” {a, } of function S(t) can be obtained either with the help of a
convolution with another function for the moments of k, or projecting on the set of other
analyzing functions, also forming a linear vector subspace in H {9 (t —k) }

a_=(s(t),0(t-k)).

Let P and R denote respectively the operations projection and interpolation (re-
construction).

It is obvious that P transforms the space L2 into 1.2, while the reconstruction
inversely transforms |2 into L 2. The signal reconstructed has the form:

S(t)=RPS(t) = > [s(z)0" (r —k)p(t—k)dr.
Setting K (t,7) =Y 0" (r—k)o(t—k)

4) S(t) = [S()K(t,r)de.

The kernel K(t, 7), regarded as a discrete function with parameters t and z repre-
sents a correlation function between the analyzing and the synthesizing function.

A direct approach to increase the validity of the transformation is to decrease the
sampling step. This can be analytically expressed replacing the integer variable n by
an, a > 0. Then the expressions become:

5) coa(t—n)=%<o(é—nj.aa(t—n)zﬁe(é—n),

(6) T [s®]=P R [S(t)]zin( jS(r)dr :
a a a a
There exist large classes of functions ¢ (t) and 6 (t), for which

at a >0, |P,R,S()-S(t)|—0.
For the transformation kernel K(t, 7) | ves M ey er [1] has shown that if it is

t 7
- =
a o
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periodical witha period 1, K(t,7) = K(t +1,7 +1), the following conditions are satis-
fied:

‘K(t,r)sl JK(tr)dr =1 vteR

G
+(t—1)°
vs®elZ, [T, [s@)]-s)| —0at a—o.

The condition j K (t,z)dz =1 implies the constraint I@(t)dt # 0. Indeed,

[K(t,7)dr =[0"(r —k)dzXo(t —k)dz.

Then

If assumed that J.H(t)dt:l, which is easily fulfilled, the constraint

z @ (t—k) =1 is obtained, after introducing an appropriate multiplier, which in the
frequency domain will lead to:
(7 #0)=1,p(27rk)=0,vke Z,k 0.

This important condition is shown by [2]. The placing of additional constraints on
o (t) and 6 (j) is possible. One significant constraint is the condition for biorthogonality

— to belong to one and the same vector space and to be mutually orthogonal, according
to the relation:

(p(t-Kk),0(t-])=5(k-1]).
In this case the re-filtration is reduced to orthogonal projection and the error ob-
tained at twofold transform is minimal in the mean square sense.
The operator projection has an important property P" =P VneZ . When
selecting a synthesizing function ¢ (t), the requirement for bi-orthogonality imposes the
unambiguous determination of the analyzing 6 (t):

0 )=Xapt-1), F@)=¢@)Laer =¢@)i©)

(0 @), (t-1))= i@ )" (t -t =%];|@ (@ )|2ei'”'%ake*iwkda) =5().

m(w)=>Xa e i
k

) 2
=L |8 (@) m(e)eidw _1 [ 2| (@ +27 n) ' m(e)e'da, .
27w 27 o
m(w ) = m(w + 27 1) is a periodic function with a period 27.

o (@)=Y |7 (@+2zn)

2 (@ )m@)e'do =5 (1)
2z
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The orthogonality condition is satisfied at o (w )f(w ) =1,

d(@) _,
(@)

o (o)

9 (0)

The pair of bi-ortogonal functions ¢ (t) and 6 (t) thus obtained, connected with
relation (8) ensures the best restoration in the mean-square meaning.

Of course, this condition for orthogonality is not obligatory. It is possible to choose
the analyzing function with respect to other requirements, for example — simplicity,
computing efficiency, causality, preset components, etc.

Let us consider the classical synthesizing function

Lif 0<|ow|<7

0,if |a)|>7z

. sin 7 X
@ (x)=sinc x=

. (ﬂ(a>)={

The set {M keZ } forms a complete orthogonal basis in Hilbert space
X~
X. The vector subspace V. = span sincx contains all frequency limited functions. The

spectrum S"(a)):O, for Vo >r.
o (@)= |p (@+27 k)| =1,since ¢ () =1 Vlw| <, and G (w)=¢@ () -the
k

synthesizing and analyzing fucntions coincide.
The “measures” s, for the signal s(x) are defined by the projecting:

s, = <s(x),Sin7(T7;—)i;k)>.

Since ¢ (x) is an even function, the projection and convolution will give one and
the same result:

s - <s(x,gok(x)>= (o)

ya

In this way the coefficients s, can be obtained as accounts at the output of a filter
with a pulse function ¢ (t) through intervals A= 1/x, as shown in Fig. 1.

s(X) $()

—>  9(x) o)

Fig. 1
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In case that seV i.e.s(x)=>asinc(x—i), and since sinct = 0

sinc’
vneZ,n=0, a, = s(i), and the analyzing function 6 (x) = 3(n).

By the way, 6 (x) = (n) for each cardinal synthesizing function ¢(x), if the ap-
proximating function belongs to the vector subspace generated by it.

[11. Approximation error

The discretization has the purpose to present the continuous function s(x) by a row of
data without loss of the information contained in it. This means that the restoration of
the initial function with a preset accuracy will be possible. We shall consider the pres-

entation of s(x)e LZ from a point in the vector space V= span (¢ (x—i),ie Z),

formed by evenly translated functions ¢(x —i). These functions are linearly independ-
ent, forming Reisz’ basis in Hilbert space H. In this way the function s(x) is repre-

sented by: s :Zai(o(x_i): ATh(X),

:
9) A=laa.a | ¢(x)=|p((x-D..0(x-N)[".

The vector A represents the coordinates of the signal approximated in V_. As
evident, (9) can be regarded as discrete convolution. Each coordinate a; is the “meas-
ure”, the “content” of s(x) in @(x —i). One way to define A is projecting s(x) on Vw,
thus ensuring the smallest difference between s and s, in the mean-square meaning.
The projection is reduced to the determination of scalar products

a = <s(x), ep (x - i)> , Where ep(x) is an analyzing function, the translated versions

of which form also a vector space, belonging to Vw. The condition for projection de-
fines unambiguously &(x) at selected basis {¢,}. In the frequency domain it gets the
form:

G(w) = M, O'(w)=2‘go(w+27rn)‘z.
(o3 (0)) n

In these correlations ¢(x) and ep(x) are mutually orthogonal and form a bi-
orthogonal pair for analysis and synthesis. The operation scalar product is often re-
placed by convolution and hence it is presented as filtration, usually defined by re-
filtration. The operation with an analyzing function usually transforms the real space
of s(x) into Vw.

In most of the cases the determination of A by the bi-orthogonal function dp(x) is
too resource consuming and hence operation with a simplified analyzing function is
preferred. Still more, there exist many functions giving presentations close to the opti-
mal ones.

One evident approach to improve the approximation is at selected f to decrease the
sampling step along az, 0 < a < 1, instead of along z. To compare the approximation
quality for different ¢(x), the speed of error decrease with the reduction of step a can
be used.

Let 7 denotes the error at projection with the minimal in the mean-square sense

1,= S(X) = Ts(x).
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Here T = RP is the projection, following the synthesizing operator (P) one (R).
A fundamental result for the approximation error, obtained by [2] shows that

~a if @(0)=0 and ™ (27Nn)=0,vn#0 andk =0, 1, ..., L-1. Here

H" pa

L
o™ (w) is k-th derivative.

This relation between the convergence speed of ||77a|| and the properties of ¢(x)

can be represented in other, equivalent ways.

The speed is kept L, if ¢(x) has L null moments. The fundamental requirement for
a convergence speed L is that the space of reconstruction contains polynomials of L — 1
degree.

At orthogonal projection, this degree is determined by ¢(x) and the error is mini-
mal in the mean-square meaning. At non-orthogonal projection however, the error is
not only non-minimal, but the convergence degree can be lower. Under certain con-
straints on the analyzing function 6 (x), the convergence degree can be preserved as
defined by ¢(x). In [2] the pairs of functions ¢(x) and 6 (x) are defined as quasi-

biorthogonal, if the convergence degree of ||77a|| remains L, as determined for an opti-

mal analyzing function.
The condition below given is accepted as a common requirement for quasi-
biorthogonality:

Txke(x)dx: T xkep(x)dx<oo vk=0,1..L-1.

Here 6 (x) forms a biorthogonal pair with ¢(x).

The requirements towards 6(x) for quasi-biorthogonality can be determined in a
different way, but as a rule they give a comparatively wide freedom of choice. This
enables the finding of efficient algorithms of approximation.

In [2, 3, 4] the results from some serious investigations on the errors occurring in
approximation are exposed.

A significant theorem is proved in [2], that the error from interpolation of the

continuous function s(x) e W, with r>1/2 is determined by the expression:

2 1 %~ 2
(10) In., ()| =2—j|5(w)| E(aw)dow + (& (s,a)f,
4 -0
where 7 (8)=s-T s,
(11) E(aa))zl—M+a (w)‘é’(w)—é’ (a))r,
crq’(a)) ¢ p

é?p (@) is the biorthogonal pair of ¢ () .

& (w) is the actually used analyzing function.
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(12) le(s,a)| < Kas®

L K= ﬂi\/g @2n)|E(@o)|,

= 1 . . .
c@n=> o 1S Riman ¢ -function,
n=1

S(x) eW, if [(W+o?) §(w)‘zdw< o

IV. Interpolation of periodic signals

The interpolation of sampled periodic signals is interesting for different areas of signal
processing — functions reconstruction, alteration of the sampling frequency, delays dif-
ferent than the sampling step, determining of extremums with high resolution.

The use of the periodicity, which converts the linear convolution to a circular one
enables the development of specialized high efficient methods of interpolation. On its
basis some methods are suggested in [5, 6, 7], equivalent to interpolation with sincx
functions, but with a finite discrete convolution. In [8] a method is presented, equiva-
lent to the perfect frequency-bounded interpolation, but with time translation in the
frequency domain and an inverse Fourier transform.

The present paper discusses the main principles for perfect restoration of sampled
periodic signals, their possibilities and various problems of the software realization.
Some questions connected with evaluation of the accuracy achieved, the character of
the occurring errors, are also considered.

Interpolation with sincx

Let s(t) be a periodic signal, presented by its sampled values s, = s(nz), measured at
equal intervals t, with a period T, = N, divisible to the step 7, at that Ne Z can be an
even or non-even number. It is accepted that s(t) is frequency limited and that 7z, N
respectively are selected in such a way, that they completely represent the signal.

For such a signal, the complete restoration is obtained by the expression:

) ‘ B sin(nt—mj
(13) s(t)= X snsinc[——njz > ——~t J
S
T

sin 7zx

X

In order to simplify the writing down of the relations, we set x = t/z and the
expression for complete restoration becomes:

The function cardinal sinus has the form: sinc x =

iy
(14) s(t) = s(x7) = S':'[”X £, (X_)n .
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If the axis t is divided into intervals with length Nz, the expression s(t) can be
represented as:

sin zx m L+(j+1)N —1)n
(1) = s LD
T J —o n=L+jN " X —nN
in +oo N-1 1) iN-+n
(t)_s X S (-

i _oon = N x— jN—n

Here L is conditionally accepted as the measuring start. For a periodic signal with
aperiod Ty = N7, X, =X ), N N €Z.

It is evident from the last expression that the participation of (-1)N*" makes the
expressions for x(t) dependent on the evenness or non-evenness of N. For even N:

() =SR2y (1 £ L2
:_007[ _ -
N J
For non-even N:
s(t)_smﬂxi ( 1) Z 1 (-]
j=—or X—N .
N

The second multipliers in the last two expressions present the trigonometric func-
tions respectively:

X —
_ coSmw——— X—n 1
cotg 7 _ an and cosecr N - xon
sinzg——— sinz
N
and the interpolation expressions take the form:
For even N —
N-1 H _ _
(15) s(t) = x, Sin ”(Xx_n% cos X=X ;
=0 Nsing -~ N
and for non-even N —
N-1 P _
(16) S()= Y x, Snax=n.
n=0 N sin

The expressions (15) and (16) enable the complete restoration, a direct conse-
quence of the interpolation with sinc x function, but with the significant advantage that
it is completed in a finite number of operations.
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In spite of the evident advantages, expressions (15) and (16) are unstable in a
computing aspect due to the presence of trigonometric functions in the denominator.
At each null, or values close to null, indeterminacies appear. It is recommendable, and
sometimes possible to avoid the indeterminacies by some trigonometric transforma-
tions.

The trigonometric multiplier in (16) represents the famous Dirichlet kernel:

(17) D(x) = SN

At non-even N, the interpolation for s(t) is obtained as discrete convolution of x_
with D(x):

(18) X(t) = NZ_lan(x -n)= ka(x)

t
T

When introducing an interpolation kernel:

(19) D,(x) = D(x).cosﬂ—szﬂxx.cosﬂ—x;
Nsin T2 N
N
the interpolation at even N obtains the simple form:
N-1
(20) X(t)=2x D (x—n)=x *D (x)
noo ko1 k 1 ot

T

The kernel D,(x) is in its essence the weighted by a weighting function

X
h(x) = cos % Dirichlet kernel (17). The weighting function is a positive semi-wave

of a cosinus function with a period twice bigger than the period T of x(t).
In spite of the simple expression, the problem of indeterminacy remains.
If the relation

k sink+1)L 1
21 cosk2L=—"—"—+=
1) ké) 2sinL 2
be used, Dirichlet kernel gets the form:
N-1/2
22) D(x):i(zz cos Zixk—lj.
N o N
If (21) is used again, the kernel D, (x) becomes:
1 N2 27X
D(X)=— -1+2 —Kk .
(23) (%) N (cosm( + kgocos N j

When using D(x) and D, (x) in the form (22) and (23), the interpolation is stable in
a computing aspect.
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V. Conclusion

The periodic signals are a specific class of signals. Their presentation with periodic
basis functions upon an unlimited carrier, such as the complex harmonic functions, is
considered appropriate. The restoration here exposed with a sincx function is in fact
transformed as restoration with harmonic functions.

It is interesting to note that the sampling itself can be directly adapted to such kind
of representation, not to the traditional one with shifting of the basis function.
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JIuckperusanyst 1 HHTEpIoJIalyis Ha IEPUOANYHN CUTHAITU
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(Pe3wmMme)

B Hnacrosmara pabora ce pasmiexaa JUCKPEeTU3UPAHETO M BH3CTAHOBSIBAHETO Ha
NEepUuoOANYHN CUTHAJIM C U3IOJI3BBAHCTO Ha CUCTEMU OT PAaBHOMCPHO M3MCECTBAHU
aHaJIU3WpaIly U cuHTe3upaim Qynkiuu. [TokazaHo e BIMSHUETO HA Te3U (PyHKIIUU
BBpPXY TOUHOCTTA Ha allpOKCUMalNUATA U U3UCKBAHHUATA KbM TAX 3a ONITUMU3UPAHC
Ha BHacsiHaTa rpemika. [Toka3zaHu ca METOAM 3a ChbBBPIICHA MHTEPIIONAIUS Ha
MEPHOTUYHH YECTOTHO OTpaHHYeHH (QYHKIMH. 3a TaKuBa (QyHKIIUN HHTEPIIOTALUATA C
GbyHKIMH SINCX, 3a pa3iuKa OT HEMEPUOANYHUTE, MOXKE Jla Ce CBEJE 10 KpaeH Opoi
cymupanust. [Tokazanu ca MeToguTe 3a NOCTUTAHE HA M3YHUCIMTENHA YCTOHYMBOCT.
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